Sap Flow Dynamics and Responses to Grazing and Seasonal Changes in Soil Moisture for Acacia Ancistroclada and Comberatum Molle in a Kenyan Savanna
Publication Date
2020-08-07Author
Joseph Ondier, Dennis Otieno, Daniel Okach, John Onyango
Metadata
Show full item recordAbstract/ Overview
The Kenyan savanna, which is dominated by Acacia ancistroclada and Comberatum molle, has experienced notable changes in rainfall patterns and increased livestock grazing. A significant decrease in trees spread from 5 % to less than 1 % has been documented for the ecosystem and could be linked to the increased livestock grazing and changes in rainfall patterns, however, scientific evidence is lacking. We utilized sap flow to analyze the hydraulic responses of the prevailing trees to livestock grazing and seasonal changes in soil moisture. Environmental factors including precipitation, air temperature, soil moisture at - 0.3 m, and vapor pressure deficit were simultaneously measured. The results showed that the diurnal variation in sap flux density exhibited a single peak curve at around midday and correlated strongly with vapor pressure deficit and air temperature. Sap flux density was higher in the grazed (27.47 ± 8.65 g m-2s-1) than the fenced plots (20.17 ± 7.27 g m-2s-1). In all the plots, sap flux density followed seasonality in rainfall patterns, increasing and decreasing in wet and dry seasons respectively. The higher crown projected area was responsible for higher sap flow in the grazed plots. The diurnal variation in sap flux density showed that sap flow was coupled to the atmosphere with relatively low boundary layer resistance and the seasonal variation in sap flow was controlled by stomatal regulation. These findings point to the possibility that the dominant tree species in Lambwe are isohydric species. However, additional measurements need to be conducted on the eligibility of the species to confirm the conclusion.
Collections
- Department of Botany [229]