dc.description.abstract | The rising demand for semiconductor substrates for printing electronic circuits has been sparked by recent breakthroughs in electronics. The most popular substrate for printing these devices is silicon (Si), which is chosen over other substrates like silicon nitride because it is more widely accessible, and has better electrical and electronic properties. Despite the benefits above, Si has a number of disadvantages, including being brittle and only occasionally existing as a pure element. This study synthesized and characterized cadmium tin oxide (CTO) as potential substrates for MEMS manufacturing. A comparative computational study of the structural and mechanical properties with Si and silicon carbide (SiC) was also made. The experiments involved structural characterization of the synthesized samples at varied concentrations of cadmium, while the computations involved use of density functional theory within the generalized gradient approximation to investigate the structural and mechanical properties of the three materials. SiC was found to have better mechanical properties than both Si and CTO, but its brittleness prevents it from being used in the production of flexible MEMS. The manufacturing of flexible MEMS, including microbolometers and biomedical MEMS, can be made possible due to the soft and ductile character of CTO, especially the CTO 3, which was the most ductile. | en_US |