• Login
    • Login
    Advanced Search
    View Item 
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Physics & Materials Science
    • View Item
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Physics & Materials Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating the Young's modulus of Cu-Al-Be shape memory alloy using a phase diagram, vibration spectroscopy and ultrasonic waves

    Thumbnail
    Publication Date
    2024-03-05
    Author
    Benlachemi, Rania
    Ogam, Erick
    Ongwen, Nicholas
    Boudour, Amar
    Fellah, Zine El Abiddine
    Metadata
    Show full item record
    Abstract/Overview
    This work presents a method for determining the effective Young’s modulus (Eeffective) and Poisson ratio of small specimens of a ternary shape memory alloy (SMA), Cu-Al-Be. The alloys were synthesized uniformly and homogeneously using various concentrations of high purity metals and formed into slabs of different geometrical shapes. The phases and fractional quantities of each sub-alloy composing the SMA were determined using SEM/EDS data and the lever rule, and confirmed by matching computed and measured X-ray diffraction peak patterns. The Eeffective was determined using the rule of mixtures, employing elastic moduli obtained from Ab initio (Density functional theory) calculations. To address the challenge of determining Eeffective experimentally for small specimens, high frequency ultrasonic waves and vibration spectroscopy were used. The Eeffective was then used in a 3D finite element model to compute the vibrational spectrum’s resonance peaks, which were found to match those of the experimental vibrational response. The Eeffective was also compared to the pressure wave (P-waves) modulus recovered using non-contact ultrasound waves propagating through the sample’s thickness. Discrepancies mainly occurring for alloys with the β phase were resolved by determining its anisotropic spatial Young’s modulus. Overall, the presented method provides a comprehensive characterization of the mechanical properties of small alloy specimens.
    Permalink
    https://repository.maseno.ac.ke/handle/123456789/6051
    Collections
    • Department of Physics & Materials Science [164]

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback

     

     

    Browse

    All of Maseno IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback