• Login
    • Login
    Advanced Search
    View Item 
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Botany
    • View Item
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Botany
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Patterns of CO2 exchange and productivity of the herbaceous vegetation and trees in a humid savanna in western Kenya

    Thumbnail
    View/Open
    Ochuodho_ Patterns of CO2 exchange and productivity of the herbaceous vegetation and trees in a humid savanna in western Kenya (1).pdf (309.9Kb)
    Publication Date
    2015
    Author
    Dennis O Ochuodho, Joseph Ondier, Sebastian Arnhold, Daniel Okach, Marianne Ruidisch, Bora Lee, Andreas Kolb, John Onyango, Bernd Huwe
    Metadata
    Show full item record
    Abstract/Overview
    Factors governing the dynamics between woody and herbaceous vegetation in the savanna are of ecological interest since they determine ecosystem productivity and stability. Field measurements were conducted in a humid savanna in the Lambwe valley, western Kenya, to compare CO2 exchange of the herbaceous vegetation and trees and its regulation. Soil characteristics and root distribution patterns under tree canopies and in the open locations dominated by the herbaceous vegetation were profiled in 1-m-deep soil layers. Soil water content (SWC) was measured at 30 cm depth both in the herbaceous vegetation and also under the tree canopies. The mean maximum monthly gross primary production (GPPmax) in the herbaceous vegetation was determined from chamber measurements, while daily GPP (GPPday) in both the grass and tree canopies was simulated using the PIXGRO model. The highest mean GPPmax in the herbaceous vegetation was 26.2 ± 3.7 μmol m-2 s-1 during April. Seasonal fluctuations of GPP in the herbaceous vegetation were explained by soil water availability (R 2 = 0.78) within the upper 30-cm soil profile. Seasonal GPPday fluctuations were larger (between 1 gC m-2 d-1 and 10 gC m-2 d-1) in the herbaceous vegetation compared to the trees, which fluctuated around 4.3 ± 0.3 gC m-2 d-1 throughout most of the measurement period. Daily tree canopy transpiration (Ec), canopy conductance (Gc), and GPPday were decoupled from SWC in the top 30-cm soil profile. On average, ecosystem GPPday (mean of tree and herbaceous vegetation) was 14.3 ± 1.2 gC m-2 d-1 during the wet period and 6.1 ± 0.9 gC m-2 d-1 during drought. Differences between the herbaceous and tree canopy responses were attributed to soil moisture availability.
    Permalink
    https://repository.maseno.ac.ke/handle/123456789/2053
    Collections
    • Department of Botany [229]

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback

     

     

    Browse

    All of Maseno IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback