• Login
    • Login
    Advanced Search
    View Item 
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Physics & Materials Science
    • View Item
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Physics & Materials Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Gravitation in Flat Euclidean Spacetime Frame: Unified Electrogravity and Magnetogravity Forces

    Thumbnail
    View/Open
    EJ-PHYSICS_334.pdf (180.6Kb)
    Publication Date
    2024-07-15
    Author
    Kibande, Wellingtone
    Omolo, Joseph Akeyo
    Simiyu, Dismas Wamalwa
    Metadata
    Show full item record
    Abstract/Overview
    An effective description of physics requires an appropriate geometrical frame. Three-dimensional Euclidean space provides the geometrical frame for non-relativistic physics. A derivation of an imaginary temporal axis− icˆq the speed, ˆq the unit wave-vector of light, extends the standard Euclidean space into a well-defined four-dimensional Euclidean spacetime frame, which provides the natural mathematical framework for relativistic physics. The basic elements of the Euclidean spacetime frame are fully specified four-component complex vectors satisfying standard vector operations and vector identities. In developing a theory of gravitation in the Euclidean spacetime frame, we have used the Lense-Thirring spacetime metric of linearized general relativity to derive an appropriate complex four-component gravitational field potential vector. Taking the curl of the field potential vector provides a unified complex gravitational field strength composed of electric-type and magnetic-type components. Taking the cross-product of the complex four-component velocity and the field strength provides a unified complex gravitational force intensity composed of gravitoelectric and gravitomagnetic components. Application to the motion of a gyroscope in the gravitational field of the earth provides the standard results of frame-dragging and geodetic effects as determined in linearized general relativity theory.
    Permalink
    https://repository.maseno.ac.ke/handle/123456789/6141
    Collections
    • Department of Physics & Materials Science [164]

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback

     

     

    Browse

    All of Maseno IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback