• Login
    • Login
    Advanced Search
    View Item 
    •   Maseno IR Home
    • Theses & Dissertations
    • School of Biological and Physical Sciences
    • Chemistry
    • View Item
    •   Maseno IR Home
    • Theses & Dissertations
    • School of Biological and Physical Sciences
    • Chemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sorption of sulfonamides by γ-fe2o3 modified natural clay: Isotherms, Kinetics and Thermodynamics studies

    Thumbnail
    View/Open
    ABSTRACT In recent years.pdf (71.75Kb)
    VICTOR SHIKUKU_PHD THESIS_NOVEMBER 2018.pdf (1.234Mb)
    Publication Date
    2018
    Author
    SHIKUKU, Victor Odhiambo
    Metadata
    Show full item record
    Abstract/Overview
    ABSTRACT In recent years, research has indicated the presence of pharmaceutically active ingredients (PAIs) as emerging water contaminants. The presence of these compounds in surface waters is of great environmental concern due to the toxicological effects of these compounds on organisms in the aquatic environment. Conventional wastewater treatment approaches have been shown to be ineffective in eliminating PAIs from influent wastewater. Among the ecotoxicological PAIs detected in effluents from a typical Kenyan municipal wastewater treatment plant (WWTP) in Bungoma include sulfonamides such as sulfachloropyridazine (SCP) and sulfadimethoxine (SDM). Furthermore, recovery of suspended adsorbent in a continuous flowing system still remains an unresolved challenge. There is therefore an urgent need to investigate and evaluate efficient and cost-effective wastewater treatment alternatives. Iron modified adsorbents have been demonstrated to be economical and efficient adsorbents for removal of various pollutants with adsorbent recovery achievable through external magnetic field. Iron-oxide modified clays, therefore, present a potentially efficient and sustainable alternative due to the natural occurrence and abudance of clay and low cost of iron, hence reduced capital investment. However, the sorption and interaction mechanisms of clays and iron-oxide modified clay for sulfachloropyridazine (SCP) and Sulfadimethoxine (SDM), as model sulfonamides, are not well understood. The objective of this study was to evaluate the sorption characteristics of natural untreated kaolinite clay and iron modified clay (Fe-MC) for SCP and SDM, in single and binary solutions. The effects of initial concentration (0.25 – 1.25 mg L-1), contact time (15- 360 min) and temperature (303 – 323 K) were investigated. Langmuir model satisfactorily described the sorption of both adsorbates onto the raw and Fe-MC clays. Notably; the raw clay had higher sorption capacity than Fe-MC. In binary solute solutions, an antagonistic sorption process of SDM (Rq,SCP= 0.453) in the presence of SCP (Rq,SDM =0.915) was observed for the raw clay. However, for the Fe-MC clay, an antagonistic sorption process of SCP (Rq,SCP= 0.625) in the presence of SDM (Rq,SDM =1.032) was noted. The antagonisms suggest replacement sorption. For each compound, the sorption reactions obeyed follow a pseudo-second order kinetic law for both clays. However, half-life values depict SDM exhibited faster sorption kinetics over SCP onto the untreated clay while the opposite phenomenon occurred for sorption onto Fe-MC. The calculated thermodynamic parameters, ΔG, ΔH, ΔS and ΔEa indicate that SCP and SDM sorption on both untreated and Fe-MC clays are spontaneous, exothermic and physical in nature. Intraparticle diffusion model showed that the sorption of the processes followed multiple phases and were not solely controlled by pore diffusion. The proposed sorption mechanisms were found to be consistent with cation bridging and negative charge-assisted H-bonding. The results show the tested clay may be used as a low-cost material for removal of
    Permalink
    https://repository.maseno.ac.ke/handle/123456789/826
    Collections
    • Chemistry [38]

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback

     

     

    Browse

    All of Maseno IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback