• Login
    • Login
    Advanced Search
    View Item 
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Physics & Materials Science
    • View Item
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Physics & Materials Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multipole expansion of integral powers of cosine theta

    Thumbnail
    View/Open
    s41598-020-77234-4.pdf (1.078Mb)
    Publication Date
    2020-11-18
    Author
    EO Jobunga, OS Okeyo
    Metadata
    Show full item record
    Abstract/Overview
    Legendre polynomials form the basis for multipole expansion of spatially varying functions. The technique allows for decomposition of the function into two separate parts with one depending on the radial coordinates only and the other depending on the angular variables. In this work, the angular function is expanded in the Legendre polynomial basis and the algorithm for determining the corresponding coefficients of the Legendre polynomials is generated. This expansion together with the algorithm can be generalized to any case in which a dot product of any two vectors appears. Two alternative multipole expansions for the electron–electron Coulomb repulsion term are obtained. It is shown that the conventional multipole expansion of the Coulomb repulsion term is a special case for one of the expansions generated in this work.
    Permalink
    https://repository.maseno.ac.ke/handle/123456789/3324
    Collections
    • Department of Physics & Materials Science [164]

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback

     

     

    Browse

    All of Maseno IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback