• Login
    • Login
    Advanced Search
    View Item 
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Chemistry
    • View Item
    •   Maseno IR Home
    • Journal Articles
    • School of Biological and Physical Science
    • Department of Chemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of cropping systems and agricultural lime on soil properties and nutrient content of sugarcane on acidified soils of Kisumu County, Kenya

    Thumbnail
    View/Open
    publishedresearcharticle_Omolloetal2016_AmericanJournalofAgricandForestry.pdf (3.240Mb)
    Publication Date
    2016-07-23
    Author
    O. Omollo, j.
    Semu, E.
    Msaky, J.
    Owuor, P.
    Metadata
    Show full item record
    Abstract/Overview
    Acid soils cause soil fertility problems such as Al and Mn toxicity, Ca, Mg, N deficiency and P fixation. These are constraints to high crop yields. Historically, liming is the common management practice used to neutralize soil acidity and to overcome the problems associated with soil acidification. A field experiment was conducted to investigate the effects of cropping systems, lime placement methods and lime rates on some soil chemical properties and nutrient uptake by sugarcane during the plant crop and ratoon one cycle under acidified Cambisols of Kibos, Kisumu, Kenya. A Split - split plot in randomized complete block arrangement was employed. The factors and respective levels (in parenthesis were): main plot; two cropping systems (sugarcane monoculture [MC] and intercropped sugarcane and soybeans [IC]). The sub – plots were three lime placement methods (lime broadcasted [L-BC], lime shallow banded, 0 – 15 cm [L-SB] and lime deep banded, 15 – 30 cm (L-DB] and the sub - sub plots were three lime rates (0, 1 and 2 t ha-1). Lime rate of 2 t ha-1 significantly (P ≤ 0.05) increased soil pH to 6.4 and 5.2 as determined in water and 1 N KCl, respectively compared to 1 t ha-1 and control (0 t ha-1). Increased lime rate led to decreased levels of manganese, iron, and copper hence confirms the inverse relationship between soil pH and these micronutrients. Lime deep banded (L-DB) increased soil pH and available phosphorus for soil depth 15 – 30 cm compared to lime shallow banded (L-SB) and lime broadcasted (L-BC). Intercropped sugarcane and soybeans (IC) led to increased soil acidity and soil organic carbon (SOC) than did sugarcane monoculture (MC). For nutrient content of sugarcane leaves, IC system led to increased Ca and Mn compared to MC. Lime broadcasted (L-BC) caused high nitrogen and phosphorus content of sugarcane leaves and lime shallow banded resulted in increased Ca and Zn content of sugarcane to optimum levels. In view of the findings, the lime rate of 2 t ha-1 is recommended for use to ameliorate soil acidity for acidified Cambisols of Kibos, Kisumu County, Kenya. Lime broadcasted (L-BC) is preferred to ameliorate acidity at top depth (0 – 15 cm) while lime banded both (L-SB) and L-DB) is preferred to reduce sub - soil acidity.
    Permalink
    https://repository.maseno.ac.ke/handle/123456789/1503
    Collections
    • Department of Chemistry [337]

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback

     

     

    Browse

    All of Maseno IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback