• Login
    • Login
    Advanced Search
    View Item 
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Physics & Materials Science
    • View Item
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Physics & Materials Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Probing the stoichiometry dependent catalytic activity of nickel selenide counter electrodes in the redox reaction of iodide/triiodide electrolyte in dye sensitized solar cells

    Thumbnail
    View/Open
    d0ra06150f.pdf (1.525Mb)
    Publication Date
    2020
    Author
    Mildred A Airo, Francis Otieno, Lineo Mxakaza, Adewale Ipadeola, Rudo S Kadzutu-Sithole, Lerato FE Machogo-Phao, Caren Billing, Makwena Moloto, Nosipho Moloto
    Metadata
    Show full item record
    Abstract/Overview
    Nickel selenide (NixSey) systems have received much attention in recent years as potential low cost counter electrodes (CEs) in dye sensitized solar cells (DSSCs). Their electrocatalytic activities are comparable to that of the conventional platinum CE. Despite their achievements, the effect of stoichiometry on their catalytic performance as CEs in DSSCs still remains unclear, hence the motivation for this work. Different stoichiometries of NixSey were synthesized via a colloidal method in oleylamine or oleylamine/oleic acid mixture at the appropriate synthetic temperature and Ni to Se precursor ratio. X-ray diffraction revealed that different stoichiometries of nickel selenide were formed namely, NiSe2, Ni3Se4, Ni0.85Se, NiSe and Ni3Se2. Scanning electron microscopy showed that all the stoichiometries had predominantly sphericallike morphologies. Cyclic voltammetry, electrochemical impedance spectroscopy analysis and the photovoltaic performances of the DSSCs fabricated using the different NixSey CEs revealed that selenium rich stoichiometries performed better than the nickel rich ones. Consequently, the catalytic activity towards the redox reaction of the triiodide/iodide electrolyte and hence the power conversion efficiency (PCE) followed the order of NiSe2 > Ni3Se4 > Ni0.85Se > NiSe > Ni3Se2 with PCE values of 3.31%, 3.25%, 3.17%, 2.35% and 1.52% respectively under ambient conditions
    Permalink
    https://repository.maseno.ac.ke/handle/123456789/4546
    Collections
    • Department of Physics & Materials Science [164]

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback

     

     

    Browse

    All of Maseno IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback