• Login
    • Login
    Advanced Search
    View Item 
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Physics & Materials Science
    • View Item
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Physics & Materials Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dewetting Rheology for Determining Viscoelastic Properties of Nonequilibrated Thin Polymer Films

    Thumbnail
    Publication Date
    2019
    Author
    Austine A Mulama, Sivasurender Chandran, Konstantinos Roumpos, Andrew O Oduor, Günter Reiter
    Metadata
    Show full item record
    Abstract/Overview
    We performed systematic dewetting experiments on isotactic poly(para-methylstyrene) (iPpMS) films to explore the temperature dependence of the viscoelastic behavior of these films. We quantified the amount of residual stresses σres induced through film preparation by spin-coating. As anticipated, σres was found to be independent of the temperature Tdew at which dewetting was done. A particular focus was on the temperature dependence of the relaxation time τ of σres, which was measured with the help of three independent dewetting parameters. Within error, all three values of τ were identical and followed an Arrhenius behavior yielding an activation energy of 60 ± 10 kJ/mol. The initial dewetting velocity, being proportional to the ratio of surface tension of iPpMS and the corresponding viscosity, increased significantly with Tdew. Assuming a linear stress–strain response, we deduced that the elastic deformation responsible for the maximum height of the dewetting rim increased with temperature, although σres did not vary with temperature. Correspondingly, the shear modulus of iPpMS films was found to decrease monotonically with increasing temperature. Using a Maxwell-type model, the corresponding viscosity of the film showed the expected decrease with increasing temperature. Our experiments suggest that preparation-induced residual stresses affect material properties such as elastic modulus or viscosity of iPpMS as a function of temperature.
    Permalink
    https://repository.maseno.ac.ke/handle/123456789/2866
    Collections
    • Department of Physics & Materials Science [164]

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback

     

     

    Browse

    All of Maseno IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback