EVALUATION OFSELECTED MANAGEMENT PRACTICES CONTRIBUTING TO PRIMARY SOIL GREENHOUSE GAS FLUXES IN SMALLHOLDER SUGARCANE FARMING IN LOWER NYANDO, WESTERNKENYA

BY

THEODORA ACHIENG

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THEDEGREE OF MASTER OF SCIENCE IN CHEMISTRY

SCHOOL OF PHYSICAL AND BIOLOGICAL SCIENCES MASENO UNIVERSITY

© 2018

DECLARATION

This thesis is my original work and has not been presented for a degree award in Maseno University or in any other University.

Theodora Achieng'

PG/MSC/00005/2012

SignatureDate.....

This thesis has been submitted for examination with our approval as the university supervisors.

Prof. P. Okinda
Department of Chemistry
Maseno University

Signature.....Date.....

Dr. Sylvia Opiyo	
Department of Chemistry	
Maseno University	
Signature	.Date

Dr. Mariana C. Rufino Center for International Forestry Research, Nairobi

Perin

Signature......Date.....

ACKNOWLEDGEMENT

I am grateful to the Almighty God for the inspiration, protection and guidance during the research period. I also sincerely thank the following organizations for their support and provision of funds to undertake this MSc degree: Climate, Agriculture and Food Security (CCAFS), Climate Food and Farming Research Network (CLIFF) for grants and Center for International Forestry Research (CIFOR). My acknowledgements also go to my supervisors especially Prof. P. Okinda, Dr. Mariana C. Rufino, and Dr. Sylvia Opiyo whose continuous support and encouragement led to the completion of this research work and thesis. Sincere gratitude to CIFOR and Standard Assessment of Mitigation Potentials and Livelihoods in Smallholder Systems (SAMPLES)laboratory staff and all field assistants of World Agro-Forestry Centre (ICRAF) for their support during the research period. Finally, I thank my family and friends for their encouragement during this study period.

DEDICATION

To my dear mother Zilpa Akumu Ogalo, daughter Marion Okombo, sons Powell Okombo,

Warren Okombo and beloved husband Naaman O. Okombo.

ABSTRACT

Human activities (including agriculture) contribute to enhance release of primary greenhouse gases (GHGs) (CH₄, CO₂, N₂O) into the atmosphere leading to global warming. Sugarcane is an important economic crop in Kenya being third highest contributor to gross domestic product (GDP) after tea and coffee. About 90% of Kenya's production is contributed by smallholders. To improve/maximize sugarcane yields, farmers convert natural vegetation to sugarcane farms; apply nitrogen fertilizers; retain residues in-situ to return nutrients, and organic carbon to the soil or burn residues to ease management. High GHGs emissions have been observed in temperate countries due to such agronomic activities. However, contribution of these activities to GHGs fluxes in smallholder sugarcane sector in tropical countries, especially along the equator is not documented. This study evaluated contribution of smallholder sugarcane farming management practices to GHGs fluxes in Lower Nyando, western Kenya and compared fluxes with those from high agronomic input large-scale sugarcane farming in temperate countries. Cross-sectional survey in Lower Nyando Block revealed that smallholder sugarcane growers' management practices included; period of land conversion to sugarcane farming, nitrogen fertilization and trash management. From survey, six sugarcane farms:-three with less than and three with more than 10 years conversion period to sugarcane production were selected to conduct trials on soil GHG flux measurement. Each farm was subjected to burned and unburned treatments with three rates of nitrogen fertilizer 0, 50, 100 kg N / ha/ year in factorial three design in randomized complete block design arrangement, replicated three times in three separate farms. Soil gas samples were collected weekly for 37 weeks and analyzed using gas chromatography. There was CH₄ absorption in all treatments. Conversion period from natural vegetation/other cropping systems to sugarcane cultivation did not influence GHGs fluxes. Nitrogen fertilization and burning residues increased ($p\leq0.05$) N₂O and CO₂ emissions between weeks 12 to 14 and 3 to 10 respectively. Cumulatively, treatments did not cause significant differences in GHGs fluxes. Levels of GHGs fluxes were much lower than those from large-scale sugarcane production systems in temperate countries. The low levels indicate use of Tier 1 factors to estimate GHG emissions in the tropics may produce inaccurate data. The results demonstrated that smallholder sugarcane management systems in Lower Nyando Block do not contribute significantly to GHGs emissions and hence climate change. Farmers can continue with these management practices to limit GHGs emissions to mitigate climate change.

TABLE OF CONTENTS

TITLE PAGE DECLARATION	
ACKNOWLEDGEMENT	iii
DEDICATION	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF ABBREVIATIONS AND ACRONYMS	viii
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF APPENDICES	xi
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background of the study	1
1.2 Statement of the problem	4
1.3 Research objectives	5
1.3.1 Broad objective	5
1.3.2 Specific objectives	5
1.3.3 Research question	5
1.3.4 Null hypotheses (H _o)	6
1.4 Justification of the study	6
1.5 Limitation of the study	6
CHAPTER TWO	8
LITERATURE REVIEW	8
2.1 GHGemissions due to conversion from natural vegetation to sugarcane cult	tivation11
2.2 GHG emissions due to fertilization of sugarcane fields	17
2.3 GHG emissions from trash management practices in sugarcane fields	20
CHAPTER THREE	22
MATERIALS AND METHODS	22
3.1 Site description	22
3.2 Survey sugarcane management practices in Lower Nyando	23
3.3 Experimental layout	24
3.4 Data Collection	
3.4.1 Gas Sampling	

3.4.2 Gas chromatography (GC) analysis	
3.4.3 Calculation of soil GHG fluxes	
3.5 Statistical analyses	
CHAPTER FOUR	
RESULTS AND DISCUSSIONS	
4.1 Sugarcane field management practices in Lower Nyando	
4.2 GHG fluxes	
4.2.1 GHG fluxes due to conversion period from natural vegetation to suga cultivation	
4.2.2 Influence of nitrogen fertilization on GHG fluxes	
4.2.3 GHG fluxes from trash management	
CHAPTER FIVE	43
SUMMARY, CONCLUSION, AND RECOMMENDATIONS	43
5.1 Summary	43
5.2 Conclusion	43
5.3 Recommendations	44
5.4 Suggestion for further Studies	44
REFERENCES	45
APPENDICES	57

LIST OF ABBREVIATIONS AND ACRONYMS

- AOA Ammonia oxidising archea
- AOM Ammonia oxidising bacteria
- AOM Anaerobic oxidation of methane
- ANOVA Analysis of variance
- CCAFS Climate, Agriculture and Food Security
- CIFOR Center for International Forestry Research
- CLIFF Climate, Food and Farming Research Network
- CO₂ Carbon (IV) oxide dioxide (Carbon dioxide)
- ECD Electron Capture Detector
- EF Emission Factor
- FID Flame Ionization Detector
- GC Gas chromatography
- Gt Gigatonnes
- GWP Global warming potential
- GDP Gross domestic product
- GHG Greenhouse gas
- IPCC Intergovernmental Panel on Climate Change
- LUC Land use change
- CH₄ Methane
- Mt Metric tonnes
- N₂O Nitrous oxide
- PVC Polyvinyl chloride
- RCBD Randomized Complete Block Design
- SOC Soil organic carbon
- SOM Soil organic matter
- SAMPLES Standard Assessment of Mitigation Potentials and Livelihoods in Smallholder Systems
- SRB Sulphate reducing bacteria
- TAR Third Assessment Report
- ICRAF World Agro Forestry Centre

LIST OF TABLES

LIST OF FIGURES

Figure1: The study area (Lower Nyando Block, western Kenya	23
Figure 2: Sugarcane and adjacent native vegetation fields in the Nyando sugarcane produ	icing
area of western Kenya (Source: Rufino et al., 2017)	24
Figure 3: GHG measurement in burnt sugarcane fields in Lower Nyando	26
Figure 4: GHG measurement in trashed blanketed sugarcane fields in Lower Nyando	26
Figure 5: Influence of duration since conversion to sugarcane farming on methane fluxes	31
Figure 6: Cumulative fluxes of methane due to duration of converting fields to sugarcane	;
farming	31
Figure 7: Contribution of conversion period on carbon dioxide fluxes	32
Figure 8: Cumulative fluxes of carbon dioxide due to conversion period	32
Figure 9: Influence of duration since conversion to sugarcane farming on nitrous oxide	
fluxes	33
Figure 10: Cumulative fluxes of nitrous oxide due conversion period to sugarcane farmin	ıg.33
Figure 11: Influence of nitrogen fertilizer application on methane fluxes	37
Figure 12: Cumulative methane absorption due to nitrogen fertilizer application	37
Figure 13: Contribution of nitrogen fertilizer application on carbon dioxide emissions	38
Figure 14: Cumulative carbon dioxide emissions due to nitrogen fertilizer application	38
Figure 15: Influence of nitrogen fertilizer on nitrous oxide fluxes	39
Figure 16: Cumulative nitrous oxide emissions due to nitrogen fertilizer application	39
Figure 17: Contribution of trash management on methane fluxes	40
Figure 18: Cumulative methane absorption due to trash management	40
Figure 19: Influence of trash management on carbon dioxide emissions	41
Figure 20: Cumulative carbon dioxide emissions due trash management	41
Figure 21: Contribution of trash management on nitrous oxide fluxes	42
Figure 22: Cumulative nitrous oxide emissions due to trash management	42

LIST OF APPENDICES

Appendix 1. Sugarcane survey Instrument
Appendix 2: Influence of conversion period, trash management and nitrogen fertilizer
application on methane fluxes in week 160
Appendix 3: Contribution of conversion period, trash management and nitrogen fertilizer
application on methane fluxes in week 260
Appendix 4: Effect of conversion period, trash management and nitrogen fertilizer
application on methane fluxes in week 361
Appendix 5: Sugarcane Management practices influencing methane fluxes in week 461
Appendix 6: Drivers of methane fluxes in week 5
Appendix 7: Factors influencing methane fluxes in week 6
Appendix 8: Sugarcane management practices contributing methane fluxes in week 763
Appendix 9: Variation of methane fluxes with sugarcane management practices in week 8
Appendix 10: Influence of conversion period, trash management and nitrogen fertilizer
application on methane fluxes in week 964
Appendix 11: Contribution of conversion period, trash management and nitrogen fertilizer
application on methane fluxes in week 1064
Appendix 12: Sugarcane management practices influencing methane fluxes in week 1165
Appendix 13: Drivers of methane fluxes in week 1265
Appendix 14: Effect of conversion period, trash management and nitrogen fertilizer
application on methane fluxes in week 13methane fluxes in week 13
Appendix 5: Influence of sugarcane management practices on methane fluxes in week 1466
Appendix 16: Variation of methane fluxes with sugarcane management practices in week 15
Appendix 17: Factors influencing methane fluxes in week 16
Appendix 18: Contribution of conversion period, trash management and nitrogen fertilizer
application on methane fluxes in week 1768
Appendix 19: Sugarcane management practices influencing to methane fluxes in week 1868
Appendix 20: Effect of conversion period, trash management and nitrogen fertilizer
application on methane fluxes in week 19
Appendix 21: Drivers of methane fluxes in week 20
Appendix 22: Sugarcane management practices influencing methane fluxes in week 2170

Appendix 23: Contribution of conversion period, trash management and nitrogen fertilizer
application on methane fluxes in week 2270
Appendix 24: Effect of conversion period, trash management and nitrogen fertilizer
application on methane fluxes in week 2371
Appendix 25: Influence of sugarcane management practices on methane fluxes in week 24
Appendix 26: Variation of methane fluxes with sugarcane management practices in week 25
Appendix 27: Factors influencing methane fluxes in week 2672
Appendix 28: Sugarcane management practices influencing methane fluxes in week 2773
Appendix 29: Drivers of methane fluxes in week 2873
Appendix 30: Sugarcane management practices contributing to methane fluxes in week 29.74
Appendix 31: Contribution of conversion period, trash management and nitrogen fertilizer
application on methane fluxes week 3074
Appendix 32: Effect of conversion period, trash management and nitrogen fertilizer
application on methane fluxes in week 3175
Appendix 33: Influence of sugarcane management practices on methane fluxes on methane
fluxes in week32
Appendix 35: Variation of methane fluxes with sugarcane management practices in week 34
Appendix 36: Sugarcane management practices influencing methane fluxes in week 3577
Appendix 37: Drivers of methane fluxes in week 36
Appendix 38: Effect of conversion period, trash management and nitrogen fertilizer
application on methane fluxes in week 37
Appendix 39: Cumulativefluxes of methane due to conversion period, trash management and
nitrogen fertilizer
Appendix 40: Influence of conversion period, trash management and nitrogen fertilizer
application on carbon dioxide fluxes in week 1
Appendix 1: Contribution of conversion period, trash management and nitrogen fertilizer
application on carbon dioxide fluxes in week 2
Appendix 42: Effect of conversion period, trash management and nitrogen fertilizer
application on flu carbon dioxide fluxes in week 3

Appendix 43: Sugarcane Management practices influencing carbon dioxide fluxes in week 4
Appendix 44: Drivers of carbon dioxide fluxes in week 5
Appendix 45: Factors influencing carbon dioxide fluxes in week 6
Appendix 46: Sugarcane management practices contributing to carbon dioxide fluxes in week
7
Appendix 47: Sugarcane management practices influencing carbondioxide fluxes inWeek 8
Appendix 48: Influence of conversion period, trash management and nitrogen fertilizer
application on carbon dioxide fluxes in week 9
Appendix 49: Contribution of conversion period, trash management and nitrogen fertilizer
application on carbon dioxide fluxes in week 10
Appendix 50: Management practices influencing carbon dioxide fluxes in week 11
Appendix 51: Sugarcane management practices contributing to f carbon dioxide fluxes in
week 12
Appendix 52: Drivers of carbon dioxide fluxes in week 13
Appendix 53: Effect of conversion period, trash management and nitrogen fertilizer
application on carbon dioxide fluxes in week 14
Appendix 54: Management practices influencing carbon dioxide fluxes in week 15
Appendix 55: Variation of carbon dioxide fluxes with sugarcane management practices in
week 16
Appendix 56: Factors influencing carbon dioxide fluxes in week 17
Appendix 57: Management practices influencing carbon dioxide fluxes in week 18
Appendix 58: Effect of conversion period, trash management and nitrogen fertilizer
application on carbon dioxide fluxes in week 19
Appendix 59: Drivers of carbon dioxide fluxes in week 20
Appendix 60: Sugarcane management practices influencing carbon dioxide fluxes in week 21
Appendix 61: Contribution of conversion period, trash management and nitrogen fertilizer
application on carbon dioxide fluxes week 22
Appendix 62: Effect of conversion period, trash management and nitrogen fertilizer
application on carbon dioxide fluxes in week 2390
Appendix 63: Influence of sugarcane management practices on carbon dioxide fluxes in week
2490

Appendix 64: Variation of carbon dioxide fluxes with sugarcane management practices in
week 25
Appendix 65: Factors influencing carbon dioxide fluxes in week 26
Appendix 66: Sugarcane management practices influencing carbon dioxide fluxes in week 27
Appendix 67: Drivers of carbon dioxide fluxes in week 2892
Appendix 68: Influence of sugarcane management practices on carbon dioxide fluxes fluxes
in week 2993
Appendix 69: Contribution of conversion period, trash management and nitrogen fertilizer
application on carbon dioxide fluxes in week 3093
Appendix 70: Effect of conversion period, trash management and nitrogen fertilizer
application on carbon dioxide fluxes in week 3194
Appendix 71: Influence of sugarcane management practices on carbon dioxide fluxes fluxes
in week 3294
Appendix 72: Factors contributing to carbon dioxide fluxes in week 3395
Appendix 73: Variation of carbon dioxide fluxes with sugarcane management practices in
week 3495
Appendix 74: Sugarcane management practices contributing to GHGs fluxes in week 3596
Appendix 75: Contribution of conversion period, trash management and nitrogen fertilizer
application on carbon dioxide fluxes in week 3696
Appendix 76: Factors influencing nitrous oxide fluxes in week 3797
Appendix 77: Cumulativefluxes of carbon dioxide due to conversion period, trash
management and nitrogen fertilizer application97
Appendix 78: Influence of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes in week 1
Appendix 79: Contribution of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes in week 2
Appendix80: Effect of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes in week 399
Appendix 81: Sugarcane Management practices influencing nitrous oxide fluxes in week 4
Appendix 82: Drivers of nitrous oxide fluxes in week 5
Appendix 83: Factors influencing nitrous oxide fluxes in week 6

Appendix 84: Sugarcane management practices contributing nitrous oxide fluxes in week 7
Appendix 85: Variation of nitrous oxide fluxes with sugarcane management practices in week 8
Appendix 86: Influence of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes in week 9102
Appendix 87: Contribution of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes in week 10102
Appendix 88: Management practices influencing nitrous oxide fluxes in week 11103
Appendix 89: Sugarcane management practices contributing to nitrous oxide fluxes in week
12103
Appendix 90: Drivers of nitrous oxide fluxes in week 13104
Appendix 91: Effect of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes in week 14104
Appendix 92: Influence of sugarcane management practices on nitrous oxide fluxes in week
15
Appendix 93: Variation of nitrous oxide fluxes with sugarcane management practices in week
16105
Appendix 94: Factors influencing nitrous oxide fluxes in week 17106
Appendix 95: Contribution of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes in week 18106
Appendix 96: Sugarcane management practices influencing to nitrous oxide fluxes in week
19107
Appendix 97: Effect of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes in week 20107
Appendix 98: Drivers of nitrous oxide fluxes in week 21108
Appendix 98: Drivers of nitrous oxide fluxes in week 21108Appendix 99: Management practices influencing nitrous oxide fluxes in week 22108
Appendix 99: Management practices influencing nitrous oxide fluxes in week 22108
Appendix 99: Management practices influencing nitrous oxide fluxes in week 22
Appendix 99: Management practices influencing nitrous oxide fluxes in week 22
Appendix 99: Management practices influencing nitrous oxide fluxes in week 22
 Appendix 99: Management practices influencing nitrous oxide fluxes in week 22

in week 26110
Appendix 104: Factors influencing nitrous oxide fluxes in week 27111
Appendix 105: Sugarcane management practices influencing nitrous oxide fluxes in week 28
Appendix 106: Drivers of nitrous oxide fluxes in week 29
Appendix 107: Sugarcane management practices contributing to nitrous oxide fluxes in week
30112
Appendix 108: Contribution of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes week 31113
Appendix 109: Effect of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes in week 32113
Appendix 110: Influence of sugarcane management practices on nitrous oxide fluxes in week
33114
Appendix 111: Factors contributing to nitrous oxide fluxes in week 34114
Appendix 112: Variation of nitrous oxide fluxes with sugarcane management practices in
week 35
Appendix 113: Sugarcane management practices influencing nitrous oxide fluxes in week 36
Appendix 114: Contribution of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes in week 37116
Appendix 115: Cumulativefluxes of nitrous oxide due to conversion period, trash
management and nitrogen fertilize116

CHAPTER ONE

INTRODUCTION

1.1 Background of the study

Parts of the earth's atmosphere of the right thickness acts as insulating blanket, trapping solar energy to keep the global temperature in suitable range. The 'blanket' is a collection of atmospheric gases called 'greenhouse gases' (GHGs) based on the idea that the gases also 'trap' heat like the walls of a greenhouse. GHGs absorb and emit radiation within the thermal infrared range (IPCC, 2007). The rise in greenhouse gases (GHGs), since the late 19^{th} century has been of anthropogenic origin. According to the third Assessment Report (TAR) of Inter governmental Panel on Climate, the increase in the concentration of GHG in the atmosphere (for example, CO₂ by 29%, CH₄ by 150%, and N₂O by 15%) in the last 100 years, has caused mean surface temperature to rise by $0.4 - 0.8^{\circ}$ C globally (Sharma *et al.*, 2006). Precipitation has become spatially variable and the intensity and frequency of extreme weather events have increased. The sea level has witnessed an average annual rise at rate of 1 - 2 mm during this period. The continued increase in concentration of GHGs in the atmosphere has caused climate change resulting in large changes in ecosystems, leading to possible catastrophic disruptions of livelihoods, economic activity, living conditions and human health (Sharma *et al.*, 2006).

Agriculture is directly responsible for 14% of annual GHG emissions and induces an additional 17% GHGs emission through land use change, mostly in developing countries (Vermeulen *et al.*, 2012). Agricultural intensification and expansion in the developing countries is expected to catalyze the most significant relative increases in agricultural GHG emissions over the next decade (Smith, 2008; Tilman *et al.*, 2011). Farms in the developing countries of sub-Saharan Africa and Asia are predominately managed by smallholders, with 80% of land holdings smaller than ten hectares (FAO, 2012). Smallholder farming therefore may significantly impacts the GHG balance of these regions. Usually, smallholder farming systems are characterized with low agronomic inputs. However, the effect smallholder farming has on the earth's climate system is limited. Data quantifying existing and reduced GHG fluxes from the smallholder farming systems are available for only a handful of crops, livestock, and agro ecosystems (Herrero *et al.*, 2008; Verchot *et al.*, 2008; Palm *et al.*, 2010). Indeed, fewer than fifteen studies of nitrous oxide emissions from soils have taken place in sub-Saharan Africa, leaving the rate of emissions virtually undocumented (Rosenstock *et al.*, 2013). Due to a scarcity of data on GHG sources and sinks, most developing countries

currently quantify agricultural emissions and reductions using IPCC Tier 1 emissions factors. However, current Tier 1 emissions factors are either calibrated to data primarily derived from developed countries, where agricultural production conditions are dissimilar to those in which the majority of smallholders operate, or from data that are sparse or of mixed quality in developing countries (IPCC, 2006). The farming in developed countries is characterized with intensive agronomic inputs and high level of mechanization. For the most parts, there are insufficient emissions data characterizing smallholder agriculture for use to evaluate the level of current emissions estimates (Rosenstock *et al.*, 2013). Furthermore, data describing smallholder farming systems, their relative distribution in space and time, and typical management practices are largely unavailable for smallholder agriculture in developing counties. It is therefore not clear if use of Tier 1 emissions data is relevant and accurate under tropical smallholder agricultural systems.

Climate Change, Agriculture and Food Security (CCAFS) carried out household baseline surveys in seven villages, with 139 households, in the Katuk – Odeyo CCAFS bench mark site, located in the Lower Nyando River Basin, in western Kenya. The survey revealed that majority (90%) of surveyed households in Lower Nyando produce food crops mainly maize, sorghum and beans, while only 16% produce some type of cash crops (coffee, tea, sisal, sugarcane and others) and most of them rely on livestock production for their livelihood (Mango et al., 2011).. Most of the households work in sugarcane plantations in the neighboring communities within the Lower Nyando site (Mango et al., 2011). In Nyando, sugarcane is ranked as the most important cash crop (Wawire et al., 2006; Odenya et al., 2007). Sugarcane crop can produce large amount of biomass under tropical and high input conditions (Robertson et al. 1996). Burning and decomposition of above and below ground biomass releases CO₂ to the atmosphere (Guo and Gifford, 2002). Loss of carbon as CO₂ in turn, affects soil properties, soil structure and long-term soil fertility potentially modifying soil GHG emissions. Sugarcane production requires substantial amounts of nitrogen fertilizer, may result in N₂O emissions from soils (Thornburn et al., 2009). These GHG emissions are the sources of anthropogenic climate change (Lal, 2004). However, there has been no survey of sugarcane management practices by smallholder sugarcane farmers contributing to GHG emissions in Lower Nyando.

When previously uncultivated land is brought into production, the expansion of cropped area can result in GHG emissions, as carbon is released from vegetation and soil organic matter (Kindred *et al.*, 2008). The observed increase in atmospheric concentration is not only a result of fossil fuel combustion but also of volatilization of carbon stocks following

conversion from natural to agricultural land (IPCC, 2007). When an ecosystem is transformed to crop land, GHGs, especially CO₂ emission occur during land clearing and land preparation through biomass burning and/or decomposition (Agus et al., 2009). The amount of carbon stock of the biomass of initial land use determines the amount of CO₂ emissions associated with land clearing and land preparation (Agus et al., 2009). The change in soil carbon content is determined by factors such as soil tillage and organic matter input. Therefore, with the assumed initial carbon stock of 120 ± 60 t/ha in the forest soil, the reduction can be up to about 40.8 ± 20.4 t / ha when the land is converted to plantation (Agus *et al.*, 2009). Conversion of primary forests to plantation results in average CO₂ emissions ranging from 40 tons /ha/year for rubber to 49 t / ha / year for sugarcane in Indonesia. This is because sequestrations by the plantation crop as biomasses are too small to compensate for the loss of carbon from the initial land use biomass (Agus et al., 2007). Conversion of secondary forests to oil palm, coconut, rubber, coffee agro forestry, or cocoa results in the net CO₂ emission of less than 12 t / ha / year. Conversion of secondary forests to Jatropha, tea or sugarcane results in a much higher CO₂ emission ranging from 15 to 18tonns/ha/year (Agus et al., 2007) in Indonesia. However, these data were quantified in temperate countries whose conditions are vastly different from those observed along the equator. Because of the increased demands in crop production, the high population growth rate and the economic dependence on agriculture, large forest areas in Kenya have been and are being replaced by major cash crops such as sugarcane (Agroforestry, 2009). Most of the sugarcane expansions are taking place in the smallholder sector. However, it is not known how the conversion of forest lands to sugarcane with time influences GHGs fluxes under smallholder ecosystems with time along the equator in Kenya and how these compare with results observed in temperate countries.

Sugarcane production requires substantial amounts of nitrogen fertilizer. This may result in N₂O emissions from soils (Thornburn *et al.*, 2009). However, there are relatively few studies in N₂O emissions from sugarcane and most of the studies have been made in Australia (Weier *et al.*, 1996, Weieret *al.*, 1998; Demead *et al.*, 2008; Wang *et al.*, 2008; Macdonald *et al.*, 2009). Despite widespread use of nitrogen fertilizer in sugarcane production, influence of nitrogen on GHGs fluxes has not been assessed in the tropical areas.

Among the main practices that have caused concerns in sugarcane agricultural areas are the harvest systems, which in most regions are still based on residues burning. Sugarcane residues represent 11% of the worldwide agricultural residues (IPCC, 1996) and while sugarcane areas have increased rapidly, limited studies have quantified its impact on air quality due to the land use (Oliveira *et al.*, 2007; Cancado *et al.*, 2006; Goldemberge *et al.*,

2008). Post harvest burning is done to clean fields and to facilitate rationing operations (Mendoza, 2014). Substantial losses of carbonand nitrogen due to sugarcane burning have been reported (Ball-Coelho et al., 1993). Burning also destroys the rotting organic matter in the sugarcane soils. This may influence GHG fluxes in harvested cane farms. In contrast, green harvesting, without burning, keeps large amounts of crop residues in the soils surface (Cerri et al., 2007). Retention of unburned residues can increase nutrient conservation, reduce weed growth and conserve soil moisture (Wiedenfeld, 2009). However, the retained mulch makes tillage operations more difficult, interfere with fertilizers and herbicide application and can immobilize nitrogen and phosphorus (Ng Kee Kwong et al., 1987). Incorporation of residues into the soil is difficult and energy consuming, however in high rainfall areas, tropical warm areas, the trash can be left on the surface since it decomposes quickly (Spain and Hodgen, 1994). Residues left on the surface improve organic matter content and soil moisture holding capacity in the long term, compared to incorporation (Samuels et al., 1952). The decomposition of the organic matter is usually accompanied by production of GHGs fluxes. However, it is not documented how the organic matter left in situ or burning (trash management) in sugarcane farming influences GHG fluxes in the Western Kenya Sugar Belts, especially among the smallholder farmers.

1.2 Statement of the problem

Due to lack of data, Tier 1 emission factors developed under intensive input, large-scale agricultural systems in developed / temperate countries have been used to estimate the GHGs emission, even in the tropical environment under small scale farming systems. There is limited data on GHGs fluxes under low input smallholder agriculture in tropical countries. The use of the Tier 1 factors may therefore be over or under estimating the GHGs emissions in the tropical smallholder agricultural systems. Smallholder farm management practices are characterized with low agronomic inputs. Although sugarcane cultivation under large scale intensive farming system may be different, survey of management practices by smallholder sugarcane farmers in Lower Nyando that may influence GHG fluxes is not documented. Conversion from forests to sugarcane can result in variations in the GHGs fluxes, especially higher CO₂ emissions compared to other crops. The conversions are still continuing in Lower Nyando. This may be causing changes in the GHGs fluxes in lands converted to sugarcane farming from other activities. Smallholder sugarcane farmers apply varying amounts of nitrogen fertilizers to improve yields. Although the use of nitrogen fertilizer cause GHG fluxes, the contribution of nitrogen fertilization to GHGs fluxes in Lower Nyando has not been quantified. Among the main practices that have caused concern in sugarcane agriculture is the

harvest system / trash management, which in most regions is still based on residue burning or retention of crop residues in the fields. Post harvest burning cleans fields and facilitates ratooning operations. Retention of crop residues increases nutrient conservation, reduce weed growth and conserve soil moisture. On other crops and under intensive high agronomic input sugarcane production systems, retention of crop residues and / or burning the residues cause changes in the GHGs fluxes. However, effects of post harvest trash management under low agronomic inputs smallholder sugarcane production systems in Lower Nyando have not been established.

1.3Research objectives

1.3.1 Broad objective

To assess management practices influencing primary soil GHG fluxes in smallholder sugarcane farming in Lower Nyando.

1.3.2Specific objectives

- 1. To identify sugarcane management practices that may influence GHG fluxes in Lower Nyando and compare the fluxes with those observed under high input large scale sugarcane production systems in developed countries.
- To evaluate the contribution of the duration of conversion from natural vegetation to sugarcane production on primary soil GHGs fluxes in Lower Nyando and compare the fluxes with those observed under high input large scale sugarcane production systems in developed countries.
- To determine the contribution of nitrogen fertilization on primary soil GHGs fluxes in Lower Nyando and compare the fluxes with results from large scale sugarcane production systems.
- 4. To establish the contribution of trash management on primary soil GHGs fluxes in Lower Nyando and compare the values with GHGs fluxes from other agricultural crops in developed countries.
- 5. To evaluate if Tier1 emission factor is relevant in estimating GHGs fluxes under tropical low input smallholder sugarcane productions systems.

1.3.3 Research question

Which smallholder sugarcane production practices have potential to contribute to soil greenhouse gas fluxes?

1.3.4Null hypotheses (H_o)

- Time from conversion from natural vegetation to sugarcane farming has no influence on soil GHGs fluxes in Lower Nyando and GHGs fluxes are not equivalent to those observed under high input large scale sugarcane production systems in developed or temperate countries.
- 2. Nitrogen fertilization does not influence primary soil GHGs fluxes in Lower Nyando and the levels do not match those from large production systems in developed countries.
- 3. Trash management has no effect on primary soil GHGs fluxes in Lower Nyando and GHGs fluxes under small scale agricultural systems are not equivalent to those under large scale high input agricultural systems.
- 4. Tier 1 factors are not appropriate / accurate in estimating the GHGs fluxes under tropical small scale sugarcane production systems.

1.4 Justification of the study

Continued use of Tier 1 emission factor from developed countries in tropical agricultural system may be causing inaccurate estimations of GHGs fluxes under smallholder agricultural systems leading to wrong policies on mitigating climate changes. Data that will lead to accurate estimation of the contribution of smallholder farming system will help in development of appropriate policies to mitigate climate change. Smallholder sugarcane farming is associated with management practices that may be associated with soil GHG emissions. Continued increase in concentration of soil GHGs in the atmosphere leads to climate change leading to possible catastrophic disruptions of livelihoods, economic activity, living conditions and human health. Small-scale sugarcane production may be releasing huge amounts of soil GHGs that could be contributing to climate change. This research may produce data leading to formulation of policies on smallholder sugarcane farming to create mitigation options of climate change in Lower Nyando, western Kenya.

1.5 Limitation of the study

 Soil-atmosphere GHG emission are highly variable in time (so-called time moments). Therefore, there were challenges in obtaining reliable estimation of the GHG emissions. For example missing hot moments (short-lasting pulse emissions) would result in underestimations of the total GHG emissions. On the other hand, detecting an emission pulse and extrapolating this value to periods between measurements may lead to overestimation of fluxes.

ii. Soil-atmosphere GHG emissions are highly variable in space with coefficient of variations over 100% within several meters (Arias-Navarro *et al.*, 2013). In addition, complexity of the system in terms of patchy land covers and heterogeneous physiography contributes to source of variability. Therefore, there was a challenge in accurately studying GHG emissions.

CHAPTER TWO

LITERATURE REVIEW

Over the past 50 years, average surface temperatures have increased by approximately 0.2 °C per decade (SA DNT, 2010). The increase has been attributed to GHG emissions, causing climate change. Greenhouse gas emissions and climate change are therefore demanding increased research attention (Rein, 2010) in order to mitigate carbon dioxide (CO₂), nitrous oxide (N₂O) and methane (CH₄) emissions into the atmosphere. CO₂, N₂O and CH₄ differ in atmospheric lifespan and thus have different GHG potencies. Carbon dioxide is the least potent of the three and is the GHG against which all other GHGs are compared. Nitrous oxide and CH₄ are considered 296 and 23 times more potent than CO₂ respectively, over a 100-year period (Dalal et al., 2003). These values are referred to as global warming potentials (GWPs) and are used to convert emissions into carbon dioxide equivalents (CO2eq). A number of studies have shown that human activities (including agriculture) contributed to enhanced release of GHGs into the atmosphere and accelerated climate change (Weier et al., 1998; Park et al., 2003). Agriculture contributes significantly to anthropogenic emissions of carbon dioxide, methane, and nitrous oxide. Land-use changes related to agriculture especially in the tropics, including biomass burning and soil degradation, are also major contributors (IPCC, 1994). These GHGs cause global warming / climate change. There is evidence that human activities that emit greenhouse gases cause global warming / climate change (IPCC, 2007).

All countries that are party to the United Nations Framework Convention on Climate Change (UNFCCC) are required to provide national inventories of emissions and removals of greenhouse gases due to human activities. These inventories form the basis for monitoring the progress of individual countries in reducing emissions and for assessing the collective effort of countries to mitigate climate change. The inventories provide self-reported estimates of selected anthropogenic greenhouse gases for four sectors: energy; industrial processes and product use; agriculture, forestry, and other land use and waste. Countries prepare the estimates using methods developed by the Intergovernmental Panel on Climate Change (IPCC) and approved by the UNFCCC (UNFCCC, 2010).

UNFCCC reporting and review requirements for national inventories differ for developed (Annex I) and developing (non-Annex I) countries. As a result, the scope and quality of national inventories vary greatly. Developed countries annually report calendar-year estimates for all sources and sinks of the six greenhouse gases specified by the UNFCCC (carbon dioxide, methane, nitrous oxide, sulfur hexafluoride, per fluorocarbons, and hydro

fluorocarbons going back to 1990 (UNFCCC, 2010). Reporting requirements are much less rigorous for developing countries. Emission inventories are reported only periodically in conjunction with a broader national report of climate change programs and activities. There is no set frequency for these national reports and their submission often depends on the provision of international funding. As a result, most developing countries have submitted only one national inventory to date. Reporting of only CO₂, CH₄, and N₂O is required and only at the sector level, not for categories within each sector. Developing countries are not required to provide emissions trends over time or to document methods and data sources, and their inventories are not reviewed (UNFCCC, 2010).

The IPCC methodologies are intended to yield national greenhouse gas inventories that are transparent, complete, accurate, and consistent over time, and comparable across countries. Because different countries have different capacities to produce inventories, the guidelines lay out tiers of methods (typically three) for each emissions source, with higher tiers (Tier 3 is normally the highest) being more complex and / or resource intensive than lower tiers. The higher-tier methods usually incorporate country-specific conditions, data, and emission factors and are thus considered more accurate than the lower-tier methods. The Tier 1 method uses default emission factors whereas the Tier 2 method requires each country to develop and use country-specific emission factors. The Tier 3 method uses emission factors that are not only country-specific, but also differentiated by technology and operating conditions. Countries are not expected to use higher-tier methods if doing so would jeopardize their ability to estimate other important emissions sources (UNFCCC, 2010).

The IPCC Tier 1 method for fertilizer induced emissions. Most biofuel Life – Cycle Assessment studies apply the Tier 1 method from the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC, 2006) to account for direct N₂O emissions from fertilizer application. The IPCC has proposed that 1% of all nitrogen applied to the soil, either in the mineral or the organic form, is directly emitted in the form of N₂O. However, this factor proposed by the IPCC is rather broad and is subject to large variations due to the local conditions of each study and to the different forms of nitrogen applied to the soil. However, several studies have indicated that the emission factor for the application of nitrogen fertilizers on agricultural soils proposed by the IPCC is overestimated (Dobbie and Smith, 2003; Jantalia *et al.*, 2008; Rochette *et al.*, 2004), especially when dealing with soils in regions with a tropical climate. The current IPCC Tier 1 approach for N₂O from agricultural soils, i.e. the default EF1 of 1%, does not account for effects of crop type, climatic conditions and crop management. As a result, the methodology omits factors that are crucial in

determining current emissions, and has no mechanism to assess the potential impact of future climate and land-use change (Flynn *et al.*, 2005). Additionally, a Tier 1 approach does not provide many incentives to apply mitigation measures, since the effect is in many cases not expressed in the national GHG emissions inventory. The default value for EF₂ is 8 kg N₂O–N / ha / year for temperate climates. Because mineralization rates are assumed to be about two times greater in tropical climates than in temperate climates Alm *et al.*, 1999; Laine *et al.*, 1996; Martikainen *et al.*, 1995; Minkkinen *et al.*, 2002: Regina *et al.*, 1996; Klemedtsson *et al.*, 2002), the emission factor EF₂ is 16 kg N₂O–N /ha/ year for tropical climates (Klemedtsson *et al.*, 1999, IPCC, 2000). Despite an exhaustive data collection of N₂O field emissions all over the world (1978–2004) that was carried out to reduce the uncertainty in IPCC Tier 1, subtropical and tropical systems remain clearly underrepresented (Bouwman *et al.*, 2002), Stehfest and Bouwman 2006).

When applying the Tier 1 method to a consideration of the nature of sugarcane fields and cultivation patterns, it was assumed that:

- 1) The net CO_2 emission from soil is zero. This is because there is no carbon input into soil from agricultural activities except for leaves and cane top removed from the cane at harvesting, and the carbon absorption from the atmosphere into soil is negligible;
- 2) In general, CH₄ is primarily emitted from rice paddies and enteric fermentation in domestic livestock. CH₄ emission from sugarcane fields is negligible; and therefore
- 3) The primary GHG from soil during sugarcane cultivation is N₂O. Nitrogen sources are the nitrogen fertilizer and crop residues (i.e., cane top and leaves), as well as the nitrogen gas in the atmosphere fixed by the microorganisms (Fukushima *et al.*, 2009).

IPCC tier 1 emission factor has been used to estimate N₂O emissions from nitrogen fertilizer and vinasse applied in the field (Macedo *et al.* 2008; Boddey *et al.* 2008; Galdos *et al.* 2010), however it is not well accepted to represent real emissions (Smith *et al.* 2012). N₂O emission factor for nitrogen fertilizer application to sugarcane of $3.87 \% (3.87 \text{ kg of N}_2\text{O-N})$ are emitted for each 100 kg of fertilizer nitrogen applied) but the estimate was a mean based on studies in Australia and Hawaii (Lisboa *et al.*, 2011). Emission factors of 0.24% and 0.84% for the application of 60 kg /ha of ammonium nitrate and urea, respectively have been obtained in an area with sugarcane crops (Signor, 2010). Annual application of 46 kg of N/ ha in the form of vinasse has resulted in N₂O emission factors on the order of 0.68% and 0.44% for burnt and unburnt sugarcane areas, respectively. These emission factors are significantly lower than those proposed by the IPCC, which have been used as the standards in studies on the balance of GHG emissions during the production of ethanol (Oliveira *et al.*, 2013). The average EF for nitrous oxide emissions in Mediterranean cropping systems was found to be 50% lower than the IPCC Tier 1 default value (1%), which is largely based on values observed in temperate regions (Cayuela *et al.*, 2017).

Sugarcane is a commercial crop grown in tropical and subtropical regions ranging from hot dry environments at sea level to cool and moist environments at high elevations (Plaut *et al.*, 2000). More than 20 million hectares of land are cropped with sugarcane, mostly as monoculture. There is intensive use of agricultural inputs such as fertilizer, herbicides, ripeners, to improve sugarcane production. Their use raises concerns about environmental impact issues and sustainability (Meyer *et al.*, 2011). Certain field practices such as cane burning directly emits CO_2 and other greenhouse gases (GHG) methane, and nitrous oxide (Weir, 1998; Mendoza and Samson, 2000). Despite evidence that sugarcane production can emit GHGs to the atmosphere, levels of GHGs emissions due to sugarcane production practices have not been documented in the tropics.

2.1 GHG emissions due to conversion from natural vegetation to sugarcane cultivation

Fossil-fuel emissions are clearly the dominant factor responsible for the enhanced greenhouse effect (Forster et al., 2007), but land-use change (LUC) also leads to important additional greenhouse gas (GHG) exchanges between the atmosphere and the terrestrial biosphere (Houghton et al., 2012; Kirschbaum et al., 2013). Biomass burning and loss of soil carbon associated with the conversion of native ecosystems to agricultural use in the tropics is believed to be the largest non-fossil fuel source of CO₂ input to the atmosphere. Carbon dioxide is released from the soil through soil respiration, which includes three biological processes, namely microbial respiration, root respiration and faunal respiration primarily at the soil surface or within a thin upper layer where the bulk of plant residue is concentrated (De Jong et al., 1974; Jorgensen et al., 1973; Edward, 1975) and one non-biological process, i.e. chemical oxidation which could be pronounced at higher temperatures (Bunt et al., 1954). Soil micro flora contributes 99% of the CO₂ arising as a result of decomposition of organic matter (Reichle et al., 1975), while the contribution of soil fauna is much less (Macfadyen, 1963). Root respiration, however, contributes 50% of the total soil respiration (Macfadyen, 1963). The net release of CO₂ from land-use conversion is thought to be in the range of 1.6 ± 1.0 Gt C / yr (IPCC, 1994). Of the carbon losses attributed to land use, soil carbon loss has been estimated to account for 20-40% (Detwiler, 1986; Houghton and Skole, 1990).

Recent data, however, suggest that soil carbon losses following deforestation may have been overestimated, particularly for forest conversions to pasture, where soil carbon can recover to levels equal to or higher than native forest within a few years (Lugo and Brown, 1993; Cerri *et al.*, 1994). Globally, 13 million hectares were deforested annually between 1990 and 2009 (FAOSTAT, 2013), with annual mean global carbon emissions from land-use change estimated to be 4.0 Gt CO₂/year between 1980 and 2000 (Houghton *et al.*, 2012) and 4.1 Gt CO₂/year between 1870 and 2013 (Le Quéré *et al.*, 2013). Such land use changes may have large environmental impacts, including changes in the net flux of CO₂, CH₄ and N₂O through altered biogeochemical processes (Forster *et al.*, 2007; Kirschbaum *et al.*, 2012; Wang *et al.*, 2012). The enhanced greenhouse effect is currently dominated by the increase in CO₂ concentration, which contributes a radiative forcing of about 1.66 W m⁻², and increases in CH₄ and N₂O add a further 0.48 W m⁻² and 0.16 W m⁻², respectively (Forster *et al.*, 2007). With on-going concern about global climate change, the effect of LUC on the emission of all these GHGs needs to be critically established.

The effect of LUC on CO₂ fluxes is directly related to changes in soil organic carbon (SOC) and carbon in vegetation since any loss of biospheric carbon stocks increases atmospheric CO₂. Soil organic carbon stocks are representing the largest terrestrial organic carbon pool (41550 Pentagram of C) followed by the vegetation pool (500-650 Pentagram) (Lal, 2008). The capacity of soils to store carbon is affected by land use and management (Trumbore, 1997; Lal, 2003). Conversion from primary forest and secondary forest to cropland resulted in SOC loss of $35.3 \pm 4.9\%$ and $50.6 \pm 3.4\%$, respectively, and most SOC losses occurred over the initial 10 years after conversion. The pattern is usually considered to be linked to intensive agricultural land management, including soil disturbance so that croplands lose SOC until a new balance between carbon inputs and outputs is re-established (Kim et al., 2010). Switching between different agricultural land-use types, such as between cropland and grassland, also showed clear patterns in SOC changes. Converting cropland to grassland increases SOC by nearly 50%, whereas converting grassland to cropland decreases SOC by about 45% and is largely completed within the first 10 years after conversion. This difference is usually attributed to loss of SOC in cropland due to cultivation and soil disturbance (Mann, 1986; Lal, 2004). Any changes in land use and management may feedback on SOC and nitrogen dynamics potentially altering stocks. Thus, CO₂ emission resulting from clearing of land for the expansion of sugarcane production may represent one of the major sources of GHG emissions. In Brazil, the increasing demand for bio ethanol from sugarcane led to a continuous expansion of land for sugarcane production. About 69% of the most recent sugarcane expansion in Sa^o Paulo state took place on pastures, 17% in annual crops (soybean and corn) and 2.2% on new lands. For Mato Grosso state, 31% of sugarcane expansion occurred on pasture, 68% on former arable land cultivated with soybean and 1.3% on new lands (CONAB, 2008). Conversion of natural vegetation to croplands in East Africa has been ongoing (Brink *et al.*, 2014). However, CO_2 emissions resulting from clearing land for sugarcane cultivation in Kenya have not been documented.

The effect of land-use change on CH_4 fluxes is related to any soil processes that produce or consume CH_4 . Possible mechanisms for CH_4 emission from soil to the atmosphere include i) diffusion of dissolved CH_4 along the concentration gradient, ii) release of CH_4 containing gas bubbles (ebullition), and iii) transport *via* the aerenchyma of vascular plants (plant-mediated transport). These three mechanisms control the spatial and temporal variations in CH_4 production(Lai, 2009). The first process, diffusion, takes place because of the formation of a CH_4 concentration gradient from deeper soil layers, where the production of CH_4 is large, to the atmosphere, while oxidation of CH_4 occurs in upper layers (10%-40% in rice paddies) (Kruger *et al.*, 2002; Lai, 2009). Diffusion is a slow process compared to the other two transport mechanisms, *i.e.*, ebullition and plant-mediated transport, but it is biogeochemical important because it extends the contact between CH_4 and methanotrophic bacteria in the upper aerobic layer, promoting CH_4 oxidation (Whalen, 2005).

The net CH₄ flux in the soil is the result of the balance between methanogenesis (microbial CH₄ production mainly under anaerobic conditions) and methanotrophy (microbial CH₄ consumption) (Dutaur and Verchot, 2007; Kirschbaum *et al.*, 2012). Methanogenesis occurs via the anaerobic degradation of organic matter while methanotrophy occurs by methanotrophs metabolizing CH₄ as their source of carbon and energy (Hanson and Hanson, 1996). Methane undergoes chemical and photochemical oxidations in the atmosphere and stratosphere, and their products, mainly the hydroxyl radical, have a direct or indirect effect on the global warming (Saarnio *et al.*, 2009). However, biological oxidation of CH₄ is of great importance for the global CH₄ balance. Biological CH₄ oxidation is done by methano- trophic microorganisms (methanotrophs), either aerobic methanotrophic bacteria or a consortium of anaerobic archaea in association with anaerobic bacteria (anaerobic CH₄ oxidation) (Ettwig *et al.*, 2010).

Although anaerobic oxidation of CH₄ (AOM) has been described, it is not well understood so far, but it is considered to contribute substantially to the reduction of CH₄ globally (Orphan *et al.*, 2002). It is estimated that more than 50% of the gross annual production of CH₄ in the oceans is consumed by anaerobic methanotrophs, before it diffuses to the atmosphere (Offre *et al.*, 2013). The mechanisms proposed for this process are reverse methanogenesis, acetogenesis, and methylogenesis (Caldwell *et al.*, 2008). The most investigated mechanism is the reverse reaction of methanogenesis, which takes place when sulfate-reducing bacteria (SRB) deplete the concentration of hydrogen, thus CH₄ concentration becomes higher than that of hydrogen, making the reverse reaction thermodynamically possible, *i.e.*, oxidation of CH₄ to CO₂(Caldwell *et al.*, 2008; Wendlandt *et al.*, 2010). This process is also called sulfate-dependent CH₄oxidation, which is done by archaea in a syntrophic association with SRB and the formation of hydrogen is a key step (Valentine and Reeburgh, 2000). One mechanism proposed for this process is as follows:

 $CH_4 + 2H_2O \longrightarrow CO_2 + 4H_2$ (CH_4 oxidation)

 $SO_4^{-2} + 4H_2 + H^+$ $HS^- + 4H_2O$ (sulfate reduction)

 $SO_4^{-2} + CH_4$ _____HCO_3^- + HS^- + H_2O (Net)

On the other hand, a process of AOM coupled to nitrate reduction denitrification, has been described. In this process CH_4 is used as an electron donor for the needed reduction power (Islas-Lima *et al.*, 2004). The following equation has been proposed:

 $5CH_4 + 8NO_3^{-1}$ _____ $5CO_2 + 4N_2 + 8OH^{-1} + 6H_2O$ $CA = -960 \text{ kJ mol}^{-1}$

Where \triangle G is the standard Gibbs free energy change.

Methanotrophs can be found in a variety of environments where an interface between oxic and anoxic conditions exists (Wendlandt *et al.*, 2010) i.e. including among others cold environments, and even from highly acidic and thermophilic environments (Semrau *et al.*, 2010).

Soils under native vegetation can be either sources or sinks of atmospheric CH₄ (Lisboa et al., 2011). Generally, forest soils are the most active CH₄ sink followed by grasslands and cultivated soils (Topp and Pattey, 1997; Le Mer and Roger, 2001; Dutaur and Verchot, 2007). Most agricultural soils, due to frequent soil management mostly show little to no CH₄ uptake activity (Levine et al., 2011, Tate, 2015). Conversion of forest to cropland or grassland tended to increase net CH₄ emissions, and conversion of cropland or grassland to secondary forest tended to decrease it (Kirschbaum et al., 2012). While most well drained soils can act as either a sink or source of CH₄ (Price *et al.*, 2010), CH₄ oxidation generally tends to dominate, and changes in net fluxes tend to be mainly related to changes in a soil's CH₄ oxidation potential. Forests create favourable soil conditions for CH₄ oxidation that can remove $\approx 1-5$ kg CH₄ ha⁻¹ y⁻¹ from the atmosphere (Smith *et al.*, 2000). However, it may take over 100 years to recover maximal CH₄ oxidation rates after disturbance by deforestation (Smith et al., 2000; Allen et al., 2009; Singh and Singh, 2012). Changed CH₄ fluxes after LUC are related to changes in the composition (Singh et al., 2007, 2009) and abundance (Menyailo et al., 2008) of the methanotroph communities, and various studies found increased CH₄ oxidation following a forestation was directly linked to a shift towards type-II methanotrophs (grow in the temperature range of 5-37 °C)(Singh *et al.*, 2007; Dörr *et al.*, 2010; Nazaries *et al.*, 2011).

There are only a few studies covering tropical and subtropical regions in which CH₄ exchange rates were quantified. Published data is inconclusive for both net CH₄ uptake (Steudler *et al.*, 1989; Keller and Reiners, 1994; Verchot *et al.*, 2000; Kiese *et al.*, 2008; Castaldi *et al.*, 2006; Carvalho *et al.*, 2009) and net CH₄ emissions from tropical and subtropical soils. For savannah, CH₄ fluxes could possibly range from 632 to 98 μ g CH₄- C / M^{-2} / hour (Castaldi *et al.*, 2004, 2006). In Australia, conversion from forest to cropland realized CH₄ emissions of 1.25 kg CH₄/ ha / year in Victoria (Galbally *et al.*, 2010) and 4.88 kg CH₄/ ha / year in Queensland (Rowlings, 2010). In Indonesia, conversion form secondary forests to cropland realized CH₄ up take by the soil of 0.59 kg CH₄/ha/year (Veldkamp *et al.*, 2008). In East Africa, the extensive conversion of natural vegetation to croplands and rangelands has been ongoing for the last 20 years (Brink *et al.*, 2014). However, CH₄ fluxes resulting from conversions of forests to cropland due to expansion of sugarcane production in Kenya are not quantified.

Conversion of forests to cropland or grassland tends to increase N_2O emissions, which is reversible when cropland or grassland is converted to secondary forests (Kirschbaum et al., 2012). Nitrogen input, land use and its management are the major controlling factors of N₂O fluxes in soils (Snyder et al., 2009; Smith, 2010; Kirschbaum et al., 2012).N₂O emissions are associated with the turnover of nitrogen in the soil (Bouwman, 1996; Kim et al., 2012). These natural processes have been intensified through human interventions, mainly through agricultural activities, and principally through the increased use of nitrogen fertilizers (Del Grosso et al., 2009; Kirschbaum et al., 2012; Kim et al., 2012). Changes in N₂O emissions following LUC can thus be principally related to changes in the amount of nitrogen inputs. Cropland and grassland usually receive larger nitrogen inputs than forests through applied organic and inorganic nitrogen fertilizers and animal excreta. Consequently, nitrification and denitrification processes are intensified, and more N2O can be produced during Ntransformation processes in the soil (Robertson and Tiedje, 1987; Bouwman, 1996; Kim et al., 2012). In addition, any increase in soil acidity due to excessive synthetic fertilizer use can increase N₂O emissions by decreasing N₂O reductase activity (Barak et al., 1997; Bulluck et al., 2002). Increased soil compaction by intensive soil management can further increase N_2O emissions by increasing the rate of denitrification (Bilotta et al., 2007).

Nitrification is performed by two functionally defined groups of microbes, referred to together as nitrifies. The first group of nitrifies is the ammonia oxidizers, which oxidize

ammonia to nitrite. Ammonium is present predominantlyas the positively charged ion, ammonium (NH_4^+) , but the enzyme responsible for the first step of the reaction uses the gaseous form, NH_3 , which is usually a minor component at equilibrium. There are two very different groups of ammonia-oxidizing microbes. One is the well-known bacterial group (ammonia oxidizing bacteria, AOB), which includes a few different kinds of bacteria that all make a living by generating reducing power from the oxidation of ammonia and using that energy to fix carbon dioxide (Bock and Wagner, 2006). Ammonia is their only energy source, and their main metabolic product is nitrite. Nitrous oxide is a minor product of ammonia oxidation, and is produced by two different pathways.

A second distinct group of - ammonia oxidizing microbes has recently been recognized and brought into culture in 2005 (Konneke *et al.*, 2005). These are not bacteria, but archaea (ammonia-oxidizing archaea, AOA). Like AOB, AOA oxidize ammonia to nitrite and produce nitrous oxide and nitrite from ammonia, but the enzymatic pathways are quite different. Although the enzymes and pathways differ for the AOA and AOB, aerobic ammonia oxidation in both groups apparently proceeds by the same stoichiometry:

$NH_3 + 1.5O_2$ $\longrightarrow O_2^- + H_2O + H^+$

In addition to the net production of nitrite by the above equation, AOB are also capable of producing nitrous oxide (N₂O) by two distinct pathways. Most AOB investigated to date possess the genes and enzymes necessary for the partial denitrification pathway that reduces nitrite to nitric oxide (NO) and then to N₂O (Casciotti and Ward, 2001, 2005).

Both ammonia-oxidizing and denitrifying bacteria can carry out the reduction of nitrite to N_2O . For denitrifies, this is part of the usual pathway from nitrate to N_2 :

$NO_3^- \longrightarrow NO_2^- \longrightarrow NO \longrightarrow N_2O \longrightarrow N_2$

For AOB, the pathway is analogous but includes only the steps:

$NO_2 \longrightarrow NO \longrightarrow N_2O$

Most of the N_2O produced by ammonia oxidation is probably produced by AOA via a so far undescribed pathway (Santoro *et al.*, 2011). Especially in low oxygen conditions, substantial nitrogen can be lost as N_2O . Not only is this nitrogen lost from the bioavailable pool, but it plays a very important role in the atmosphere as a greenhouse gas.

In contrast, conversion of cropland and grassland to forest is usually associated with reduced nitrogen inputs to soils, leading to less N₂O being produced in soils (Kirschbaum *et al.*, 2012). In Australia, conversion from forest to cropland realised N₂O emissions of 0.28 kg N₂O - N / ha / year in Victoria (Galbally *et al.*, 2010) and 4.70 kg N₂O - N / ha / year) in Queensland (Rowlings *et al.*, 2010). In Indonesia, conversions from secondary forest to

cropland realised N₂O absorption of 1.40 kg N₂O - N / ha / year by the soils (Veldkamp *et al.*, 2008). Extensive conversion of natural vegetation to croplands in East Africa has been ongoing (Brink *et al.*, 2014). It is however, not known how conversions from natural forests to cropland contribute to N₂O fluxes in Kenya.

2.2GHG emissions due to fertilization of sugarcane fields

Fertilizer application is a regular practice in agricultural enterprises to increase biomass production and yields and maintain soil fertility. Nitrogen-use efficiency in sugarcane production is in the range of 6-40% (Reichardt et al., 1982; Ng Kee Kwong and Deville, 1984; Salcedo et al., 1988; De Oliveira et al., 2002), i.e. more than 60% of applied nitrogen fertilizer is lost to the environment. Part of this loss occurs directly – i.e. from the soil of the fertilized field or indirectly i.e. following cascading of reactive nitrogen compounds downwind and downstream of the application site. The main source of N₂O emissions in sugarcane fields is the application of nitrogen fertilizers, mineral nitrogen fertilizer and/or organic fertilizers such as bagasse, vinasse or manure (Lisboa et al., 2011). Nitrogen oxides are released from soil-plant systems into the atmosphere as a result of biological nitrification and denitrification processes (Bouwman, 1998, Stevens and Laughlin, 1998). Soil NO₃⁻¹, NH₄⁺, soluble and readily decomposable carbon, temperature, water and oxygen availability all play major roles in influencing the quantities of N_2O lost from the soil (Dalal *et al.*, 2003). Many other factors are involved in estimating the amount of N_2O emitted, including (i) management practices (e.g., fertilizer source, rate, placement, timing, other chemicals, crop, irrigation, presence of plant residues) and (ii) environmental and soil factors (e.g., temperature, rainfall, soil moisture, organic carbon, oxygen concentration, porosity, pH, and microorganisms) (Carmo et al., 2013; Eichner, 1990; Snyder et al., 2009; Vargas et al., 2014).

Recommendations for the use of nitrogen fertilizers for sugarcane production cover a wide range of 45–300 kg N ha⁻¹ (Srivastava and Suarez, 1992). The average application rates in Australia and South Africa are higher than 100 kg N / ha / year (Bholah and Ng Kee Kwong, 1997; Hartemink, 2008; Denmead *et al.*, 2010) and less than100 kg N / ha / year for China and Brazil (Macedo *et al.*, 2008; Zhou *et al.*, 2009). In Brazil, sugarcane varieties and soil conditions had significant influence on the amount of their nitrogen demand met by biological nitrogen fixation (Do[¬]bereiner *et al.*, 1972; Boddey *et al.*, 2001; Medeiros *et al.*, 2006). Biological N₂ fixation in Brazilian sugarcane plantations whereas high as 150 kg / N ha / year, thus covering up to 60% of the nitrogen demand of the crop (Lima *et al.*, 1987). As with other GHGs, lack of past research and the existence of challenges associated with

measuring N_2O emissions from sugarcane cropping systems means that only limited data is available to guide estimates of the emissions of this gas for sugarcane.

In GHG balance studies, calculating the global warming contribution from nitrogen fertilizer is uncertain and dependent on the fate of applied nitrogen. In Brazil, N₂O is the most important GHG emitted from agricultural soils (Cerri et al., 2009; MCTI, 2013). In addition, N₂O is the main source of nitric oxide, which causes depletion of the stratospheric ozone layer (IPCC, 2007). Annual N₂O emissions from Brazilian sugarcane cultivation of 1.7 - 0.5 kg N_2O-N ha⁻¹ were also reported (Macedo *et al.*, 2008). A 5 month period of N_2O measurement including full reformation package of sugarcane field such as stalk destruction, ploughing, sub soiling harrowing and application of fertilizer cake resulted in an emission of 2.1 kg N₂O- N ha⁻¹ in Brazil. In another study in Brazil, an emission factor (EF) for N₂O emissions from sugarcane fields due to nitrogen fertilization was 3.87 Kg N_2O - N (1800 kg CO_2 / ha) per 100 kg N fertilizer application (Lisboa et al., 2011). The default value for N₂O emitted by nitrogen fertilizers is 1% of the nitrogen applied (IPCC, 2006), but the actual percentage can vary. Emission factors of 3% to 5% of the total nitrogen applied has been reported (Crutzen et al., 2008).Data compiled from Australia, Hawaii, and Brazil, suggested a mean emission factor of 3.9% of nitrogen applied in sugarcane fields (Lisboa et al., 2011). These N₂O emissions may represent40% of the total GHG emission for systems in which ethanol is produced from sugarcane (Lisboa et al., 2011). In two of the Australian studies, N₂O emissions were assessed over an entire year with annual emission rates ranging from 2.8 kg N₂O - N / ha for unfertilized sugarcane fields (Allen et al., 2010) to 445 kg N₂O - N / ha for a sugarcane field fertilized with 160 kg nitrogen applied in form of urea (Denmead et al., 2010). N₂O emissions of 45-78% due to denitrification of applied nitrogen following nitrogen fertilization were reported (Weier, 1998). It is known that N₂O emissions are often limited by nitrogen availability in soils (Butterbach-Bahl et al., 2013). There is evidence in Brazil and in Australia, where sugarcane is cultivated with high inputs, that nitrogen fertilization and burning of residues leads to high GHG emissions (De Figueiredo and La Scala, 2011), in some cases up to 45 kg N₂O-N / ha / year (Denmead et al. 2010). High soil emissions following high nitrogen fertilizer application rates that maintained high N availability in the soil has also been observed (Allen et al., 2010). Also in Australia, N₂Oemissions following fertilization rates of 160 kg N ha⁻¹ have been realized (Denmead et al., 2010). Past studies, which have included a land use change for bio ethanol from sugarcane, are based on the default value from IPCC where the direct emission of N_2O due to nitrogen fertilizer use is 1% (IPCC,2006) or 1.25% (IPCC, 2001). In Kenya, response to nitrogen fertilizer rate of 120 kg N ha⁻¹has been

recorded in some cane varieties (Achieng' *et al.*, 2013). But, N₂O emissions from fertilized sugarcane fields in Kenya have not been quantified.

Under conditions of high soil moisture sugarcane fields can be significant emitters of CH₄ with annual fluxes being in a range of 0–19.9 kg CH₄ / ha (0–458.12 kg CO₂eq / ha) (Denmead *et al.*, 2010, Crutzen and Andreae, 1990). In addition, effect of ammonium-based fertilizer on soil CH₄ uptake has been reported (Mosier *et al.*, 1991). Whereas nitrate fertilizer forms stimulated soil CH₄ uptake (Nesbit and Breitenbeck, 1992), sugarcane fields functioned either as net sinks or sources for CH₄ over a 104 days period of measurements. CH₄ emissions after urea application (at 160 kg N / ha) were 297–1005 g CH₄–C / ha (6.8–23.1 kg CO₂ eq ha⁻¹) whereas at a site receiving ammonium sulphate (160 kg N ha⁻¹) CH₄ uptake was in a range of 442– 467 g CH₄ – C / ha (10.2–10.7 kgCO₂eq/ha) (Weier, 1999). In Kenya, significant (*p*≤0.05) sugarcane responses have been observed between 0 kg N ha⁻¹ and 150 kg/N ha (Ochola, *et al.*, 2014). But CH₄ fluxes from fertilized sugarcane fields in Kenya are not known.

Application of nitrogen fertilizer plays a significant role in the soil carbon sequestration (Lal, 2004). Nitrogen fertilizers increase the crop biomass and influence the microbial decomposition of crop residues by affecting the nitrogen availability (Green et al., 1995). In China, the use of nitrogen fertilizers in a hydromorphic paddy soils did not increase the soil organic carbon (SOC) as compared with no fertilizer use in Human Province (Tong et al., 2009). On the contrary, increased nitrogen fertilization increased the SOC sequestration in paddy soils in the same province (Shang et al., 2011). Application of nitrogen fertilizer increases plant biomass production, stimulating soil biological activity and consequently CO₂ emission (Dick, 1992). Reduced extracellular enzyme activities and fungal populations resulting from nitrogen fertilization, on the contrary, results in decreased soil CO₂ emission (Burton et al., 2004), DeForest et al., 2004). Of the various operations and inputs used in cane production in Eastern Batangas, Philippines, nitrogen - fertilizer applied at 300 kg / ha had the highest emission at 3,927 kg CO₂ / ha and 3,834 kg CO₂ / ha for plant and ration cane respectively. On the average, the Carbon Foot Print of fertilizer was 77% of the cane production or 12% of the total emission (Mendoza, 2014). Nitrogen fertilization sugarcane fields have realized CO_2 emissions in the range 1800 ± 540 kg CO_{2eq} / ha / year for burnt and unburnt canes (Lisboa et al., 2011). In Kenya, benefits of nitrogen fertilizer rate application have been reported to realize high yields (Achieng' et al., 2013). However, the influence of nitrogen fertilization on CO₂ fluxes in sugarcane fields in Kenya has not been documented.

2.3GHG emissions from trash management practices in sugarcane fields

A conservative practice such as leaving crop residues on the soil surface instead of burning them has been introduced in an effort to achieve sustainable agriculture. The left crop residue cover reduces fluctuations in soil temperature, keeping soil layers cooler, and retains moisture, especially during the hotter and drier seasons (Andrade *et al.*, 2003). Maintaining crop residues on the soil surface are thought to have great benefits in terms of soil carbon storage, a process called soil carbon sequestration (Razafimbelo *et al.*, 2006; Galdos *et al.*, 2009; Ussiri and Lal, 2009). In addition to the benefits of soil temperature and moisture, plant residues on the soil surface affect other soil properties, and consequently, the microbial habitat, microbial activity and soil carbon dynamics (Franchini *et al.*, 2007). Until the 1980s, soil carbon (C) research was focused mainly on its role in maintaining optimal soil physical, chemical and biological properties. Thereafter, because of increasing concerns on larger-scale environmental issues, research has seen a shift to soil carbon sequestration and greenhouse gas (GHG) emissions (Eustice *et al.*, 2011). Information is available in the temperate regions on the emission of CO₂ from sugarcane fields, following leaving trash *in situ* (Weier, 1998). Such data are not available for sugarcane production within the tropics.

Crops are often assumed to be CO₂ neutral, as they sequester similar amounts of carbon as are returned to the atmosphere over the growth cycle (Denmead et al. 2010). In the Brazilian GHG inventory, sugarcane burning was responsible for 98% of total GHG emission from agricultural burning activities (Lima et al., 1999). Carbon release into the atmosphere was estimated at a rate of 4810 kgCO₂eq/ha by burning 10.4 t of biomass (Marques et al., 2009). In Eastern Batangas, Philippines, estimated direct CO₂ emission from cane burning was 10,410 kg CO₂eq / ha (Mendoza, 2014). CO₂ - C emissions were higher from a trashed treatment (ranged from 175-290 kg / ha) than from a burnt treatment (from 83-182 kg / ha) over a 10-day period for a sugarcane field in Hawaii in (Weier, 1996). These emissions appeared to be reduced by the presence of nitrogen fertiliser (Eustice et al., 2011). Studies on the conversion of natural grassland to sugarcane under burning (bare soil conditions) demonstrated that organic carbon decreased in soils regardless of texture (Domniny et al., 2002; Li and Mathews, 2010). This indicates that, despite being a grass, sugarcane under burnt conditions is not able to maintain the same soil organic matter (SOM) levels as natural grassland. On the other hand, a comparison of grassland and trashed sugarcane shows that the SOM under trashed sugarcane soils is higher than under grassland (Haynes and Graham, 2004), implying that soils under trashed sugarcane production may be an effective carbon

sink. Few studies compared CO_2 emissions from burnt and trashed sugarcane cropping systems (Weier, 1996).

The IPCC emission factors to quantifyCH₄ emission due to burning of biomass is 2.7 kg CH₄ / ton dry matters burnt (IPCC, 2006). For example, burning a sugarcane field with 10– 20 ton dry matter/ha produce approximately 162 kg CH₄ (or 3726 kg CO₂eq ha⁻¹) (Lisboa et al., 2011). Crop residue burning can release significant quantities of CH₄. Burning of trash yielded CH₄ emission factor of 0.4% from an original sugarcane fuel carbon content (Galbally et al., 1992). CH₄ emissions of 19.9 kg / ha over a period of 392 days were measured under burnt sugarcane production in Australia as compared to trash blanking that yielded a net emission that was essentially zero (Denmead et al. (2010). In contrast, trash-blanketed soils acted as a sink for CH₄ (Weier, 1996). In a study in which sugarcane trash was applied to the surface, CH₄ emissions were observed when plots were fertilised with urea (Weier, 1999).In another study, unburnt sugarcane residues exhibit higher CH₄ uptake rates of 0.8 kg CH₄ / ha / day (Weier, 1998). IPCC emission factors to quantify N₂O emission due to burning of biomass is 0.07 kg N₂O / ton dry matter burnt) (IPCC, 2006). Burning a sugarcane field with 10–20 tons per dry matter per hectare produced approximately 4.2 kg N₂O (or 1243 kg CO_{2eg} / ha) (Lisboa *et al.*, 2011). Higher N₂O emissions from unburnt fields (36.5 g N₂O – N / ha / day) have been reported compared with burnt fields (31 g $N_2O - N / ha / day$) (Weier, 1996). The smallholder sugarcane producing systems in Kenya are characterized by the practices of burning and trashing cane residues. But not much is known about how trash blanketing and burning of sugarcane residues affect CO₂, CH₄and N₂O fluxes in Lower Nyando, western Kenya.

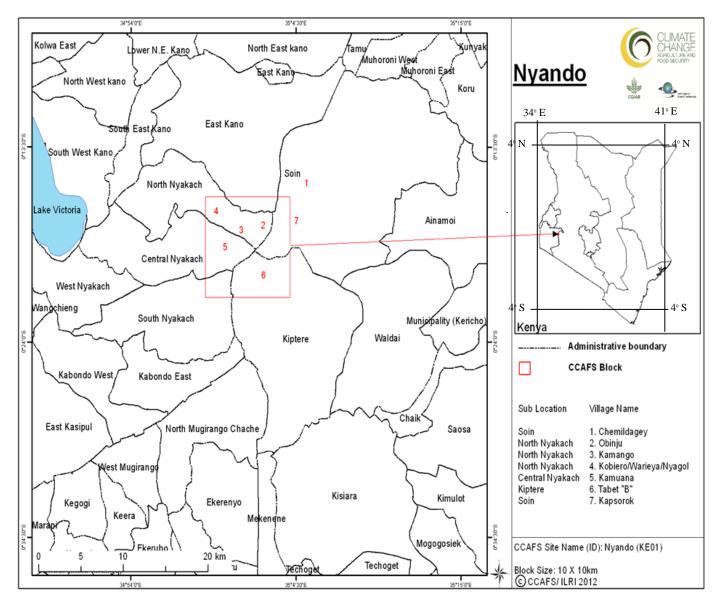
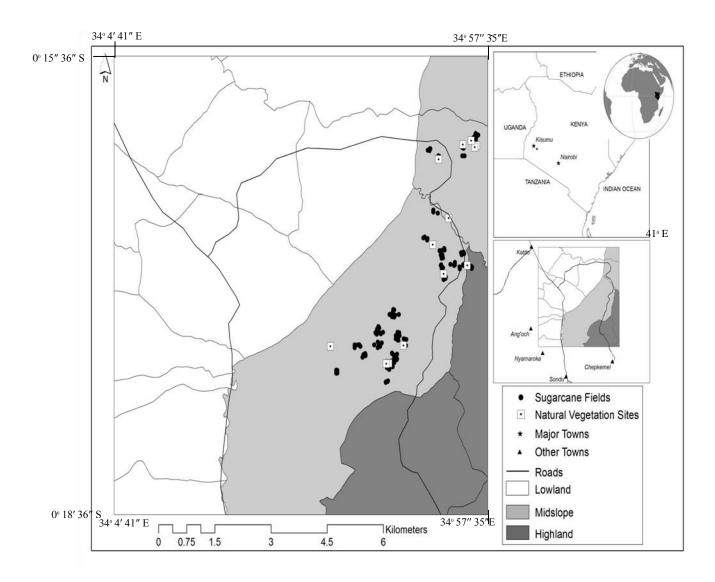
CHAPTER THREE

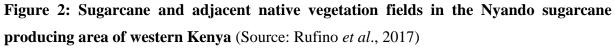
MATERIALS AND METHODS

3.1 Site description

The study region Lower Nyando Block is located in the Lake Victoria basin in Nyando and Kericho sub counties, western Kenya. The Climate Change Agriculture and Food Security (CCAFS) (Sijmons *et al.*, 2013) program of the CGIAR established the site as a benchmark site covering an area of 10 km by 10 km (centred at 0°31'S, 35°02'E), (Figure1), to assess technologies to adapt and mitigate climate change (Sijmons *et al.*, 2013). Climate change and variability is evident in Nyando Basin in western Kenya. There is an increase in droughts, floods and unpredictable rainfall which affect agriculture and food security (Macoloo *et al.*, 2013). The Lower Nyando Block has three landscape topographies – the highlands, mid slope and lowlands, which are similar to most Kenyan regions. It has divers types of livelihood, ecological and smallholder stratifications ideal for smallholder farming system of developing countries.

The climate in Nyando basin is humid with temperature of approximately 23°C and an average annual rainfall of about 1150 mm. Temperatures tend to be slightly cooler and precipitation slightly higher in the highlands compared to the lower regions of the study site (Sijmons et al., 2013). Precipitation patterns are typically bimodal with the "long rains" occurring from April to June (42% of annual precipitation) and the "short rains" occurring from October through December (26% of annual precipitation) (Sijmons et al., 2013). The population is about 750,000 mainly living in the Nyando Sub County as well as in Kericho sub counties. More than 80% of the people formally or informally depend on agriculture for their livelihood (Sijmons et al., 2013). The population survive on subsistence agriculture, consisting of mixed cropping systems. Main crops are maize, beans, sorghum, tea and sugarcane, with sugarcane mainly concentrated in the mid slopes where the crop is grown on lands converted directly or indirectly from natural vegetation, with some proportion grown in the highlands. The highlands have continued to experience conversion from natural Afro-montane forests about 40-50 years ago, fields with natural vegetation adjacent to the sugarcane fields. The experimental work was located on the mid - slope production systems, (Figure 2), where the conversion of natural vegetation is still on - going.


Figure1: The study area (Lower Nyando Block, western Kenya

(Source:Sijmonset al., 2013).

3.2 Survey sugarcane management practices in Lower Nyando

A cross-sectional survey at the study site (0°17'S, 35°01'E), (Figure 2) was conducted between March 2014 and April 2014 in the highlands and the mid-slope slope where sugarcane is produced. There was no sugarcane in the lowlands. Sugarcane production was first characterized by mapping all sugarcane farms using a non-probability sampling procedure; saturated sampling (Gall *et al.*, 1996), because they were too few. Questionnaire (Appendix 1) was used to gather data (Cresswell, 2003). Questionnaires were designed, pretested, using test retest method producing value of 0.8 and validated using eight people. The purpose was to understand land use change and to characterize sugarcane management associated with sugarcane farming, which could influence GHG fluxes in sugarcane production. Data collection was done through structured interviews by first interviewing key informants (village chiefs). One hundred and fifty farmers were interviewed. Every plot was geo-referenced using a tablet provided with a global-positioning system (GPS). Every sugarcane field included in the survey was visited. Each sugarcane field close to bush land (Figure 2), that had similar slope, age, soil type (Haplic Luvisols) and texture were selected.

3.3 Experimental layout

The trials were superimposed on the existing sugarcane farms established by farmers. Six farms and natural vegetation adjacent to each farm were selected for GHG monitoring. Harvesting was done in March 2015 (between 10^{th} and 21^{st} March 2015 in the 1^{st} and 2^{nd} week of the trial). After harvesting, each farm was subdivided into six plots each measuring 8 rows by 10 meters ($70m^2$ for 1m row spacing and $42m^2$ for 0.6m row spacing and 20% buffer round

each plot). Three plots were burnt while in the other three trashes were left in situ. Burning was done in the morning to avoid fire spreading into the trashed plots or in other farms. Four chamber frames were fixed (two row, 2 inter row) in each plot a day after burning when the soil had cooled down. Gas sampling commenced a day after fixing chamber frames and continued weekly. Two months after ratooning, three rates (0, 50, and 100 kg N/ha/year) of nitrogen fertilizer from urea source were applied between May 18th and 21st in the 10th week of the trial. Gas sampling commenced again a day after fertilizer application and continued weekly for a period of 9 months. The treatments were laid in a 3 factor Randomized Complete Block Design arrangement with variable 1: time from conversion from natural vegetation to sugarcane cultivation (T_1 <10 years and T_2 >10 years) as the main treatment and replicated 3 times in three different sugarcane farms (S)as follows: V_1R_1 (T_1S_2 , T_2S_3), V_1R_2 (T_1S_4 , T_2S_6), V₁R₃ (T₁S₅, T₂S₈). Variable 2: Nitrogen fertilization(N₁, 0 kg N/ha/year, N₂, 50 kg N/ha/year, N₃, 100 kg N/ha/year)as sub- treatment, replicated as: V₂R₁ (N₁S₂, N₂S₂, N₃S₂ and N₁S₃, N₂S₃, N₃S₃), V₂R₂ (N₁S₄, N₂S₄, N₃S₄ and N₁S₆, N₂S₆, N₃S₆), V₂R₃ (N₁S₅, N₂S₅, N₃S₅ and N₁S₈, N₂S₈, N_3S_8). Variable 3: Burning (B) / trashing (T) as sub- sub- treatment replicated 3 times as: V_3R_1 (BS₂, TS₃), V₃R₂ (BS₄, TS₆), V₃R₃ (BS₅, TS₈). Four chamber frames were also fixed in the natural vegetation adjacent to each farm and gas sampling was done the same day the farms were sampled.

3.4 Data Collection

3.4.1Gas Sampling

Soil CO₂, N₂O and CH₄ fluxes were measured weekly, from March 2015 through to 24th November 2015 using non-flow-through non-steady-state chambers (Rochette, 2011). Briefly, four rectangular (0.35m x 0.25 m) hard plastic frames per site were inserted 0.10 m into the ground, two rows and two inter row after the burning/ trashing treatment. On each sampling date, an opaque, vented and insulated lid (0.125m height) covered with reflective tape was tightly fitted to the base (Rochette, 2011). The lid was also fitted with a small fan to ensure proper mixing of the headspace air. Air samples (15L) were collected from the headspace immediately after closing the chamber (time 0), then at 15 minutes (time 1), at 30 minutes (time 2), and finally at 45 minutes (time 3) after deployment using a syringe through a rubber septum. Samples were pooled from the four replicated chambers at each plot (Arias-Navarro *et al.*, 2013) to form a composite air sample of 60mL. The first 40 ml of the sample was used to flush a 10 mL sealed glass vial through a rubber septum, while the final 20 mL was transferred into the vial to achieve an overpressure to minimize the risk of contamination by ambient air. The gas samples stored in the glass vials closed with rubber stopper were taken to

the laboratory for gas samples analysis using gas chromatography. The lids were removed, but the frames remained uncovered until the next gas collection.

Figure 3: GHG measurement in burnt sugarcane fields in Lower Nyando

Figure 4: GHG measurement in trashed blanketed sugarcane fields in Lower Nyando

3.4.2 Gas chromatography (GC) analysis

The gas samples were analyzed within 10 days of sample collection for CO₂, CH₄ and N₂O in an SRI 8610C gas chromatograph (2.74m Hayesep-D column) fitted with a ⁶³Ni-electron capture detector (ECD), cell temperature of 350° C and ignition flame of 613°C for N₂O and a flame ionization detector (FID) for CH₄ and CO₂ (after passing the CO₂ through a methanizer) at a column oven temperature of 75°C. The flow rate for the carrier gas nitrogen (N₂) was 28 mL / min. Every fifth sample analyzed on the gas chromatograph was a calibration gas (gases with known CO₂, CH₄ and N₂O concentrations in synthetic air) and the relation between the peak area from the calibration gas and its concentration was used to determine the CO₂, CH₄ and N₂O concentrations of the headspace samples.

3.4.3 Calculation of soil GHG fluxes

Soil GHG fluxes were calculated by the rate of change in concentration over time in the chamber headspace (corrected for mean chamber temperature and air pressure) after chamber deployment, as shown in Equation (1). (Butterbach-Bahl *et al.*, 2011).

$$F = \frac{b * M_W * V_{Ch} * 60 * 10^6}{A_{Ch} * V_m * 10^9}$$
Equation 1

Where F is the CO₂, N₂O or CH₄ flux rate (μ g/M²/hour),b is the slope of increase/decrease in concentration (ppb/min for CH₄ and ppm / min for CO₂ and N₂O with high concentration of standards at 1ppb for CH₄ and 400 ppm for CO₂ and N₂O. Low concentration of standards at 1ppb for CH₄, 4ppm for CO₂ and N₂O), Mw is molecular weight of C-CO₂, N-N₂O or C-CH₄ (g/mol), V_{Ch} is chamber volume (m³), A_{Ch} is chamber area (m²), V_m is the corrected standard gaseous molar volume (m³/mol) V_m = (22.41*10⁻³ m³ mol⁻¹*(273.15 + temp) / 273.15*(1013/air pressure). The formula is multiplied by 60 to express the fluxes per hour, multiplied by 10⁶ to convert g to μ g, and by 10⁹ to convert ppb to μ g. CO₂ fluxes are given in g C m⁻² h⁻¹, N₂O in μ g N / M² / hour and CH₄ in μ g C / M² / hour. Cumulative fluxes were calculated as an integration of the flux traces for 9 months

3.5 Statistical analyses

The data for GHG fluxes from Lower Nyando, western Kenya was analyzed using MSTATC – statistical package (Michigan State University, MI). Least significant differences (LSD) tests techniques were employed for separation of means of treatments, effects at the $p \le 0.05$. The means were subjected to General Linear Model (GLM) and bar graph procedures with accurate LSD bars inserted using Microsoft windows Excel 2007 (Fatunbi, 2009)

CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.1 Sugarcane field management practices in Lower Nyando

Sugarcane field management practices were as summarized in (Table 1). Conversion from natural vegetation to crop production had been ongoing for a period of \pm 10 years. Weed control is done manually, and carried out three times during the growing cycle of the crop, with 2-3 tillage operations. About 60% of the fields did not receive any mineral fertilizers. Fertilized fields received at most 50 kg N/ha/year once after weeding.

Descriptors	Mid-slopes
County	Kericho
Division	Soin and Sigowet
Elevation (range m.a.s.l)	1266 - 1416
Conversion from natural vegetation (years)	14.0 ± 11.7
Conversion to sugarcane (years)	3.0 ± 2.7
Crop cycle length (months)	17.0 ± 2.6
Row spacing (meters)	1.0 ± 0.4
Age of plantations (years)	1.7 ± 1.1
Weeding frequency (#)	2.6 ± 0.6
Weeding methods – Mechanical (%) of fields)	93
-Chemical (% of fields)	1
Fertilization (% of fields)	39
Range of fertilizer application (% of field):	
- 50 kg N ha/year	86
-100 kg N ha/year	11
Method of fertilizer application: - Band (% of field)	84
-Broadcast (% of fields)	10
Fertilizer type on planting (% of fields): - DAP	23
-CAN	1
-NPK	16
Fertilizer type for top dressing (% of fields): - NPK	5
-Urea	7
-CAN	5
Burning of crop residues (% of fields)	81
Trashing of crop residues (% of fields)	11
Crop residues used as feeds (% of fields)	31

Table 1: Main characteristics of Nyando sugarcane belt

Most farmers (84%) used band method of fertilizer application along the sugarcane rows. In all cases, harvesting was done manually, and burning of crop residues after harvest was a common practice in the area (81% of the respondents). Some farmers were reported using sugarcane tops as animal feed, which were collected before burning the crop residues. There

were no large differences in distance between rows, length of crop cycle or varieties across sugarcane fields in the study area. The common row spacing was 0.6 m, the growing cycle 18 months and replanted every 3-5 years. Conversion of natural vegetation to sugarcane cultivation, nitrogen fertilization and trash management may be some of the management practices influencing GHGs fluxes in this region of Lower Nyando, western Kenya.

4.2 GHG fluxes

The contribution of selected management practices to primary soil greenhouse gas fluxes in smallholder sugarcane farming in Lower Nyando was evaluated and results are presented in Figures 5 to 22 and Appendices 2 to 115. The data were highly variable; this was typical of soil-atmosphere GHG emissions, which are highly variable in time (so-called time moments). For example missing hot moments (short-lasting pulse emissions) result in underestimations the total GHG emissions. But sampling during an emission pulse may lead to overestimation of fluxes. Indeed, coefficients of variations of over 100% within several meters are common (Arias-Navarro *et al.*, 2013). Again, there is complexity of the system in terms of variable land covers and heterogeneous physiography which contributes to the variability. Transformation of the data to absolute figures does not make much sense where some figures are positive while others are negative. The conversion makes them equal. On the whole the data demonstrated that under smallholder sugarcane production in Lower Nyando, the fluxes were much different from those observed in the large scale temperate agricultural systems. The large coefficient of variations did not obscure the value of the data.

4.2.1 GHG fluxes due to conversion period from natural vegetation to sugarcane cultivation

There was no significant CH₄ absorption by the soil in different times of conversion (less than and more than 10 years conversion periods) in weekly measurements (Figure 5) and in cumulative CH₄ absorption. The cumulative CH₄ absorption ranging between -0.55 and -0.60 kg CH₄ ha/ year (Figure 6) were low compared with low absorption of -0.59 kg CH₄ ha/year in Indonesia (Veldkampt *et al.*, 2008). However, CH₄ emissions of 1.25 kg CH₄ ha / year (Galbally *et al.*, 2010) and 4.8 kg CH₄ ha / year (Rowlings, 2010) were realized when forests were converted to cropland in Australia. Most agricultural soils due to frequent soil management mostly show little CH₄uptake activity (Levine *et al.*, 2011; Tate, 2015). Smallholder sugarcane farming systems studied here were weeded three times during the growing cycle of the crop. Unlike studies under temperate conditions (Veldkampt *et al.*, 2008), in Lower Nyando Block, irrespective conversion period to sugarcane production, there was CH₄absorption. Indeed, there was no difference in the CH₄ absorption caused by conversion period. Thus conversion period was not a factor influencing CH₄ fluxes in the Lower Nyando Block.

CO₂absorption by the soil was none significant between different times of conversion for weekly measurements (Figure 7) and cumulativeCO₂ (Figure 8) emissions. Cumulative CO₂emission of 7 tons CO₂ ha / year was low compared with 49 tons CO₂ ha/year conversions to sugarcane (Agus *et al.*, 2007), 4.0 Giga tons CO₂ ha/year (Houston *et al.*, 2012) and 4.1 Giga tons CO₂ ha / year (Le Que're *et al.*, 2013) estimated as annual global carbon emissions from land use change. Conversion of primary and secondary forests to cropland results in soil organic carbon loss (carbon respiration as CO₂) and most SOC losses occur over the initial 10 years after conversion. This loss is attributed intensive agricultural land management including soil disturbance (Mann, 1986; Lal, 2004). The lack of differences in CO₂ emissions due to conversion period to sugarcane production demonstrates that the soil activities within the smallholder framing systems could be very different from those under intensive high input production systems where. Conversion of primary forests to plantation (sugarcane) results in a much higherCO₂ emissions. In Kenya, biomass production and sugarcane yields in the smallholder sector are low ranging between 15–30 tons / ha due to low inputs (Mulianga *et al.*, 2013). The low agronomic input levels may explain low CO₂ emissions observed in this study.

N₂O emissions were none significant between different times of conversions in weekly measurements (Figure 9) and in cumulative N₂O emissions (Figure 10). Cumulative emissions ranging between 0.8 and 1.2 kg N₂O-ha / year was low compared with emissions of 4.7 kg N₂O-ha / year in Australia (Rowlings, 2010). Changes in N₂O emissions following land use changes are related to changes in the amount of nitrogen inputs, crops usually receive large nitrogen inputs than forests through applied nitrogenous fertilizers. Consequently, nitrification and denitrification processes are intensified, and more N₂O are produced during nitrogen transformation in the soil (Robert and Tidje, 1987; Bowman, 1996; Kim et al., 2012). Smallholder farming systems studied here are characterized by low nitrogen fertilizer inputs of 50 kg N / ha / year (Table 1), thus the low cumulative N₂O emissions observed in this study. In Brazil and Australia, there is evidence that sugarcane is cultivated with high inputs of nitrogen fertilizer, this leads to high N₂O emissions (De Figueiredo and La Scala, 2010), thus the high emissions due to conversion period realized in these countries. Low CH₄, CO₂ and N₂O fluxes measured in this study implies that time from conversion from natural vegetation to sugarcane cultivation by smallholder farmers is not a significant contributor of GHG fluxes in Lower Nyando, western Kenya.

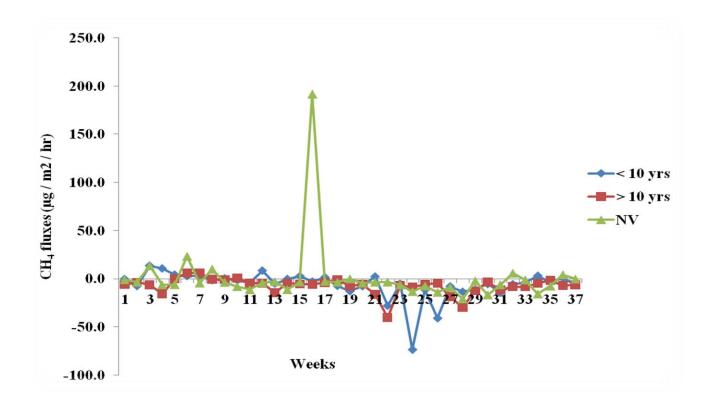


Figure 5: Influence of duration since conversion to sugarcane farming on methane fluxes

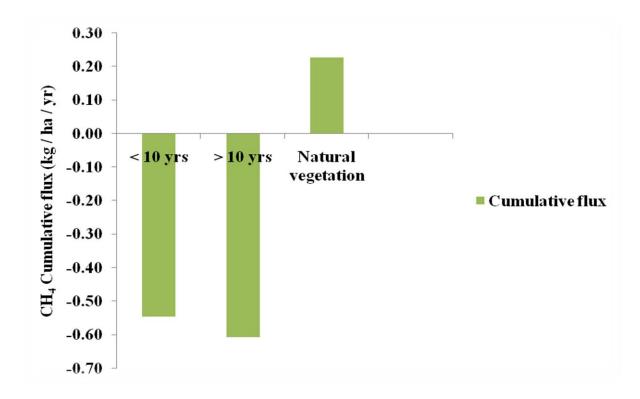


Figure 6: Cumulative fluxes of methane due to duration of converting fields to sugarcane farming

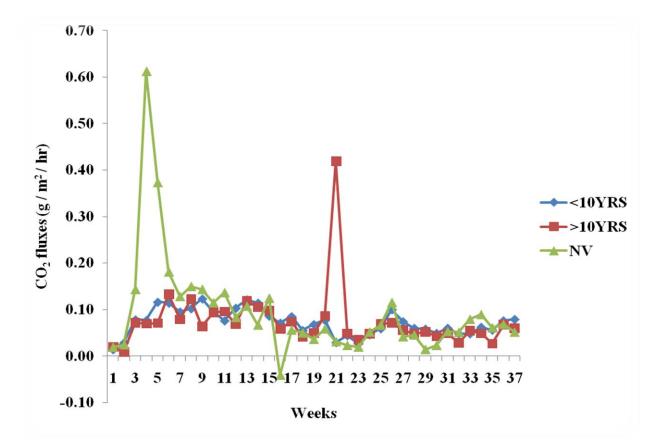


Figure 7: Contribution of conversion period on carbon dioxide fluxes

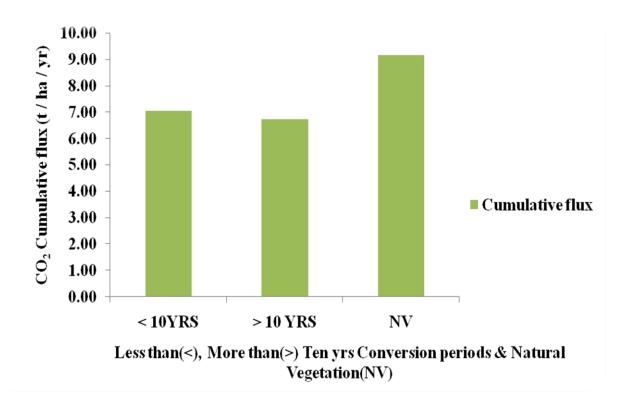


Figure 8: Cumulative fluxes of carbon dioxide due to conversion period

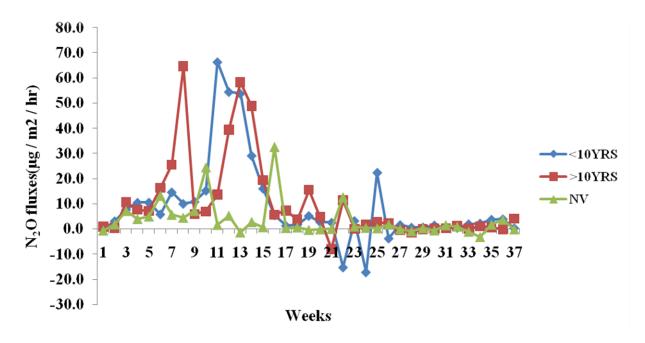


Figure 9: Influence of duration since conversion to sugarcane farming on nitrous oxide fluxes

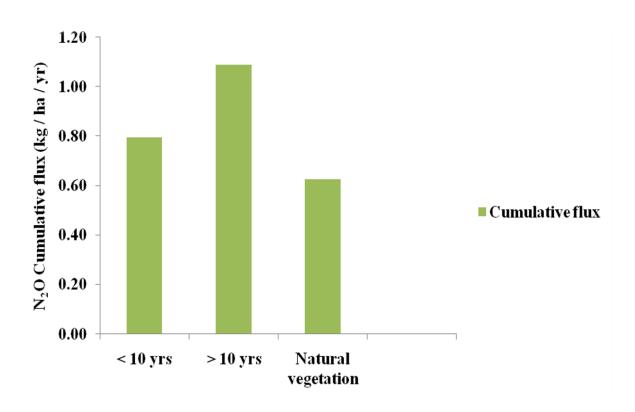


Figure 10: Cumulative fluxes of nitrous oxide due conversion period to sugarcane farming

4.2.2 Influence of nitrogen fertilization on GHG fluxes

None significant CH₄ absorption by the soil resulted in weekly measurements (Figure 11) and in cumulative (Figure 10) CH₄ absorption. Cumulative CH₄ (Figure 10) uptake by the soil in the range -0.5 and -0.6 kg CH₄ – C ha / year observed in this study was low compared with -0.442 and -1.6 kg CH₄ – C ha/year (Weier, 1999) that was also low after application of ammonium sulphate fertilizer (at 160 kg N / ha). However, CH₄ emissions ranging between 1.02 and 3.45 kg CH₄ – C ha / year have also been observed after urea application (at 160 kg N /ha) in Australia (Weier, 1999). Nitrate fertilizer forms stimulate soil CH₄ uptake by the soil (Nesbit and Breitenbeck, 1992). Soils in the study area were mostly free draining, with minimal; water logging. Anaerobic activities were therefore low. Thus, like in Australia (Weier, 1999), these soils were CH₄ sinks.

There was none significant CO₂ emissions in weekly measurement (Figure 13) and in cumulative CO₂ emissions (Figure 14). But the cumulative CO₂emissions in the range 5.48 and 7.2 tonnes CO₂ ha / year was high compared to 3927 kg CO₂ / ha for plant cane and 3834 kg CO₂ ha⁻¹for ratoon cane realized after nitrogen fertilizer application of 300 kg N / ha in Philippines (Mendoza, 2014) and 1800 \pm 540 kg CO₂eq / ha / year for burnt sugarcane fields (Lisboa *et al.*, 2011). Application of nitrogen fertilizer increases plant biomass production, stimulating soil biological activity and consequently CO₂ emissions (Dick, 1992). Smallholder farming systems studied here apply low nitrogen fertilizer of 50 kg N ha⁻¹ (Table 1), thus low biomass yields. However, data from the experimental plots show that with proper management and controlled nitrogen application, CO₂ emissions can be very high under tropical agricultural systems. The results demonstrate that despite the sugarcane yields (Mulianga *et al.*, 2013) the smallholders realise, their lack of high inputs is reducing CO₂ emissions and thus reducing the rate of climate change.

Significant ($p \le 0.05$) N₂O emissions were observed in weeks 9, 10, and 11 (Figure 15) after the application of nitrogen fertilizer with rates 0, 50, and 100 kg N / ha / year in week 10. Cumulative N₂O emissions (Figure 16) ranging between 0.62 and 1.2 kg N₂O ha / year were however, none significant and low compared with very high emissions of 445 kg N₂O ha / year and 45kg N₂O ha / year (Denmead *et al.*, 2010). Low N₂O emissions in the range 0.5 and 1.7 kg N₂O ha / year have also been realized in Brazil when 75kg N ha / year was applied (Macedo *et al.*, 2008). There is evidence in Brazil and in Australia, where sugarcane is cultivated with high inputs that nitrogen fertilization leads to high N₂O emissions (De Figueredo and La Scala, 2011). High soil N₂O emissions following high nitrogen fertilizer application rates maintains nigh nitrogen availability in the soil (Allen *et al.*, 2010). This

explains the high N₂O emissions observed in these countries. The levels on nitrogen applied in the trials were not causing high emissions of N₂O compared to those observed in Brazil (Denmead *et al.*, 2010, Macedo *et al.*, 2008 and Australia (De Figueredo and La Scala, 2011). The IPCC has proposed that 1% of all nitrogen applied to the soil, either in the mineral or the organic form, is directly emitted in the form of N₂O. However, several studies have indicated that the Tier 1 emission factor for the application of nitrogen fertilizers on agricultural soils proposed by the IPCC is overestimated (Dobbie and Smith, 2003; Jantalia *et al.*, 2008; Rochette *et al.*, 2004), especially when dealing with soils in regions with a tropical climate.N₂O emission factor for nitrogen fertilizer application to sugarcane of 3.87 %(3.87 kg of N₂O-N are emitted for each 100 kg of fertilizer N applied) but the estimate was a mean based on studies in Australia and Hawaii (Lisboa *et al.*, 2011).The average emission factor for nitrous oxide emissions in Mediterranean cropping systems was also found to be 50% lower than the IPCC Tier I default value (1%), which is largely based on values observed in temperate regions (Cayuela *et al.*, 2017).

Low CH_4 and N_2O fluxes realized in this study due to nitrogen fertilization are therefore an indication that the management practice as currently practiced by smallholder farmers in Lower Nyando is not a significant contributor of GHG fluxes.

4.2.3 GHG fluxes from trash management

 CH_4 absorption by the soil was none significant in the weekly measurement (Figure 17) and in cumulative CH_4 uptake by the soil (Figure 18) for burnt and unburnt sugarcane fields. Cumulative CH_4 absorption ranging between -0.35 and -0.45 kg CH_4 ha / year for burnt and unburnt sugarcane fields respectively were low compared with high CH_4 uptake by the of -288 kg CH_4 ha / year from unburnt field (Weier, 1998). However, CH_4 emissions of 160 kg CH_4 ha/year in Japan (IPCC, 2006) and 162 kg CH_4 ha/year in Australia (Lisboa *et al.*, 2011) have been realized. Crop residue burning can release significant quantities of CH_4 (Weier. 1998; Mendoza and Samson 2000). This may explain CH_4 emissions in these countries in contrast, trash–blanketed soils can act as a sink for CH_4 (soil bacteria oxidize CH_4 to CO_2 which is a much less potent greenhouse gas (Weier, 1996). Low CH_4 uptake by the soil observed in this study was probably because soil environmental conditions under burnt and unburnt sugarcane fields were not conducive enough for the existence of methanotrophs (Wendlandt *et al.*, 2010). The IPCC Tier 1 emission factor also assumes that CH_4 emission from sugarcane fields is negligible (Fukushima *et al.*, 2009).

Significant ($p \le 0.05$) CO₂ emissions were realized between week 3 and 10 after burning/ trash-blanketing treatment in week 3 (Figure 19). Cumulative CO₂ emissions (Figure

20) between burning and trashing treatments were not significant and low ranging between 6.5 and 7.3 t CO_2 ha⁻¹ yr⁻¹ for unburnt and burnt sugarcane fields respectively compared with direct CO₂ emission 10.41 t CO₂ eq ha⁻¹ (Mendoza, 2014) in Pillipines. Field agronomic practices such as cane burning trashing of cane residues directly emit CO₂ (Weier, 1998); Mendoza and Samson, 2000). This probably explains significant ($p \le 0.05$) CO₂ emissions after burning / trashing treatment in weekly measurement observed in this study. Maintaining crop residues in the soil surface store soil carbon (soil carbon sequestration) (Razafimbelo et al., 2006; Galdos et al., 2009; Ussiri and Lal, 2009). But crops are often assumed to be CO₂ neutral as they sequester similar amounts of carbon as are returned to atmosphere over growth cycle (Denmead et al., 2010). Most likely reason for none significant difference between the burning / trashing treatment realized in this study. The IPCC Tier 1 method applied to a consideration of the nature of sugarcane fields and cultivation patterns, also assumes that the net CO₂ emission from soil is zero. This is because there is no carbon input into soil from agricultural activities except for leaves and cane top removed from the cane at harvesting, and the carbon absorption from the atmosphere into soil is negligible (Fukushima et al., 2009). Sugarcane crop can produce large amount of biomass under tropical and high input conditions (Robertson et al., 1996). In Kenya, biomass yields are much lower due to low inputs (Mulianga et al., 2013). Thus may explain the low CO₂ emissions measured in this study.

There was none significant N_2O emissions between burning and trashing treatments in weekly measurement (Figure 21) and in cumulative N_2O emissions (Figure 22). Cumulative N_2O emissions measuring 0.71 kg N_2O ha/year for burnt and 0.82 kg N_2O ha / year for unburnt were none significant and low in comparison with 11.16 kg N_2O ha / year from burnt sugarcane fields and high emissions of 13.14 kg N_2O ha / year from unburnt sugarcane fields in Australia (Weier, 1996).burning and retention of trash in sugarcane fields emit N_2O (Weier, 1998; Mendoza *et al.*, 2000). N_2O emissions are also limited by nitrogen availability in soils (Butter bach- Bahl *et al.*, 2013). In Brazil and Australia where sugarcane is cultivated with high inputs, nitrogen fertilization and burning of residues leads to high GHG emissions (De Figueirodo and La Scala, 2011). Smallholder farming systems in this study apply low rates of nitrogen fertilizer; hence none significant and low N_2O emissions due to burning and retention of trashes observed is this study.

Low CH_4 , CO_2 , and N_2O fluxes obtained in this study as a result of burning and retention of trash in the sugarcane fields therefore implies that this management practice is not a significant contributor of GHG fluxes in the smallholder sugarcane production in lower Nyando.

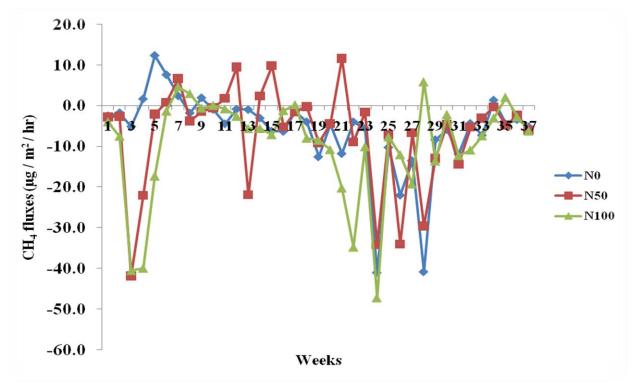
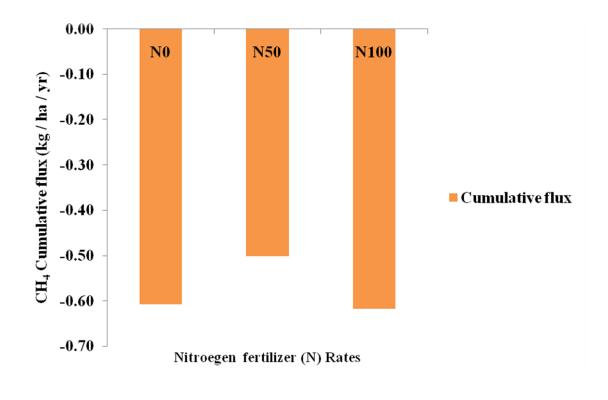



Figure 11: Influence of nitrogen fertilizer application on methane fluxes

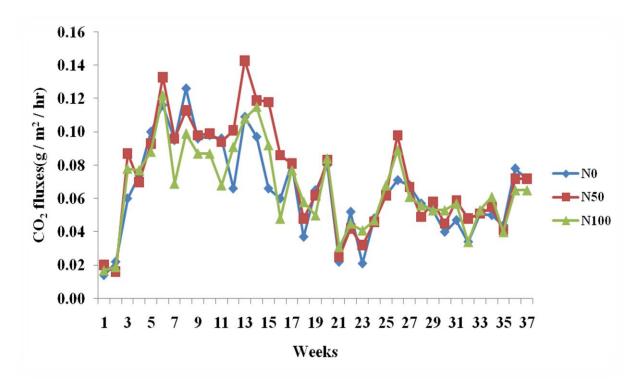


Figure 13: Contribution of nitrogen fertilizer application on carbon dioxide emissions

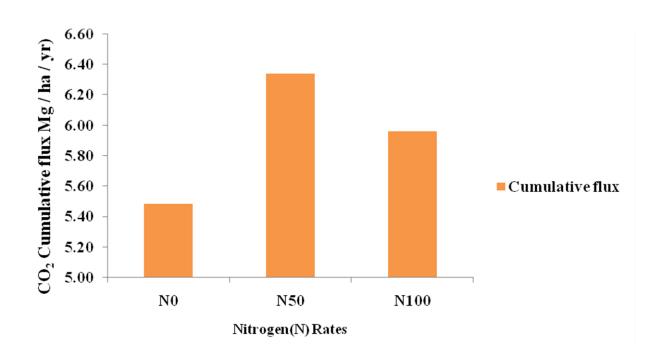


Figure 14: Cumulative carbon dioxide emissions due to nitrogen fertilizer application

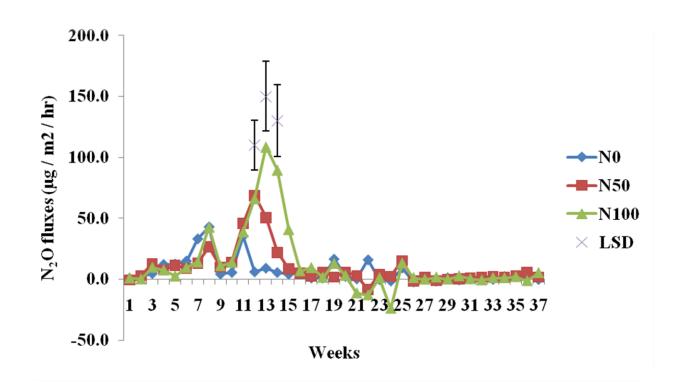


Figure 15: Influence of nitrogen fertilizer on nitrous oxide fluxes

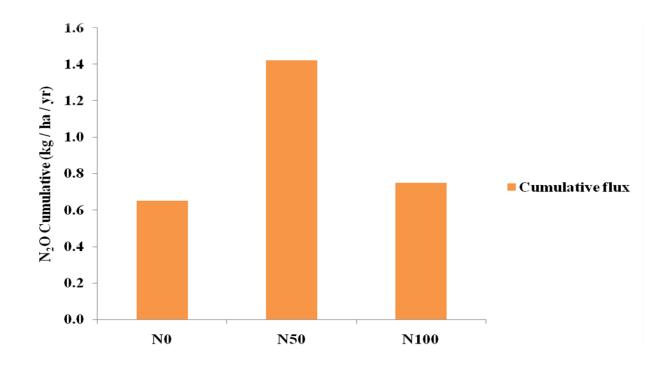


Figure 16: Cumulative nitrous oxide emissions due to nitrogen fertilizer application

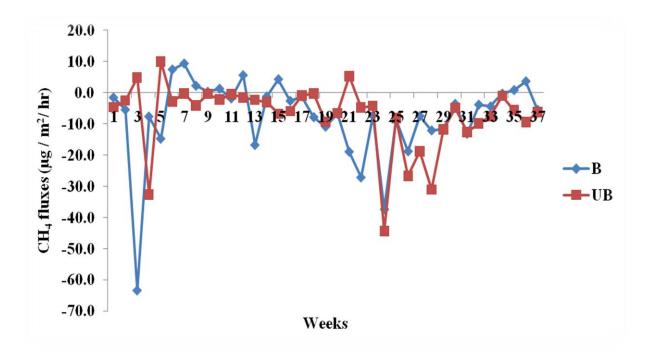


Figure 17: Contribution of trash management on methane fluxes

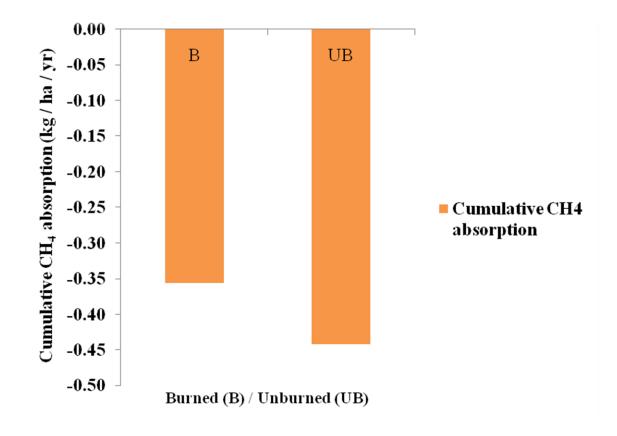


Figure 18: Cumulative methane absorption due to trash management

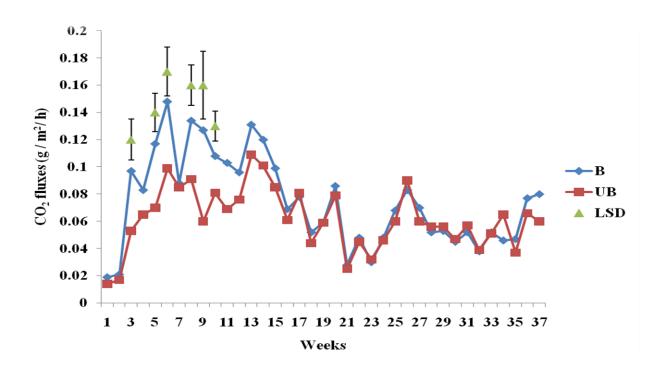


Figure 19: Influence of trash management on carbon dioxide emissions

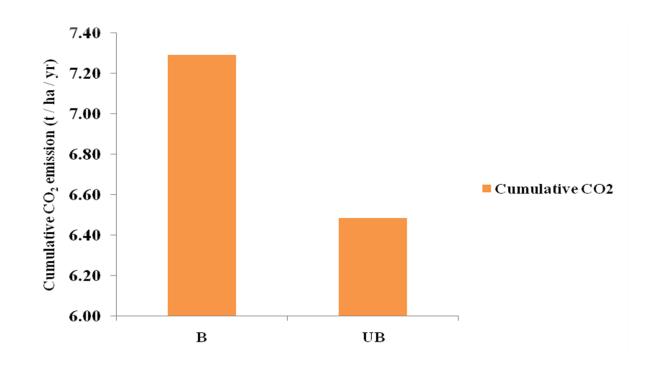


Figure 20: Cumulative carbon dioxide emissions due trash management

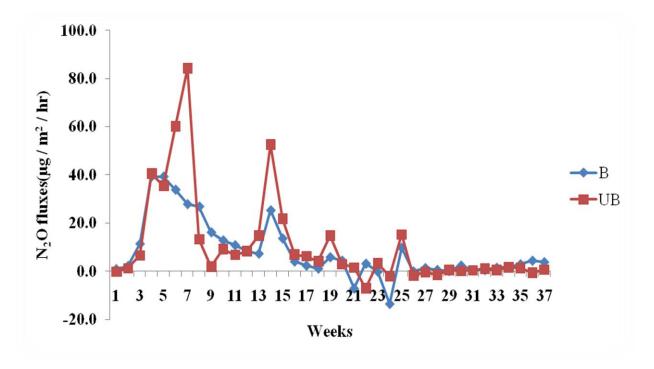


Figure 21: Contribution of trash management on nitrous oxide fluxes

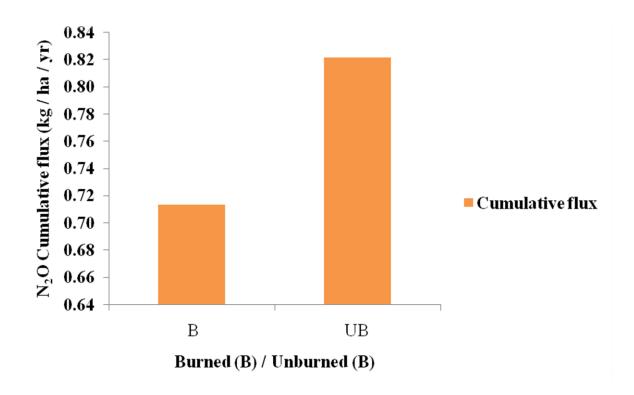


Figure 22: Cumulative nitrous oxide emissions due to trash management

CHAPTER FIVE

SUMMARY, CONCLUSION, AND RECOMMENDATIONS

5.1 Summary.

- 1. The following are some of the management practices in the study area: conversion of natural vegetation to sugarcane cultivation, nitrogen fertilization and trash management by burning or retention.
- 2. CH₄, CO₂ and N₂O fluxes were low and not significantly different due to periods of conversions from natural vegetation or other crops to sugarcane cultivation.
- 3. Nitrogen fertilization (rates 0, 50, and 100 kg N ha⁻¹ yr ⁻¹)significantly ($p \le 0.05$) influenced N₂O emissions in week 12, 13 and 14 after application in week 10. CO₂ and CH₄, weekly fluxes were however not significant. Cumulative N₂O was low and not significant compared to IPCC tier 1 default value for N₂O from agricultural soilswhich is largely based on values observed in temperate regions. CH₄, CO₂, and fluxes due to nitrogen fertilization were also low and not significant.
- 4. Trash management significantly (p≤0.05) increased CO₂ emissions between weeks 3 to 10 after the burning/ trashing treatment in week 3. CH₄ and CO₂fluxes were not significant during the weekly measurements. Cumulative N₂O fluxes were low and not significant compared to Tier 1 method that assumes net CO₂from soils in sugarcane fields to be zero, CH₄, and N₂O fluxes were also low and not significantly different due to trash/residue management.
- 5. Tier 1 emission factor assumed N₂O as the primary GHG emitted from sugarcane soils in the tropics, but zero net CO₂ and negligible CH₄emissions.

5.2 Conclusion

- The management practices in Lower Nyando include fertilizer application, conversion from natural vegetation to sugarcane cultivation and trash management practices (burning or trash retention).
- Conversion Period from natural vegetation to sugarcane cultivation was not a significant contributor of CH₄, CO₂, and N₂O fluxes in Lower Nyando.
- 3. Nitrogen fertilization (rates 0, 50, and 100 kg N ha⁻¹ yr ⁻¹) was not a significant contributor of N₂O, CO₂ and CH₄ fluxes in Lower Nyando, contrary to Tier 1 emission factor for the

application of nitrogen fertilizer that is overestimated especially with soils in regions with tropical climate.

- 4. Trash management of burning and retention of cane residues after harvest was not a significant contributor of CH₄, CO₂, and N₂O fluxes in Lower Nyando. Tier 1 emission methods also assume zero CO₂and negligibleCH₄ emissions from sugarcane fields.
- 5. Tier 1 emission factor for the application of nitrogen fertilizer was overestimated especially soils in the tropical climate, but assumed zero CO₂and negligible CH₄ emissions from sugarcane fields.

5.3 Recommendations

Smallholder sugarcane farmers in Lower Nyando should continue with:

- 1. The management practices of conversion from natural vegetation to sugarcane cultivation.
- 2. Applying recommended nitrogen fertilization (rates 0, 50, and 100 kg N $ha^{-1} yr^{-1}$)
- 3. Trash management, since these practices do not emit GHGs into the atmosphere that causes climate change, as with the case of Tier 1 emission factor that assumes net zero emissions of CO_2 and negligible CH_4 , but overestimates N_2O emissions from soils in sugarcane fields in the tropical regions.

5.4 Suggestion for further Studies

It is recommended that GHGs emissions in Nyando Basin under intensive commercial agronomic management including high inputs should be evaluated.

REFERENCES

- Achieng', G.O., Nyandere, S.O., Owuor, P.O., Abayo, G.O., Omondi, C.O. (2013). Effects of rate and spilt application of nitrogen fertilizer on yield on two sugarcane varieties from ratoon crop. *Greener Journal of Agricultural Science*, 3, 235 – 239.
- Agroforestry. (2009). Träd får även människor att växa En studiehandledning om viskogen, Anita Norberg Info, Åtta45.
- Agus, F. Runtunuwu, E., June, T., Susanti, E., Komara, H., Syahbuddin, H., Las, I., Noordwijk, M.V. (2009). Carbon dioxide emission in land use transition to plantation *Jurnal Litbang Petanian*, 28(4), 119-126.
- Agus, F., Suyanto, Wahyunto, Noordwijk, M. (2007). Reducing emission from peatland deforestation and degradation: Carbon emission and opportunity costs. Paper presented in International Symposium and Workshop on Tropical Peatland: Carbon-Climate-Human Interaction-Carbon Pools, Fire, Mitigation, Restoration, and Wise Use, Yogyakarta, Indonesia, 27–29 August 2007.
- Allen, D., Mendham, D., Cowie, A., Wang, W., Dalal, R., Raison, R. (2009). Nitrous oxide and methane emissions from soil are reduced following afforestation of pasture lands in three contrasting climatic zones, *Soil Research*, 47, 443-458.
- Allen, D.E., Kingston, G., Rennenberg, H. (2010). Effect of nitrogen fertilizer management and water logging on nitrous oxide emission from subtropical sugarcane soil.*Agriculture, Ecosystems and Environment*, **136**, 209–217.
- Alm, J., Saarnio, S., Nykanen, H., Silvola, J., Martikainen, P.J. (1999). Winter CO₂, CH₄ and N₂O fluxes onsome natural and drained boreal peatlands. *Biogeochem*.44, 163-186.
- Arias-Navarro, C., Díaz-Pinés, E., Kiese, R., Rosenstock, T.S., Rufino, M.C., Stern, D., Neufeldt, H., Verchot, L.V., Butterbach-Bahl, K. (2013). Gas pooling: A sampling technique to overcome spatial heterogeneity of soil carbon dioxide and nitrous oxide fluxes, *Soil Biology Biochemistry.*, 67, 20–23.
- Ball-Coelho, B., Tiessen, H., Stewart, J., Salcedo, I., Sampaio, E. (1993). Residue management .effects on sugarcane yield and soil properties in Northeast Brazil. *Agronomic Journal*, 85,1004-1008.
- Barak, P., Jobe, B.O., Krueger, A.R., Peterson, L.A., Laird, D.A. (1997). Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin, *Plant and Soil*, **197**, 61-69.
- Bholah, M.A., Ng Kee, K.K.F. (1997). Is nitrogen fertilization of sugar cane harming our atmosphere? Food and Agricultural Research Council, AMAS, Re´duit, Mauritius Available at:http://www.gov.mu/portal/sites/ncb/moa/farc/amas97/pdf/msiri05.pdf (accessed 10 August 2010).
- Bilotta, G. S., Brazier, R. E., Haygarth, P. M., Donald, L. S. (2007). The impacts of grazing animals on the quality of soils, vegetation, and surface waters in intensively managed grasslands, *Advance in Agronomy*, **94**, 237-280.
- Bock, E., Wagner, M. (2006) Oxidation of inorganic nitrogen compounds as an energy source. *The Prokaryotes*, **2**, 457–495.
- Boddey, R. M., Soares L. H. B., Alves, B. J. R, Urquiaga, S. (2008) Bioethanol production in Brazil. In: Pimentel D (ed) Biofuels, solar and wind as renewable energy systems. Springer, Berkeley, pp 321–355
- Boddey, R.M.J., Polidoro, J.C., Resende, A.S. (2001). Use of the ¹⁵N natural abundance technique for the quantification of the contribution of N₂ fixation to sugar cane and other grasses. *Australian Journal of Plant Physiology*, **28**, 889–895.
- Bouwman, A.F. (1996). Direct emission of nitrous oxide from agricultural soils, *Nutrition Cyclic Agro ecosystem*, **46**, 53-70.
- Bouwman, A.F. (1998). Nitrogen oxides and tropical agriculture. Nature, 392, 866-867.

- Bouwman, A.F., Boumans, L.J.M., Batjes, N.H.(2002). Emissions of N₂O and NO from Fertilized fields: summary of available measurement data, *Global Biogeochemistry Cyle*, 16, 1-13.
- Brink, A.B., Bodart, C., Brodsky, L., Defourney, P., Ernst, C., Donneye, F., Lupi, A., Tuckova, K. (2014). Anthropogenic pressure in East Africa—Monitoring 20 years of land cover changes by means of medium resolution satellite data. *Internationa Journal* of Applied Earth Observation Geoinformation, 28, 60 - 69.
- Bulluck, L., Brosius, M., Evanylo, G., Ristaino, J. (2002). Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms, *Application Soil Ecololgy.*, **19**, 147-160.
- Bunt, J. S.; Rovira, A. D.(1954). Nature, 173, 1242.
- Burton, A.J., Pregitzer, K S., Crawford, J.N., Zogg, G.P., Zak, D.R. (2004). Simulated chronic NO₃-deposition reduces soil respiration in Northern hardwood forests. *Global Change Biology*, **10**, 1080–1091.
- Butterbach–Bahl, K., Kiese, R., Liu, C. (2011). Measurements of biosphere atmosphere exchange of CH₄ in terrestrial ecosystems. *Methods in Enzymology*, **495**(1), 271–303.
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls? *Phil. Trans. Royal Society*, 368,20130122.
- Caldwell, S. L.; Laidler, J. R.; Brewer, E. A.; Eberly, J. O.; Sand-borgh, S. C.; Colwell, F. S. (2008). Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms, *Environment Science Technology*,**42**, 6791- 6799.
- Cançado, J.E.D., Saldiva, P.H.N., Pereira, L.A.A., Lara, L.B.L.S., Artaxo, P., Martinelli, L.A., Arbex ,M.A., Zanobetti, A., Alfesio, L.F., Braga, A.L.F. (2006). The impact of sugarcane burning emissions on the respiratory system of children and the elderly. *Environmental Health Perspectives*, **114**, 725-729.
- Carmo, J.B., Filoso, S., Zotelli, L.C., Neto, E.R.S., Pitombo, L.M., Duarte-Neto, P.J., Vargas, V.P., Andrade, C.A., Gava, G.J.C., Rossetto, R., Cantarella, H., Neto A.E., Martinelli, L.A. (2013). Infield greenhouse gas emissions from sugarcane soils in Brazil: Effects from synthetic and organic fertilizer application and crop trash accumulation. *GCB Bioenergy*, 5, 267–280.
- Carvalho, J.L.N., Cerri, C.E.P., Feigl, B.J. (2009). Carbon sequestration in agricultural soils in the Cerrado region of the Brazilian Amazon. *Soil and Tillage Research*, **103**, 342–349.
- Casciotti, K., Ward, B., (2001). Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria. *Applied and Environmental Microbiology*,**67**,2213–2221.
- Casciotti, K., Ward, B. (2005).Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria.*FEMS Microbiology Ecology*,**52**,197–205.
- Castaldi, S., De Pascale, R.A., Grace, J. (2004).Nitrous oxide and methane fluxes from soils of the Orinoco savanna under different land uses. *Global Change Biology*, **10**, 1947–1960.
- Castaldi, S., Ermice, A., Strumia, S. (2006). Fluxes of N₂O and CH₄ from soils of savannas and seasonally-dry ecosystems. *Journal of Biogeography*, **33**, 401–415.
- Cayuela, M.L., Aguilera, E., Cobena, A.S., Adams, D.C., Abalos, D., Louise, B., Ryals, R., Silver, W.L., Alfaro, M.A., Pappa, V.A., Smith, P., Garnier, J., Billen, G., Bouman, L., Bondeau, A., Lassaletta, L. (2017). Direct nitrous oxide emission in Mediterranean climate cropping systems: Emission factors based on a meta- analysis of available measurement data, *Agriculture, Ecosystems and Environments*, 238, 25-35.
- Cerri, C.C., Bernoux, M., Blair, G.J. (1994). Carbon pools and fluxes in Brazilian natural and agricultural systems and the implications for the global CO₂ balance. In: *Proceedings*

of International Soil Science Society, Vol.5a.Commission IV, Acapulco, Mexico, July 10-16, 1994, pp. 399-406.

- Cerri, C.C., Maia, S.M.F., Galdos, M.V., Cerri, C.E.P., Feigl, B.J., Bernoux, M. (2009). Brazilian greenhouse gas emissions: The importance of agriculture and livestock. *Science Agriculture*, **66**, 831–843.
- Cerri, C.E.P., Sparovek, G., Bernoux, M., Easterling, W.E., Melillo, J.M., Cerri, C.C. (2007). Tropical agriculture and global warming: impacts and mitigation options. *Scientific Agriculture*, 64, 83–99.
- [CONAB] Companhia Nacional De Abastecimento—Minist´erio daAgricultura, Pecu´aria e Abastecimento). (2008). Perfil do Setor deAc,u´car e A´lcool no Brasil (Bras´ılia: (available at <u>www.conab.gov.br/conabweb/download/safra/perfil.pdf</u>, accessed 19 October 2012).
- Creswell, J. W. (2003). Research design: Qualitative and mixed methods approaches (2nd edition). Thousand Oaks, (A: gage).
- Crutzen, P.J., Mosier, A.R., Smith, K.A., Winiwarter, W. (2008). N₂O release from agro biofuel production negates global warming reduction by replacing fossil fuels. *Atmospheric Chemistry Physiology*,**8**, 389–395.
- Dalal, R.C., Wang, W., Robertson, G.P., Parton, W.J. (2003). Nitrous oxide emissions from Australian agricultural lands and mitigation options: A review. Australian Journal of Agricultural Research, 41, 165-195.
- De Figueiredo, E.B., La Scala, N. Jr.(2011). Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest in Brazil, *Agriculture, Ecosystems &Environment*, **141**(1), 77-85.
- DeForest, J.L., Zak, D.R., Pregitzer, K.S., Burton, A.J. (2004) Atmospheric nitrate deposition, microbial community composition, and enzyme activity in Northern hardwood forests. *Soil Science Society Amsterdam Journal*, 68, 132–138.
- Del Grosso, S. J., D .S., Ojima, W .J., Parton, E., Stehfest. (2009). Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils. *Global and Planetary Change*, 67, 44-50.
- Detwiler, R.P. (1986). Land-use change and the global carbon cycle: the role of tropical soil. *Biogeochemistry*, **2**, 67-93.
- Denmead, O.T., Macdonald, B., Bryant, G., Naylor, T., Wilson, S., Griffith, D., Wang, W., Salter, B., White, I., Moody, P. (2010). Emissions of methane and nitrous oxide from Australian sugarcane soils. *Agricultural Forest Meteorology*, **150**, 748-756.
- Denmead, O.T., Macdonald, B.C.T., Naylor, T., Wang, W., Salter, B., White, I., Wilson, S., Griffith, D.W.T., Moody, P. (2008).Whole-of-season greenhouse gas emissions from Australian sugarcane soils. *Proceedings of the Australian Society of Sugar Cane Technologists*, **30**, 105-114.
- Dick, R.P. (1992). A review: long term effects of agricultural systems on soil biochemical and microbial parameters. *Agricultural and Ecosystem Environment*, **40**, 25–36.
- Dobbie, K.E., Smith, K.A. (2003). Impact of different forms of N fertilizer on N₂O emissions from intensive grassland, *Nutrient Cycling in Agroecosystems*,**67**, 37–46.
- Do"bereiner, J., Day J.M., Dart, P.J. (1972). Nitrogenous activity in the rhizosphere of sugar cane and other tropical grasses. *Plant and Soil*, **37**, 191–196.
- Dominy, C.S., Haynes, R.J., Van Antwerpen, R. (2002). Loss of soil organic matter and related soil properties under long-term sugarcane production on two contrasting soils. *Biology of Fertilized Soils*, **36**, 350-356.
- Dörr, N., Glaser, B., Kolb, S. (2010). Methanotrophic communities in Brazilian ferralsols from naturally forested, afforested, and agricultural sites. *Application of Environmental Microbiology*, **76**, 1307-1310.

- Dutaur, L., Verchot, L.V. (2007). A global inventory of the soil CH₄ sink. *Global Biogeochemical Cycles*, **21**, 4013.
- Edward, N. T. (1975), Proceedings of Soil Science Society, Amsterdam Journal, 39, 361–365.
- Eichner, M.J. (1990). Nitrous oxide emissions from fertilized soils: Summary of available data. *Journal of Environmental Quality*, **19**, 272–280.
- Ettwig, K. F.; Butler, M. K.; Le Paslier, D.; Pelletier, E.; Mangenot, S.; Kuypers, M. M. M.; Schreiber, F.; Dutilh, B. E.; Zedelius, J.; de Beer, D.; Gloerich, J.; Wessels, H. J. C. T.; van Alen, T.; Luesken, F.; Wu, M.L.; van de Pas-Schoonen, K.T.; Op den Camp, H. J.M.; Janssen-Megens, E.M.; Francoijs, K.J.; Stunnenberg, H.; Weissenbach, J.;Jetten, M.S.M.; Strous, M. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria, *Nature*. **464**,543-548.
- Eustice, T., Van Der laan, M., Van Antwerpen, R.(2011). Comparison of greenhouse gas emissions from trashed and burnt sugarcane cropping systems in South Africa. *Proceedings of South African Sugarcane Technology Association*, **84**, 326–339.
- FAO.(2012). Smallholder Family Farmers (Rome: FAO) (www.fao.org/fileadmin/templates/nr/sustainabilitypathways/docs/Factsheet smallholders.pdf, accessed 19 March 2013).
- FAOSTAT. 2013. Available at http://faostat.fao.org/site/377/default.aspx#ancor
- Fatunbi, O.A. (2009). Graphical presentation of research results: How to place accurate LSD bars in graphs, *Newsletter of the Grassland Society of Southern Africa*, **9**, 1.
- Flynn, H.C., Smith, J., Smith, K.A., Wright, J., Smith, P., Massheder, J. (2005). Climate and crop-responsive emission factors significantly alter estimates of current and future nitrous oxide emissions from fertilizer use, *Global Change Biology*, 11,1522-1536.
- Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Forster, P., Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (2007). The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
- Franchini, J.C., Crispino, C.C., Souza, R.A., Torres, E., Hungri, A.M. (2007).Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in Southern Brazil. *Soil and Tillage Research*, Amsterdam, **92**, (1-2), 18-29.
- Fukushima, Y., Chen, S.P. (2009). A decision support tool for modification in crop cultivation method based on life cycle assessment: a case study on greenhouse gas emission reduction in Taiwanese sugarcane cultivation, *International Journal of Life Cycle Assessment*, 14, 639-655.
- Galbally, I.E., Fraser, P.J., Meyer, C.P., Griffith, D.W.T. (1992). Biosphere-atmosphere exchange of trace gases over Australia. In: Gifford RM, Barson MM (Eds.), Australia's Renewable Resources: Sustainability and Global Change. PJ Grills, Commonwealth Government Printer, Canberra, pp.117-149 IGBP Workshop No. 14.
- Galbally, I.E., Meyer, M.C.P., Wang, Y.P., Smith, C.J., Weeks, I.A. (2010).Nitrous oxide emissions from a legume pasture and the influences of liming and urine addition. *Agriculture Ecosystems Environment*, **136**, 262-272.
- Galdos, M.V., Cerri, C.C., Cerri, C.E.P. (2009). Soil carbon stocks under burned and unburned sugarcane in Brazil. *Geoderma*, **153**, 347-352.
- Galdos, M. V., Cerri, C. C, Lal R, Bernoux M, Feigl B, Cerri CEP(2010) Net greenhouse gas fluxes in Brazilian ethanol production systems. Global Change Biol Bioenergy 2:37– 44

- Gall, M.D.; Borge, R.; Gall, J.P. (1996). Educational research: An introduction, 6th edition white plIans, NY, England: Longman publishing.
- Goldemberg, J., Coelho, S.T., Guardabassi, P. (2008). The sustainability of ethanol production from sugarcane. *Energy Policy*, **36**, 2086-2097.
- Green, C.J., Blackmer, A.M., Horton, R. (1995). Nitrogen effects on conservation of carbon during corn residue decomposition in soil. Soil Science Society Amsterdam Journal, 59, 453–459
- Guo, L.B., Gifford, R.M. (2002). Soil carbon stocks and land use change: A meta analysis. *Global Change Biology*,**8**, 345-360.
- Hanson, R.S., Hanson, T.E. (1996). Methanotrophic bacteria, Microbiology. *Molecular Biology Review*, **60**, 439-471.
- Hartemink, A.E. (2008). Sugarcane for bioethanol Soil and environmental issues. *Advances in Agronomy*, **99**, 125–182.
- Haynes, R.J., Graham, M. (2004).Composition of the soil microbial community under sugarcane production as indicated by phospholipid fatty acid analysis. *Proceedings of South African Sugarcane Technology Association*, **78**, 331-342.
- Herrero, M., Thornton, P.K., Kruska, R., Reid, R.S. (2008). Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. *Agriculture Ecosystem andEnvironment*, **126**, 122–37.
- Houghton, R.A. and Skole, D.L. (1990): Carbon. In: *The Earth as Transformed by Human Action* [Turner, B.L., Clark, W.C., Kates, R.W., Richards, J.F., Mathews, J.T and Meyer W.B. (Eds.)]. Cambridge University Press, New York, NY, pp. 393-408.
- Houghton, R.A., House, J.I., Pongratz, J., Van der Werf, G.R., DeFries, R.S., Hansen, M.C., Le Quéré, C., Ramankutty, N. (2012). Carbon emissions from land use and land-cover change, *Biogeosciences*, 9, 5125-5142.
- IPCC, (1994).*Radiative Forcing of Climate Change*. The 1994 Report of the Scientific Assessment Working Group of IPCC, Summary for Policymakers.WMO/UNEP, Geneva, Switzerland, 28 pp.
- IPCC: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual (Volume 3), http://www.ipcc-nggip.iges.or.jp/public/gl/invs6.html, 1997. Last access date: January 14, 2013.Islas-Lima, S.; Thalasso, F.; Gomez-Hernandez, J. (2004). Evidence of anoxic methane oxidation coupled to denitrication, *Water Res*ource, 38, 13-16.
- IPCC (2000). Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Penman J., Kruger D., Galbally I., Hiraishi T., Nyenzi B., Emmanuel S., Buendia L., Hoppaus R., Martinsen T., Meijer J., Miwa K., Tanabe K. (Eds). Intergovernmental Panel on Climate Change (IPCC), IPCC/OECD/IEA/IGES, Hayama, Japan.
- IPCC, (2006). Guidelines for National Greenhouse Gas Inventories: Prepared by the National Greenhouse Gas Inventories Programme, (Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. Eds.). Institute for Global Environmental Strategies, Hayama, Japan.
- IPCC, (2007). Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: University Press. Retrieved from: <u>http://www.ipcc.ch/publications_and data/ar4/wg3/en/ ch3s3-5-3-3.html</u>.(Accessed 23rd May 2014).
- Jantalia, C.P., Santos, H.P., Urquiaga, S., Boddey, R.M., Alves, B.J.R. (2008). Fluxes of nitrous oxide from soil under different crop rotations and tillage systems in the South of Brazil. *Nutrient Cycling in Agroecosystems*, **82**, 161–173.

- Jorgensen, J.R., Well, C.G. (1973). The relationship of respiration in organic and mineral soil layers to soil chemical properties, *Plant and Soil*,**39**(2), 373-387.
- Kammann, C., Grünhage, L., Jäger, H. J., Wachinger, G. (2001). Methane fluxes from differentially managed grassland study plots: the important role of CH₄ oxidation in grassland with a high potential for CH₄ production. *Environmental Pollution*,**115**, 261-273.
- Keller, M., Reiners, W.A. (1994).Soil atmosphere exchange of nitrous-oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa-Rica. *Global Biogeochemical Cycles*, **8**, 399–409.
- Kiese, R., Wochele, S., Butterbach-Bahl, K. (2008). Site specific and regional estimates of methane uptake by tropical rainforest soils in north eastern Australia. *Plant and Soil*, 309, 211–226.
- Kim, D.G., Isenhart, T.M., Parkin, T.B., Schultz, R.C. (2010). Methane flux in cropland and adjacent riparian buffers with different vegetation covers. *Journal of Environmental Quality*, **39**(1), 97-105.
- Kim, D. G., Hernandez-Ramirez, G., Giltrap, D. (2012). Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis, Agricultural Ecosystem Environment, 168, 53-65,
- Sylvester-Bradley, Kindred. D.: Mortimer, N.; R.; Brown, G.; Woods, J. (2008).Understanding and managing uncertainties to improve biofuel GHG emissions 435Part London: calculations. Project Report No. 2 HGCA. www.hgca.com/publink.aspx?id=4622
- Kirschbaum, M.U.F., Saggar, S., Tate, K.R., Giltrap, D. L., Ausseil, A.G.E., Greenhalgh, S., Whitehead, D. (2012). Comprehensive evaluation of the climate-change implications of shifting land use between forest and grassland: New Zealand as a case study, *Agricultural Ecosystem Environment*, **150**, 123-138.
- Kirschbaum, M.U.F., Saggar, S., Tate, K.R., Thakur, K.P., Giltrap, D.L. (2013). Quantifying the climate-change consequences of shifting land use between forest and agriculture. *Science Total Environment*, **465**, 314-324.
- Klemedtsson, L., Kasimir Klemedtsson, A., Escala, M., Kulmala, A. (1999). Inventory of N₂O emission from farmed European peatlands. In: Freibauer, A. Kaltschmitt, M. (eds.), Approaches to Greenhouse Gas Inventories of Biogenic Sources in Agriculture, Proceeding. Workshop at Lökeberg, Sweden, 9-10 July 1998, pp. 79-91.
- Klemedtsson, L., Weslien, P., Arnold, K., Agren, G., Nilsson, M. Hanell, B. (2002). Greenhouse gas emissions from drained forests in Sweden. In: Olsson M. (ed.) Landuse strategies for reckoning net greenhouse gas emissions. Mistra Programme: Progress report 1999 – 2002. Swedish Univ. Agric. Sciences, Uppsala: pp. 44-67.
- Konneke, M., Berhnard, A.E., De La Torre, J.R. (2005). Isolation of an autotrophic ammoniaoxidizing marine archaeon. *Nature*, **437**, 543–546.
- Kruger, M.; Eller, G.; Conrad, R.; Frenzel, P. (2002). Seasonal variation in pathways of CH₄ production and in CH₄ oxidation in rice fields determined by stable carbon isotopes and specific inhibitors, *Global Change Biology*,**8**, 265-280.
- Lai, D.Y.F. Methane dynamics in northern peatlands. A Review.(2009).*Pedosphere*,**19**, 409-421.
- Laine, J., Silvola, J., Tolonen, K., Alm, J., Nykanen, H., Vasander, H., Sallantaus, T., Savolainen, I., Sinisalo, J., Martikainen, P.J. (1996). Effect of water-level drawdown on global climatic warming – northern peatlands. *Ambio* 25, 179-184.
- Lal, R. (2003). Global potential of carbon sequestration to mitigate the greenhouse effect. *Critical Review in Plant Sciences*, **22**, 151–184.

- Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. *Science*,**304**, 1623-1627.
- Lal, R. (2008). Sequestration of atmospheric CO_2 in global carbon pools. *Energy and Environmental Science*, **1**, 86–100.
- Le Mer, J., Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: A review, *European Journal of Soil Science*, **37**, 25-50.
- Le Quéré, C., Peters, G.P., Andres, R.J., Andrew, R.M., Boden, T., Ciais, P., Friedlingstein, P., Houghton, R.A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, D.C.E., Bopp, L., Canadell, J.G., Chini, L.P., Doney, S.C., Harper, A., Harris, I., House, J.I., Jain, A.K., Jones, S.D., Kato, E., Keeling, R.F., Klein, G.K., Körtzinger, A., Koven, C., Lefèvre, N., Omar, A., Ono, T., Park, G.H., Pfeil, B., Poulter, B., Raupach, M.R., Regnier, P., Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B.D., Tilbrook, B., van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., Zaehle, S., Yue, C. Global carbon budget.(2013), *Earth System ScienceData Discuss.*, 6, 689-760, 10.5194/essdd-6-689.
- Levine, U.Y., Teal, T.K., Robertson, G.P., Schmidt, T.M. (2011). Agriculture's impact on microbial diversity and associated fluxes of carbon dioxide and methane. *The ISME Journal*, 5, 1683-1691.
- Li, Y., Mathews, B.W. (2010). Effect of conversion of sugarcane plantation to forest and pasture on soil carbon in Hawaii. *Plant and Soil*, **335**, 245-253.
- Lima, E., Boddey, R.M., Do⁻bereiner, J. (1987). Quantification of biological nitrogen fixation associated with sugar cane using ¹⁵N aided nitrogen balance. *Soil Biology and Biochemistry*, **19**, 165–170.
- Lima, M.A., Ligo, M.A.V., Cabral, O.M.R. (1999) Emissa^o de gases de efeito estufa provenientes da queima de resi'duos agri'colas no Brasil (Embrapa Meio Ambiente. Documentos, 07). Embrapa Meio Ambiente, Jaguariu' na.
- Lisboa, C. C., Butterbach-Bahl K., Mauder, M., Kiese, R. (2011). Bioethanol production from sugarcane and emissions of greenhouse gases—known and unknowns G.C.B., *Bioenergy*, **3**, 92-277..
- Lugo, A.E., Brown, S. (1993). Management of tropical soils as sinks or sources of atmospheric carbon. *Plant and Soil*, **149**, 27-41.
- Macedo, I. C., Seabra; J.E.A.; Silva, J.E.A.R. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil.(2008).*Biomass and Bioenergy*, **32**, 582-595.
- Macdonald, B.C.T., Denmead, O.T., White, I., Naylor, T., Salter, B., Wilson, S., Griffith D. W.T. (2009). Emissions of nitrogen gases from sugarcane soils. *Proceeding of the Australian Society of Sugarcane Technologists*, 31, 85-92.
- Macfadyen, A.(1963). In Soil Organisms (eds Docksen, J. and Van der Drift, J.), North Holland, Amsterdam, pp. 3–16.
- Macfadyen, A. (1970) in Methods of Study in Soil Ecology(ed. Phillipson, J.), IBP/UNESCO Symposium, Paris, pp. 167–172.
- Macoloo, C.; Recha, J.; Radeny, M.; Kinyangi, J. (2013).Empowering a local community to Macoloo, C., Recha, J., Radeny, M., & Kinyangi, J. (2013).Empowering a local community to address climate risks and food insecurity in Lower Nyando, Kenya.<u>https://cgspace.cgiar.org/handle/10568/27889</u>, Accessed 19th March 2013
- Mango, J., Mideva, A., Osanya, W., Odhiambo, A. (2011). Summary of Baseline Household Survey Results: Lower Nyando, Kenya. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. Available online at: <u>www.ccafs.cgiar.org.(Accessed</u> 17th July 2014).
- Mann, L. K. (1986). Changes in soil carbon storage after cultivation, Soil Science, 142, 279-288.

- Marques, T.A, Sasso, C.G., Sato, A.M., Souza, G.M. (2009).Burning of the sugarcane crop: biomass aspects, soil fertility and CO₂ emissions in atmosphere. *Biological Science Journal*, 25, 83–89.
- Martikainen, P.J., Nykanen, H., Alm, J., Silvola, J. (1995). Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. *Plant Soil*, **169**, 571-577.
- Minkkinen, K., Korhonen, K., Savolainen, I., Laine, J. (2002). Carbon balance and radiative forcing of Finnish peatlands 1900-2100: the impact of forestry drainage. *Global Change Biology*.8, 785-799
- [MCTI] Ministerio da Ci^encia, Tecnologia e Inovac~ao (Ministry of Science, Technologyand Innovation), 2013.Estimativas anuais de emiss~oes de gases de efeitoestufa no Brasil. Available from: http://www.mct.gov.br/upd_blob/0235/235580.pdf.
- Medeiros, A.F.A. Polidoro, J.C., Reis, V. (2006). Nitrogen source effect on Gluconacetobacter diazotrophicus colonization of sugarcane (*Saccharum* spp).*Plant and Soil*, **279**, 141–152.
- Mendoza, T.C. (2014). Reducing the carbon footprint of sugar production in the Philippines. *Journal of Agricultural Technology*, **10**(1), 289-308.
- Mendoza, T.C., Samson, R., (2000). Estimates of CO₂ Production from the burning of crop residues. *Environmental Science and Management*, **3**(1), 25-33.
- Menyailo, O., Conrad, R., Hungate, B., Abraham, W.R. (2008). Changing land use reduces soil CH4 uptake by altering biomass and activity but not composition of high-affinity methanotrophs, *Global Change Biology*, 14, 2405-2419.
- Meyer, J.; Turner, P.; Rein, P.; Mathias, K. (2011).Report of visits to selected sugar estates in South and Central America, India and Africa. Report to PGBI Sugar and Bio-Energy (Pty) Ltd., Johannesburg, South Africa.
- Mosier, A., Schimel, D., Valentine, D. (1991). Methane and nitrous-oxide fluxes in native and fertilized and cultivated grasslands. *Nature*, 350, 330–332.
- Mulianga, B., Begue, A., Simoes, M., Todoroff, P. (2013). Forecasting regional sugarcane yield based on time integral and spatial aggregation of MODIS NDVI. *Remote Sensing*, 5, 2184-2199.
- National Inventories of Greenhouse Gas Emissions."National Research Council. 2010. Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements. Washington, DC: The National Academies Press. doi: 10.17226/12883.
- Nazaries, L., Tate, K.R., Ross, D.J., Singh, J., Dando, J., Saggar, S., Baggs, E.M., Millard, P., Murrell, J.C., Singh, B. K. (2011). Response of methanotrophic communities to afforestation and reforestation in New Zealand, *The ISME Journal*, 5, 1832-1836,
- Nesbit, S.P., Breitenbeck, G.A. (1992). A laboratory study of factors influencing methane uptake by soils. *Agriculture, Ecosystems and Environment*, **41**, 39–54.
- Ng Kee Kwong, K.F., Deville, J. (1984). Nitrogen leaching from soils cropped with sugarcane under the humid tropical climate of Mauritius, Indian Ocean. *Journal of Environmental Quality*, **13**, 471–474.
- Ochola, P.; Owuor, P.O.; Abayo, G. O.; Manguro, L. O. A.(2014). Yield and growth parameters response of different sugarcane varieties to nitrogen and potash fertilizers in Nyando Sugar Belt. East Africa Agriculture and Forestry Journal, **80**, 303-374.
- Odenya, J. O.; Wawire, N. W.; Okwach, G.O. (2007). The Sugar industry in Kenya with special reference to smallholder Farmers. A paper presented to the East African Sugar Development Project Inception Meeting at Impala Hotel, Arusha on 4th 5th June 2007.
- Offre, P.; Spang, A.; Schleper, C. (2013). Archaea in biogeochemical cycles, *Annual Review Microbiology*,**67**,437-457.

- Oliveira, P.H.F., Artaxo, P., Pires, C., de Lucca, S., Procopio, A., Holben, B., Schafer, J., Cardoso, L.F., Wofsy, S.C., Rocha, H.R. (2007). The effects of biomass burning aerosols and clouds on the CO₂ flux in Amazonia. *Tellus*, **59B**, 338-349.
- Oliveira, B.G., Carvalho, J. L. N., Cerri, C.E.P., Feigl, J. (2013). Soil greenhouse gas fluxes from vinasse application in Brazillian sugarcane areas. *Georderma*, **200-2001**, 77-84.
- Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. DeLong, E. F. 2002. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments, *Plant National Academy of Scince*, 99: 7663-7668.
- Palm, C.A., Smukler, S.M., Sullivan, C.C., Mutuo, P.K., Nyadzi, G.I., Walsh, M.G. (2010). Identifying potential synergies and trade-offs for meeting food security and climate change objectives in Sub-Saharan Africa. *Proceeding of Natal Academy of Science*, 107, 19661–19666
- Park, S., Antony, G., Lisson, S.N., Thorburn, P.J. (2003). A method for exploring the potential of agronomic practices to manage the greenhouse gas balance in sugarcane primary production. *Proceeding of Australian Society of Sugar Cane Technology*, 25, 21.
- Plaut, Z., Meinzer, F.C., Federman, E. (2000). Leaf development, transpiration and ion uptake and distribution in sugarcane cultivars grown under salinity. *Plant and Soil*, **218**, 59-69.
- Price, S., Whitehead, D., Sherlock, R., McSeveny, T., Rogers, G. (2010).Net exchange of greenhouse gases from soils in an unimproved pasture and regenerating indigenous Kunzea ericoides shrubland in New Zealand. Soil Research, 48, 385-394.
- Razafimbelo, T., Barthès, B., Larré-Larrouy, M.C., de Luca, E.F., Llaurent, J.Y., CerriI, C.C., Feller, C. (2006).Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil. *Agriculture Ecosystem & Environment*, **115**(1-4), 285-289.
- Reichardt, K., Libardi, P.L., Urquiaga, S.C. (1982). The fate of fertilizer nitrogen in soil-plant systems with emphasis on the tropics. *Proceedings of a IAEA Symposium*, IAEA-SM-263/36, 277–289.
- Reichle, D. E., McBrayer, J. F., Ausmus, B. S. (1975)*in Progress in Soil Zoology* (ed. Vanek, J.), Academic Publishing, Czechoslovakia, pp. 283–292.
- Rein, P. W. (2010). The carbon footprint of sugar. Proceeding of International Society of Sugarcane Technology, 135, 427-434.
- Regina, K., Nykänen, H., Silvola, J. and Martikainen, P.J. (1996).Nitrous oxide production in boreal peatlands of different hydrology and nutrient status. In: Northern peatlands in global climatic change. Proc. Internat. Workshop, Academy of Finland, Hyytiälä: pp. 158-166.
- Robertson, G.P., Tiedje, J.M. (1987). Nitrous oxide sources in aerobic soils, nitrification, denitrification and other biological processes, *Soil Biology and Biochemistry*, **19**, 187-193
- Robertson, M., Wood, A., Muchow, R. (1996). Growth of sugarcane under high input conditions in tropical Australia. I. Radiation use, biomass accumulation and partitioning. *Field Crops Research*, 48, 11-25.
- Rochette, P., Angers, D.A., Belanger, G., Chantigny, M.H., Prevost, D., Levesque, G. (2004). Emissions of N₂O from alfalfa and soybean crops in eastern Canada, *Soil Science Society of American Journal*, 68, 493–506.
- Rochette, P. (2011). Towards a standard non-steady-state chamber methodology for measuring soil N₂O emissions, *Animal Feed Science Technology*, 166–167, 141– 146.

- Rosenstock, T.S., Rufino, M.C., Butterbach-Bahl, K., Wollenberg, E. (2013). Towards a protocol for quantifying the greenhouse gas balance and identifying mitigation options in smallholder farming systems. *Environment Research Letter*, 8, 1088/1748-9326/8/2/021003.
- Rowlings, D.W. (2010). Influence of historic land use change on the biosphere-atmosphere exchange of carbon and nitrogen trace gases in the humid, subtropical region of Queensland. PhD thesis, Queensland University of Technology.
- Saarnio, S.; Winiwarter, W.; Leit~ao, J. (2009). Methane release from wetlands and watercourses in Europe, *Atmosphere Environ*ment, **43**, 1421-1429.
- SA DNT. (2010). Discussion Paper for Public Comment: Reducing Greenhouse Gas Emissions: The Carbon Tax Option. <u>http://www.treasury.gov.za/public%20comments/Discussion%20Paper%20Carbon%2</u> <u>0Taxes%2812</u>10. Pdf (Accessed 12th 2015).
- Salcedo, I.H., Sampaio, E.V.S.B., Carneiro, C.J.G. (1988) Dina^mica de nutrients em cana-deac u' car. IV. Perdas de N por lixiviac a^o em cana-planta fertilizada com ureⁱa-N. *Pesquisa Agropecua ria Brasileira*, **23**, 725–732.
- Samuels, G., Lugo López, M.A., Landrau, Jr. P. (1952). Influence of the handling of sugar cane trash on yields and soil properties. *Soil Science*, **74**, 207-215.
- Santoro, A.E., Buchwald, C., Mcilvin, M.R., Casciotti, K.L. (2011). Isotopic signature of N₂O produced by marine ammonia-oxidizing archaea.*Science*,**333**, 1282–1285.
- Semrau, J.D., DiSpirito, A.A., Yoon, S. (2010). Methanotrophs and copper. *FEMS Microbiology Reviews*,**34**(4), 496-531.
- Shang, Q.Y., Yang, X.X., Gao, C.M., Wu, P.P. (2011). Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. *Global Change Biology*, **17**: 2196– 2210
- Sharma, S., Bhattacharya, S., Garg, A. (2006). Greenhouse gas emissions from India: A perspective. *Current Science*,**90**, 3-10.
- Signor, D. (2010). Estoques de carbono e nitrogênio e emissões de gases de efeito estufaem áreas de cana-de-açúcar na região de Piracicaba. 2010. 119 p. Dissertação (Mestrado em Solos e Nutrição de Plantas) – Escola Superior de Agricultura "Luizde Queiroz", Universidade de São Paulo, Piracicaba.
- Sijmons, K., Kiplimo, J., Förch, W., Thornton, P.K., Radeny, M., Kinyangi, J. (2013): CCAFS Site Atlas–Nyando/Katuk Odeyo. CCAFS site atlas series, The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark.
- Singh, B.K.; Tate, K.R.; Kolipaka, G.; Hedley, C.B.; Macdonald, C.A.; Millard, P.;Murrell, J.C. (2007). Effect of afforestation and reforestation of pastures on the activity and population dynamics of methanotrophic bacteria, *Applied Environment and Microbiology*, **73**, 5153-5161.
- Singh, B., Tate, K., Ross, D., Singh, J., Dando, J., Thomas, N., Millard, P., Murrell, J. (2009). Soil methane oxidation and methanotroph responses to afforestation of pastures with *Pinus radiata* stands, *Soil Biology Biochemistry*, **41**, 2196-2205.
- Singh, J.S., Singh, D.P. (2012). Reforestation: A potential approach to mitigate excess atmospheric CH₄ build-up. *Ecology Management Restoration*, **13**, 245-248.
- Smith, K., Dobbie, K., Ball, B., Bakken, L., Sitaula, B., Hansen, S., Brumme, R., Borken, W., Christensen, S., Priemé, A. (2000).Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink, *Global Change Biology*, 6, 791-803.

- Smith, P. (2008). Greenhouse gas mitigation in agriculture, *Philosophical Transactions of the Royal Soc*iety, **363**, 789–813
- Smith, K. (2010). Nitrous oxide and climate change, Earthscan, 240 pp.
- Snyder, C.S., Bruulsema, T.W., Jensen, T.L., Fixen, P.E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects, *Agricultural Ecosystem and Environment*, 133, 247-266.
- Spain, A.V., Hodgan, M.J. (1994). Changes in the composition of sugarcane harvest residues during decomposition as a surface mulch. *Biological Fertilization of Soils*, **17**, 225-231.
- Srivastava, S.C., Suarez, N.R. (1992).Sugarcane (online). In: "World Fertilizer Use Manual. W. Wichmann, ed. BASFAG. Germany. pp 257–266.
- Stehfest, E., Bouwman, L. (2006). N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions, *Nutrition Cycle Agro ecosystems*, 74, 207–228.
- Steudler, P.A., Bowden, R.D., Melillo, J.M. (1989). Influence of nitrogen fertilization on methane uptake in temperate forest soils. *Nature*, **341**, 314–316.
- Stevens, R.J., Laughlin, R.J. (1998). Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. *Nutrition Cycle of Agro ecosystem*, **52**,131–139.
- Tate, K.R. (2015). Soil methane oxidation and land use change from process to mitigation. *Soil Biology* and *Biochemistry*,**80**, 260-272.
- Thornburn, P., O'Connell, D., Grant, T. (2009). Enhancing the assessment of biofuels feedstock production through more realistic representation of farming systems. In 'Proceedings of Conference on Integrated Assessment of Agriculture and Sustainable Development: Setting the Agenda for Science and Policy, Egmond aan Zee, The Netherlands, 10-12 March 2009'. (Eds Van Ittersum, M.K., Wolf, J., Van Laar, H.H.) pp. 388-389. (Wageningen University and Research Centre: Wageningen).
- Tilman, D., Balzer, C., Hill, J., Befort, B. (2011). Global food demand and the sustainable intensification of agriculture. *Proceedings of National Academy of Science*, 108, 20260–20264.
- Tong, C.L., Xiao, H.A., Tang, G.Y., Wang, H.Q., Huang, T.P. (2009). Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China. *Soil Tillage Research*, **106**, 8–14.
- Topp, E., Pattey, E. (1997). Soils as sources and sinks for atmospheric methane. *Canadian Journal of Soil Science*, **77**, 167-178.
- Trumbore, S.E. (1997). Potential responses of soil organic carbon to global environmental change. *Proceedings of the National Academy of Sciences of the United States of America*, **94**, 8284–8291.
- Ussiri, A.N., Lal, R. (2009). Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio, *Soil and Tillage Research*, **104**, 39-47.
- Valentine, D. L.; Reeburgh, W. S. (2000). New perspectives on anaerobic methane oxidation. *Environment Microbiology*, **2**, 477-484.
- Vargas, V.P., Cantarella, H., Martins, A. A., Soares, J.R., Carmo, J.B., Andrade, C.A. (2014). Sugarcane crop residue increases N₂O and CO₂ emissions under high soil moisture conditions. *Sugarcane Technology*, **16**, 174–179.
- Veldkamp, E., Purbopuspito, J., Corre, M. D., Brumme, R., & Murdiyarso, D. (2008). Land use change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia. *Journal of Geophysical Research: Biogeosciences*, **113**(G2).

- Verchot, L.V., Brienzajunior, S., Deoliveira, V., Mutegi, J., Catt[^]anio, J.H., Davidson, E.A. (2008). Fluxes of CH₄, CO₂, NO, and N₂O in an improved fallow agroforestry system in eastern Amazonia. *Agricultural Ecosystem Environment*, **126**, 113–21
- Verchot, L.V., Davidson, E.A., Cattanio, J.H. (2000). Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia. *Ecosystems*, **3**, 41–56.
- Vermeulen, S.J., Campbell, B.M., Ingram, J.S.I. (2012). Climate change and food systems. Annual Review of Environmental Resource, **37**, 195–222.
- Wang, L., Tian, H., Song, C., Xu, X., Chen, G., Ren, W., Lu, C. (2012).Net exchanges of CO₂ CH₄ and N₂O between marshland and the atmosphere in Northeast China as influenced by multiple global environmental changes, *Atmosphere Environment*, **63**, 77-85.
- Wang, W.J., Moody, P.W., Reeves, S.H., Salter, B., Dalal, R.C. (2008). Nitrous oxide emissions from sugarcane soils: Effects of urea forms and application rate. *Proceedings of the Australian Society of Sugar Cane Technologists*, **30**, 87-94.
- Wawire, N.W., Kahora, F., Wachira, P.M., Kipruto, K.B. (2006). Technology Adoption Study in Kenya Sugar Industry. *KESREF Technical Bulletin*, **1**, 51-77.
- Weier, K. L. (1996). Trace gas emissions from a trash blanketed sugar-cane held in tropical Australia. pp 271-272 In: Wilson, JR, Hogarth, DM, Campbell, JA and Garside AL (Eds) Sugarcane; Research towards efficient and sustainable production. CSIRO Division of Tropical Crops and Pastures, Brisbane.
- Weier, K.L., McEwan, C.W., Vallis, I., Catchpoole, V.R., Myers, R.J.K. (1996). Potential for biological denitrification of fertiliser nitrogen in sugarcane soils. *Australian Journal of Agricultural Research*, 47, 67-79.
- Weier, K. L. (1998). Sugarcane fields: sources or sinks for greenhouse gas emissions, Australian Journal of Agricultural Research, **49**, 1–9.
- Weier, K.L., Rolston, D.E., Thorburn, P.J. (1998). The potential for nitrogen losses via denitrification beneath a green cane trash blanket. *Proceedings of the Australian Society of Sugarcane Technologists*, 20, 169-175.
- Weier, K.L. (1999). N₂O and CH₄ emission and CH₄ consumption in a sugarcane soil after variation in nitrogen and water application. *Soil Biology and Biochemistry*, **31**, 1931-1941.
- Wendlandt, K. ., Stottmeister, U., Helm, J., Soltmann, B., Jechorek, M., Beck, M. (2010). The potential of methane- oxidizing bacteria for applications in environmental biotechnology, *Engineering Life Science*,10, 87-102.
- Whalen, S.C. (2005). Biogeochemistry of methane exchange between natural wetlands and the atmosphere, *Environment Engeneering Science*, **22**, 73-94.
- Wiedenfeld B (2009). Effects of green cane harvesting vs burning on soil properties, growth and yield of sugarcane in South Texas, *Journal of American Society* Sugarcane Technology, **29**,102-109.
- Zhou, Z.B.; Yi, D.Y.; Gong, D.Y. (2009). The synergized effect of nitrogen fertilizer on sugarcane varieties with high sugar content, *Guizhou Agricultural Sciences*, **37**, 65–66.

APPENDICES

Appendix 1. Sugarcane survey Instrument

General household information

Date (dd/mm/yyyy)	
Name of household head	
Gender of household head	
Name of respondent	
Gender of respondent	
Geographical location (provided by the site	coordinator)
Country	
Province	
State/District	
Division	
Location	
Sub-Location	
Village	
Latitude	$(N), \dots (S)^{o}M$
Longitude	(E), (W) ^o M
Elevation(meters)	
Production system	

Form 2: Sketch of the farm

Indicate here the sketch of the plots and sizes (measure) where sugarcane appear in the farms appear in plot.

Items		Changes in th	ne Land use		Crop characteristics					Observations
1.Number of plots cultivated with sugarcane	2.Time from conversion from natural vegetation	3.Type of previous vegetation (bush/forest/ other)	before sugarcan	4.1Time from conversion to sugarcane	6.Distance between rows (m)	7.Crop cycle length (months between harvests)	8.Time of last harvest	9.Time of the last planting	9.1.Yield (tones/acre)	9.2. Soil Type (General Characteristics)

	Sugarcane management O										Observations
Number of plot	r of the	11.Method * of the ploughing (*See options below)	12.Number of the Weeding (Before Harvest)	12.1Method * of the Weeding	12.2Mont hs of the Weeding	13.Fertili zer (Y/N)	14.Type of fertilizer ** (See option below)	15.Time of the Fertilization (before harvest)		17. Rates of fertilizer	

(*)**Options: A: manual labour/B: tractor /C: oxen plough.(****)**Options:** Manure (farmyard organic manure)// Urea// Calcium ammonium nitrate (CAN)// Diammonium phosphate (DAP)

			Observations				
Number of plot	18.Method (A: Manual or B: Machine)	19. Burn at Harvest? (Y/N)	20.Moment of the Burn (before or after harvest)	20.1.Time of the last Burn	21.Destination of the Residues (uses: coverage / animal feed / buried, other)	21.1.Other Management	21.3.

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
	_	0	50	100	management	Mean tim
	Burned	1.402	1.269	1.077	1.249	
	Unburned	-0.264	-5.099	0.079	-1.761	
<10	Mean N. Rates	0.569	-1.915	0.578		-0.256
	CV (%)		-2681.57			-0.230
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-1.161	-3.595	-8.068	-4.275	
	Unburned	-10.218	-3.776	-9.05	-7.681	-5.978
>10	Mean N. Rates	-5.689	-3.685	-8.559		-5.770
>10	CV (%)		-137.69			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	0.121	-1.163	-3.495	-1.513	
	Unburned	-5.241	-4.437	-4.485	-4.721	
Overall	Mean N. Rates	-2.560	-2.800	-3.990		
mean	CV (%)		-240.35			
	LSD,					
latural veg	(p≤0.05)		NS		NS	NS

Appendix 2: Influence of conversion period, trash management and nitrogen fertilizer application on methane fluxes in week 1

Natural vegetation -0.738; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Appendix 3:	Contribution	of	conversion	period,	trash	management	and	nitrogen
fertilizer appl	ication on meth	nan	e fluxes in w	eek 2				

Time(yrs)	Trash management		Nitrogen rat	es	Mean Trash	Mean time
	_	0	50	100	management	Mean time
	Burned	-6.804	-7.22	-16.435	-10.153	
	Unburned	-4.711	-5.366	-3.91	-4.662	
<10	Mean N. Rates	-5.757	-6.293	-10.172		-7.408
	CV (%)		93.57			-7.400
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	1.549	1.889	-5.354	-0.639	
	Unburned	2.734	0.249	-4.347	0.455	-0.547
>10	Mean N. Rates	2.142	1.069	-4.851		-0.547
>10	CV (%)		-909.75			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-2.627	-2.666	-10.895	-5.396	
	Unburned	-0.988	-2.559	-4.128	-2.558	
Overall	Mean N. Rates	-1.808	-2.612	-7.511		
mean	CV (%)		-144.87			
	LSD,					
	(p≤0.05)		NS		NS	3.215

Natural vegetation -3.497; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rate	s	Mean Trash	Mean tim
		0	50	100	management	Mean time
	Burned	-28.971	-116.855	-217.048		
	Unburned	27.106	-38.235	21.324	3.398	
<10	Mean N. Rates	-0.933	-77.545	-97.862		
<10	CV (%)		-297.02			
	LSD,					-58.78
	(p≤0.05)		NS		NS	
	Burned	-21.414	3.245	1.623	-5.515	
	Unburned	2.509	-15.796	31.992	6.235	
>10	Mean N. Rates	-9.452	-6.276	16.808		0.36
>10	CV (%)		-909.75			0.50
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-25.192	-56.805	-107.712	-63.237	
O11	Unburned	14.807	-27.016	26.658	4.817	
Overall mean	Mean N. Rates	-5.192	-41.910	-40.527		
mean	CV (%)		-460.49			
	LSD,					
	(p≤0.05)		NS		NS	NS

Appendix 4: Effect of conversion period, trash management and nitrogen fertilizer application on methane fluxes in week 3

Natural vegetation 13.641; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
	_	0	50	100	management	Mean time
	Burned	4.021	4.059	11.747	6.609	
	Unburned	-29.867	9.239	-10.054	-10.227	
<10	Mean N. Rates	-12.923	6.649	0.846		-1.809
	CV (%)		-1033.87			-1.609
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	41.203	-9.687	-96.872	-21.785	
	Unburned	-9.034	-91.915	-64.676	-55.208	-38.497
>10	Mean N. Rates	16.085	-50.801	-80.774		-36.497
>10	CV (%)		-189.64			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	22.612	-2.814	-42.562	-7.588	
	Unburned	-19.451	-41.338	-37.365	-32.718	
Overall	Mean N. Rates	1.581	-22.076	-39.964		
mean	CV (%)		-317.19			
	LSD,					
	(P≤0.05)		NS		NS	NS

Appendix 5: Sugarcane M	/Ianagement pra	ctices influencing metha	ane fluxes in week 4

Natural vegetation -6.171; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
		0	50	100	management	wean time
	Burned	6.749	2.157	6.438	5.114	
	Unburned	5.074	36.373	8.049	16.499	
<10	Mean N. Rates	5.911	19.265	7.243		10.807
	CV (%)		231.24			10.007
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-8.366	-51.798	-43.287	-34.483	
	Unburned	45.601	4.814	-40.439	3.325	-15.579
>10	Mean N. Rates	18.618	-23.492	-41.863		-15.579
>10	CV (%)		-415.2			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-0.808	-24.82	-18.424	-14.684	
	Unburned	25.337	20.594	-16.195	9.912	
Overall	Mean N. Rates	12.264	-2.113	-17.310		
mean	CV (%)		-2009.24			
	LSD,					
	(p≤0.05)		NS		NS	NS
	getation -5.908; *Fig	ures are C	CH_4 flux rate (μ	$g CH_4 - C$	$m^{-2} hr^{-1}$; *NS	S = None
Significan	t (p≤0.05)					

Appendix 6: Drivers of methane fluxes in week 5

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Moon time	
	_	0	50	100	management	Mean time	
	Burned	18.458	3.523	10.348	10.776		
	Unburned	-1.041	-6.122	0.786	-2.126		
<10	Mean N. Rates	8.709	-1.3	5.567		4.325	
	CV (%)		-415.2			4.525	
	LSD,						
	(p≤0.05)		NS		9.465		
	Burned	14.836	6.72	-8.992	4.188		
	Unburned	-2.105	-0.989	-7.515	-3.536	0.326	
>10	Mean N. Rates	6.366	2.866	-8.254		0.520	
>10	CV (%)		258.14				
	LSD,						
	(p≤0.05)		NS		NS		
	Burned	16.647	5.122	0.678	7.482		
	Unburned	-1.573	-3.555	-3.365	-2.831		
Overall	Mean N. Rates	7.537	0.783	-1.343			
mean	CV (%)		621.47				
	LSD,						
	(p≤0.05)		NS		NS	NS	

Appendix 7: Factors influencing methane fluxes in week 6

Natural vegetation 23.356; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Гime(yrs)	Trash management		Nitrogen rates		Mean Trash	Moontime
		0	50	100	management	Mean time
	Burned	15.489	1.28	-8.152	2.872	
	Unburned	1.782	5.59	1.707	3.026	
<10	Mean N. Rates	8.636	3.435	-3.222		2 0 4 0
	CV (%)		440.08			2.949
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-2.831	18.651	31.803	15.874	
	Unburned	-5.066	0.971	-6.842	-3.645	6.114
>10	Mean N. Rates	-3.948	9.811	12.481		0.114
>10	CV (%)		310.83			
	LSD,					
	(P≤0.05)		NS		NS	
	Burned	6.329	9.966	11.825	9.373	
	Unburned	-1.642	3.28	-2.567	-0.307	
Overall	Mean N. Rates	2.344	6.623	4.629		
mean	CV (%)		375.07			
	LSD,					
	(p≤0.05)		NS		NS	NS

Appendix 8: Sugarcane management practices contributing methane fluxes in week 7

*NV = Natural vegetation -4.267; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
		0	50	100	management	Wiean time
	Burned	10.171	-2.864	2.309	3.205	
	Unburned	-7.63	-14.592	4.158	-6.021	
<10	Mean N. Rates	1.27	-8.728	3.234		-1.408
	CV (%)		-1024.37			-1.400
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-3.071	2.775	4.272	1.325	
	Unburned	-7.035	-0.579	1.025	-2.196	-0.435
>10	Mean N. Rates	-5.053	1.098	2.648		-0.433
>10	CV (%)		-2489.53			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	3.55	-0.044	3.291	2.265	
	Unburned	-7.332	-7.586	2.592	-4.109	
Overall	Mean N. Rates	-1.891	-3.815	2.941		
mean	CV (%)		-1344.05			
	LSD,					
	(p≤0.05)		NS		NS	NS

Appendix 9: Variation of methane fluxes with sugarcane management practices in week 8

Natural vegetation 10.032; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash		Nitrogen rates		Mean Trash	Mean time
	management	0	50	100	management	wiean time
	Burned	9.115	2.519	-6.906	1.576	
	Unburned	0.891	-8.134	5.356	-0.629	
<10	Mean N. Rates	5.003	-2.807	-0.775		0.474
	CV (%)		3477.66			0.474
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-1.465	2.195	-3.353	-0.874	
	Unburned	-1.056	-2.396	2.484	-0.323	-0.599
>10	Mean N. Rates	-1.261	-0.1	-0.435		-0.399
>10	CV (%)		-1728.27			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	3.825	2.357	-5.129	0.351	
	Unburned	-0.083	-5.265	3.92	-0.476	
Overall	Mean N. Rates	1.871	-1.454	-0.605		
mean	CV (%)		-21056.31			
	LSD,					
	(p≤0.05)		NS		NS	NS
$^{\circ}NV = Nat$	ural vegetation -3.6	527; *Figure	es are CH ₄ flux	x rate (µg C	$CH_4 - C m^{-2} hr^{-1}$	¹); *NS =

Appendix 10: Influence of conversion period, trash management and nitrogen fertilizer application on methane fluxes in week 9

*NV = Natural vegetation -3.627; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS None Significant (p≤0.05)

Appendix 11: Contribution	of	conversion	period,	trash	management	and	nitrogen
fertilizer application on meth	ane	e fluxes in we	eek 10				

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
		0	50	100	management	wiean time
	Burned	-0.999	4.472	-6.51	-1.009	
	Unburned	0.353	-2.693	-4.284	-2.208	
<10	Mean N. Rates	-0.318	0.889	-5.397		-1.609
	CV (%)		-657.84			-1.009
	LSD, (p≤0.05)		NS		NS	
	Burned	2.395	-0.605	9.158	3.649	
	Unburned	-5.754	-3.197	1.944	-2.336	0.657
>10	Mean N. Rates	-1.68	-1.901	5.551		0.037
>10	CV (%)		1759.11			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.703	1.934	1.324	1.320	
	Unburned	-2.70	-2.945	-1.17	-2.272	
Overall	Mean N. Rates	-0.999	-0.506	0.077		
mean	CV (%)		-2351.51			
	LSD, (p≤0.05)		NS		NS	NS

Natural vegetation 0.657; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
	_	0	50	100	management	Mean time
	Burned	-2.332	-8.024	-11.893	-7.417	
	Unburned	-1.707	-2.739	1.799	-0.882	
<10	Mean N. Rates	-2.020	-5.382	-5.047		4 15
	CV (%)		-189.350			-4.15
	LSD, (p≤0.05)		NS		NS	
	Burned	-5.949	15.585	1.951	3.863	
	Unburned	-8.109	2.258	4.986	-0.288	1 50
>10	Mean N. Rates	-7.029	8.922	3.467		-4.52
>10	CV (%)		717.510			
	LSD, (p≤0.05)		NS		NS	
	Burned	-4.140	3.780	-4.971	-1.777	
	Unburned	-4.908	-0.241	3.393	-0.585	
Overall	Mean N. Rates	-4.524	1.770	-0.789		
mean	CV (%)		-867.08			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 12: Sugarcane management practices influencing methane fluxes in week 11

Natural vegetation -11.11; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
		0	50	100	management	Mean time
	Burned	1.816	45.620	-0.567	15.623	
	Unburned	-4.113	5.385	2.975	1.416	
<10	Mean N. Rates	-1.149	25.502	1.204		8.519
	CV (%)		385.17			0.319
	LSD, (p≤0.05)		NS		NS	
	Burned	-3.312	-0.746	-9.005	-4.354	
	Unburned	1.954	-12.213	-3.869	-4.709	4 520
>10	Mean N. Rates	-0.679	-6.48	-6.437		-4.532
>10	CV (%)		-172.77			
	LSD, (P≤0.05)		NS		NS	
	Burned	-0.748	22.437	-4.786	5.634	
	Unburned	-1.08	-3.414	-0.447	-1.647	
Overall	Mean N. Rates	-0.914	9.511	-2.616		
mean	CV (%)		1238.38			
	LSD, (P≤0.05)		NS		NS	NS

Appendix 13: Drivers of methane fluxes in week 12

Natural vegetation -3.958; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Mean time
		0	50	100	management	wiean time
	Burned	3.181	-15.043	-3.075	-4.979	
	Unburned	4.848	-3.254	-15.934	-4.78	
<10	Mean N. Rates	4.014	-9.149	-9.505		-4.88
	CV (%)		-290.79			-4.00
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-7.456	-72.798	-5.002	-28.418	
	Unburned	-4.73	3.358	1.402	0.01	-14.204
>10	Mean N. Rates	-6.093	-34.72	-1.800		-14.204
>10	CV (%)		-335.37			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-2.137	-43.921	-4.039	-16.699	
	Unburned	0.059	0.052	-7.266	-2.385	
Overall	Mean N. Rates	-1.039	-21.934	-5.652		
mean	CV (%)		-269.40			
	LSD,					
	(P≤0.05)		NS		NS	NS
Jatural veg	etation -2.908; *Figure	s are CH ₄	flux rate (µg	$CH_4 - C m$	$^{-2}$ hr ⁻¹); *NS =	None

Appendix 14: Effect of conversion period, trash management and nitrogen fertilizer application on methane fluxes in week 13methane fluxes in week 13

Natural vegetation -2.908; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Mean time
	-	0	50	100	management	Mean time
	Burned	-1.226	11.654	-5.949	1.493	
	Unburned	-1.116	-1.076	-3.46	-1.884	
<10	Mean N. Rates	-1.171	5.289	-4.705		-0.195
	CV (%)		-6286.660			-0.195
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-2.637	2.51	-11.280	-3.803	
	Unburned	-7.519	-3.613	-1.810	-4.314	1 059
>10	Mean N. Rates	-5.078	-0.552	-6.545		-4.058
>10	CV (%)		-173.800			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-1.931	7.082	-8.615	-1.155	
	Unburned	-4.317	-2.345	-2.635	-3.099	
Overall	Mean N. Rates	-3.124	2.369	-5.625		
mean	CV (%)		-470.51			
	LSD,					
	(p≤0.05)		NS		NS	NS

Appendix 15: Influence of sugarcane management practices on methane fluxes in week 14

Natural vegetation -11.129; *Figures are CH₄ flux rate ($\mu g \ CH_4 - C \ m^{-2} \ hr^{-1}$); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Maantina
•	_	0	50	100	management	Mean time
	Burned	-8.478	39.761	-5.579	8.568	
	Unburned	-5.279	7.283	-10.637	-2.878	
<10	Mean N. Rates	-6.878	23.522	-8.108		2.845
	CV (%)		1252.55			2.043
	LSD, (p≤0.05)		NS		NS	
	Burned	4.637	-3.07	-1.140	0.152	
	Unburned	-16.289	-4.619	-11.152	-10.687	-5.267
>10	Mean N. Rates	-5.812	-3.844	-6.146		-5.207
>10	CV (%)		-215.53			
	LSD, (p≤0.05)		NS		NS	
	Burned	-1.906	18.346	-3.359	4.360	
	Unburned	-10.784	1.332	-10.895	-6.782	
Overall	Mean N. Rates	-6.345	9.839	-7.127		
mean	CV (%)		-2123.54			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 16: Variation of methane fluxes with sugarcane management practices in week 15

*Natural vegetation -3.267; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Moon time
		0	50	100	management	Mean time
	Burned	-2.751	-0.346	-2.429	-1.842	
	Unburned	-4.167	-7.665	-0.032	-3.955	
<10	Mean N. Rates	-3.459	-4.006	-1.231		-2.898
	CV (%)		-621.49			-2.090
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-7.841	-2.458	0.265	-3.345	
	Unburned	-10.884	-10.59	-2.609	-8.028	-5.686
>10	Mean N. Rates	-9.363	-6.524	-1.172		-3.080
>10	CV (%)		-157.59			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-5.296	-1.402	-1.082	-2.593	
	Unburned	-7.526	-9.128	-1.320	-5.991	
Overall	Mean N. Rates	-6.411	-5.265	-1.201		
mean	CV (%)		-319.86			
	LSD,					NS
	(p≤0.05)		NS		NS	GNI

Appendix 17: Factors influencing methane fluxes in week 16	Appendix 17:	Factors	influencing	methane	fluxes in	week 16
--	--------------	----------------	-------------	---------	-----------	---------

*Natural vegetation 191.729; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Moon time
		0	50	100	management	Mean time
	Burned	5.285	1.365	-4.655	0.665	
	Unburned	1.508	0.189	6.058	2.585	
<10	Mean N. Rates	3.397	0.777	0.701		1 625
	CV (%)		372.100			1.625
	LSD,		NS		NS	
	(p≤0.05)		IND .		IND	
	Burned	-7.958	-1.028	-0.056	-3.014	-3.834
	Unburned	-5.18	-6.556	-2.227	-4.654	
>10	Mean N. Rates	-6.569	-3.792	-1.141		-3.634
>10	CV (%)		-156.47			
	LSD,		NS		NS	
	(p≤0.05)	1 227	0.169	0.255	1 174	
	Burned	-1.337	0.168	-2.355	-1.174	
~ "	Unburned	-1.836	-3.183	1.915	-1.035	
Overall	Mean N. Rates	-1.59	-1.507	0.220		
mean	CV (%)		-541.23			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 18: Contribution of conversion period, trash management and nitrogen fertilizer application on methane fluxes in week 17

*Natural vegetation -2.484; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Appendix 19: Sugarcane	management practic	es influencing to 1	methane fluxes in week
18			

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Mean time
		0	50	100	management	Mean time
-	Burned	-36.094	18.086	-9.346	-9.118	
	Unburned	-0.517	-10.354	-5.48	-5.450	
<10	Mean N. Rates	-18.305	3.866	-7.413		-7.284
	CV (%)		-7.204			
	LSD,		NS		NS	
	(p≤0.05)	2 7 40	6 0 0 1	0.001	< 100	
	Burned	-3.749	-6.891	-8.801	-6.480	-0.894
	Unburned	24.202	-1.765	-8.362	4.692	
>10	Mean N. Rates	10.227	-4.328	-8.581		
>10	CV (%)		-2072.47			
	LSD,		NS		NS	
	(p≤0.05)		IND			
	Burned	-19.921	5.598	-9.073	-7.799	
	Unburned	11.843	-6.059	-6.921	-0.379	
Overall	Mean N. Rates	-4.039	-0.231	-7.997		
mean	CV (%)		-537.57			
	LSD,		NS		NS	NS
	(p≤0.05)		110			

*NV = Natural vegetation -3.444; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
	_	0	50	100	management	
	Burned	-7.456	-8.632	-21.997	-12.695	
<10	Unburned	-12.664	-13.14	-12.731	-12.845	
<10	Mean N. Rates	-10.06	-10.886	-17.364		-12.770
	CV (%)		-86.54			
	LSD, (P≤0.05)		NS		NS	
	Burned	-19.309	-2.574	-5.128	-9.004	
	Unburned	-11.152	-12.400	5.802	-5.916	-7.460
>10	Mean N. Rates	-15.130	-7.487	0.337		-7.400
	CV (%)		-191.61			
	LSD, (P≤0.05)		NS		NS	
	Burned	-13.383	-5.603	-13.562	-10.849	
Overall	Unburned	-11.908	-12.77	-3.464	-9.381	
	Mean N. Rates	-12.645	-9.186	-8.513		
mean	CV (%)		-150.66			
	LSD, (P≤0.05)		NS		NS	NS

Appendix 20: Effect of conversion period, trash management and nitrogen fertilizer application on methane fluxes in week 19

*NV = Natural vegetation 0.051; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (P \leq 0.05)

Appendix 21: Drivers of methane fluxes in week 20

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
	_	0	50	100	management	Mean time
	Burned	-2.872	-7.774	-13.453	-8.033	
	Unburned	-3.875	-3.193	-14.449	-7.172	
<10	Mean N. Rates	-3.373	-5.483	-13.951		-7.603
	CV (%)		-112.74			-7.003
	LSD, (p≤0.05)		NS		NS	
	Burned	-6.954	-0.864	-8.168	-5.329	-5.652
	Unburned	-4.914	-5.877	-7.133	-5.974	
>10	Mean N. Rates	-5.934	-3.370	-7.650		
>10	CV (%)		-103.11			
	LSD, (p≤0.05)		NS		NS	
	Burned	-4.913	-4.319	-10.811	-6.681	
	Unburned	-4.394	-4.535	-10.791	-6.573	
Overall	Mean N. Rates	-4.654	-4.427	-10.801		
mean	CV (%)		-127.67			
	LSD, (p≤0.05)		NS		NS $-C m^{-2} hr^{-1}$):	NS

*NV = Natural vegetation -4.407; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Mean
	_	0	50	100	management	time
	Burned	-15.333	-15.056	1.13	-9.753	
	Unburned	-19.062	65.229	-2.886	14.427	
<10	Mean N. Rates	-17.198	25.087	-0.878		2.337
	CV (%)		2159.73			2.337
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-8.14	2.216	-77.969	-27.964	
	Unburned	-4.858	-5.866	-1.254	-3.993	-15.979
	Mean N. Rates	-6.499	-1.825	-39.612		
>10	CV (%)		-308.53			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-11.737	-6.420	-38.420	-18.859	
	Unburned	-11.960	29.682	-2.070	5.217	
Overall	Mean N. Rates	-11.848	11.631	-20.245		
mean	CV (%)		-720.75			
	LSD,					
	(p≤0.05)		NS		NS	NS

Appendix 22: Sugarcane management practices influencing methane fluxes in week 21

*NV = Natural vegetation -3.416; *Figures are CH₄ flux rate ($\mu g \ CH_4 - C \ m^{-2} \ hr^{-1}$); *NS = None Significant (p≤0.05)

Appendix 23: Contribution of conversion period, trash management and nitrogen fertilizer application on methane fluxes in week 22

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time	
		0	50	100	management	Weall time	
	Burned	-5.638	-10.304	-135.989	-50.644		
	Unburned	-0.514	-6.066	-8.759	-5.113		
<10	Mean N. Rates	-3.076	-8.185	-72.374		-27.878	
	CV (%)			-27.878			
	LSD, (p≤0.05)		NS		NS		
	Burned	2.953	-17.239	3.785	-3.500		
	Unburned	-12.963	-2.125	1.841	-4.416	20.059	
>10	Mean N. Rates	-5.005	-9.682	2.813		-39.958	
>10	CV (%)		-369.12				
	LSD, (p≤0.05)		NS		NS		
	Burned	-1.342	-13.772	-66.102	-27.072		
	Unburned	-6.739	-4.095	-3.459	-4.765		
Overall	Mean N. Rates	-4.041	-8.934	-34.781			
mean	CV (%)		-397.76				
	LSD, (P≤0.05)		NS		NS	NS	

*NV = Natural vegetation -3.227; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Maantinaa
-	-	0	50	100	management	Mean time
	Burned	-13.634	-4.016	-5.922	-7.857	
	Unburned	2.037	19.14	-28.345	-2.389	
<10	Mean N. Rates	-5.799	7.562	-17.133		-5.123
	CV (%)		-3.123			
	LSD, (p≤0.05)		NS		NS	
	Burned	-4.874	-15.806	0.496	-6.728	-6.425
	Unburned	-6.067	-5.749	-6.552	-6.123	
>10	Mean N. Rates	-5.471	-10.777	-3.028		
>10	CV (%)		-85.21			
	LSD, (p≤0.05)		NS		NS	
	Burned	-9.254	-9.911	-2.713	-7.293	
	Unburned	-2.015	6.696	-17.449	-4.256	
Overall mean	Mean N. Rates	-5.635	-1.608	-10.081		
Jveran mean	CV (%)		-429.60			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 24: Effect of conversion period, trash management and nitrogen fertilizer application on methane fluxes in week 23

*NV = Natural vegetation -6.303; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Magneting
	_	0	50	100	management	Mean time
	Burned	-61.701	-71.188	-76.939	-69.943	
	Unburned	-86.701	-68.572	-76.223	-77.009	
<10	Mean N. Rates	-73.966	-69.88	-76.581		-73.476
	CV (%)		-8.97			-/3.4/0
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-3.77	-2.146	-7.996	-4.637	-8.205
	Unburned	-12.677	5.14	-27.778	-11.772	0 205
>10	Mean N. Rates	-8.224	1.497	-17.887		-8.203
>10	CV (%)		-200.41			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-32.736	-36.667	-42.467	-37.290	
	Unburned	-49.454	-31.716	-52.0	-44.390	
Overall	Mean N. Rates	-41.095	-34.192	-47.234		
mean	CV (%)		-148.59			
	LSD,					
	(p≤0.05)		NS		NS	NS

Appendix 25: Influence of sugarcane management practices on methane fluxes in week 24

*NV = Natural vegetation -13.106; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time		
-	_	0	50	100	management			
	Burned	-15.488	-6.813	-12.813	-8.581			
	Unburned	-12.07	-10.502	-10.931	-8.207			
<10	Mean N. Rates	-13.779	-8.657	-11.872		-11.436		
	CV (%)	-79.56						
	LSD, (p≤0.05)		NS		NS			
	Burned	-9.219	-9.027	1.875	-11.704	5 351		
	Unburned	-4.578	-2.227	-8.932	-11.168			
>10	Mean N. Rates	-6.899	-5.627	-3.528		-5.351		
>10	CV (%)		-114.24					
	LSD, (p≤0.05)		NS		NS			
	Burned	-12.354	-7.92	-5.469	-8.581			
	Unburned	-8.324	-6.365	-9.932	-8.207			
Overall	Mean N. Rates	-10.339	-7.142	-7.700				
mean	CV (%)		-113.27					
	LSD, ($p \le 0.05$)		NS		NS	NS		

Appendix 26: Variation of methane fluxes with sugarcane management practices in week 25

*NV = Natural vegetation -7.350; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
		0	50	100	management	Mean time
	Burned	-8.735	-67.867	-17.182	-31.261	
	Unburned	-67.502	-67.696	-16.196	-50.464	
<10	Mean N. Rates	-38.119	-67.781	-16.689		-40.863
	CV (%)		-144.06			-40.803
	LSD, (p≤0.05)		NS		NS	
	Burned	-12.976	-0.165	-5.420	-6.187	-4.613
	Unburned	0.889	-0.524	-9.485	-3.040	
> 10	Mean N. Rates	-6.043	-0.345	-7.452		
>10	CV (%)		-390.60			
	LSD, (p≤0.05)		NS		NS	
	Burned	-10.855	-34.016	-11.301	-18.724	
	Unburned	-33.306	-34.110	-12.840	-26.752	
Overall	Mean N. Rates	-22.081	-34.063	-12.070		
mean	CV (%)		-205.12			
	LSD, (p≤0.05)		NS		NS \overline{C}	NS

Appendix 27	: Factors	influe	ncing m	nethane	fluxes	in week 26

*NV = Natural vegetation -13.953; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management	•	Nitrogen rates	-	Mean Trash	
()_~~)		0	50	100	management	Mean time
	Burned	-10.587	-13.201	-4.399	-9.396	
	Unburned	-12.518	-3.315	-2.966	-6.266	
<10	Mean N. Rates	-11.552	-8.258	-3.682		-7.831
	CV (%)		-112.12			-7.031
	LSD, (p≤0.05)		NS		NS	
	Burned	-5.461	-5.021	-5.986	-5.489	
	Unburned	-25.662	-5.155	-63.668	-31.495	-18.492
>10	Mean N. Rates	-15.561	-5.088	-34.827		-18.492
	CV (%)		-249.61			
	LSD, (p≤0.05)		NS		NS	
	Burned	-8.024	-9.111	-5.192	-7.442	
	Unburned	-19.09	-4.235	-33.317	-18.881	
Overall	Mean N. Rates	-13.557	-6.673	-19.255		
mean	CV (%)		-242.60			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 28: Sugarcane management practices influencing methane fluxes in week 27

*NV = Natural vegetation -8.878; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (P ≤ 0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
		0	50	100	management	wiean time
	Burned	-19.201	-16.421	-12.827	-16.149	
	Unburned	-11.377	-8.156	-12.780	-10.771	
<10	Mean N. Rates	-15.289	-12.288	-12.803		-13.460
	CV (%)		-87.28			-13.400
	LSD, (p≤0.05)		NS		NS	
	Burned	-60.518	-18.047	54.826	-7.913	
	Unburned	-72.465	-75.731	-5.828	-51.341	20 627
>10	Mean N. Rates	-66.491	-46.889	24.499		-29.627
>10	CV (%)		-313.59			
	LSD, (p≤0.05)		NS		NS	
	Burned	-39.859	-17.234	20.999	-12.031	
	Unburned	-41.921	-41.944	-9.304	-31.056	
Overall	Mean N. Rates	-40.890	-29.589	5.848		
mean	CV (%)		-298.53			
	LSD, (p≤0.05)	4	NS		NS	NS

Appendix 29: Drivers of methane fluxes in week 28

*NV = Natural vegetation -20.854; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹; *NS = None Significant (p≤0.05

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maan time
	_	0	50	100	management	Mean time
	Burned	-9.758	-8.604	-12.647	-10.336	
	Unburned	-11.647	-10.951	-13.137	-11.912	
<10	Mean N. Rates	-10.702	-9.777	-12.892		11 124
	CV (%)		-53.20			-11.124
	LSD, (p≤0.05)		NS		NS	
	Burned	-6.789	-21.551	-9.826	-12.721	
	Unburned	-5.786	-10.749	-18.915	-11.753	10 027
>10	Mean N. Rates	-6.19	-16.15	-14.371		-12.237
>10	CV (%)		-100.71			
	LSD, (p≤0.05)		NS		NS	
	Burned	-8.272	-15.077	-11.237	-11.529	
	Unburned	-8.620	-10.850	-16.026	-11.832	
Overall	Mean N. Rates	-8.446	-12.964	-13.631		
mean	CV (%)		-95.99			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 30: Sugarcane management practices contributing to methane fluxes in week 29

*NV = Natural vegetation -2.085; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Appendix 31:	Contribution	of	conversion	period,	trash	management	and	nitrogen
fertilizer applic	cation on meth	ane	fluxes week	30				

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maan time	
	_	0	50	100	management	Mean time	
	Burned	-5.59	0.833	-10.101	-4.953		
	Unburned	-4.388	-12.21	-0.587	-5.728		
<10	Mean N. Rates -4.989 -5.689 -5.344			-5.341			
	CV (%)		-222.28			-5.541	
	LSD,						
	(p≤0.05)		NS		NS		
	Burned	-2.698	-0.197	-3.598	-2.164		
	Unburned	-11.146	-6.789	5.550	-4.129	-3.146	
>10	Mean N. Rates	-6.922	-3.493	0.976		-3.140	
>10	CV (%)		-385.50				
	LSD,						
	(p≤0.05)		NS		NS		
	Burned	-4.144	0.318	-6.849	-3.559		
	Unburned	-7.767	-9.500	2.482	-4.928		
Overall	Mean N. Rates	-5.956	-4.591	-2.184			
mean	CV (%)		-289.56				
	LSD,						
	(p≤0.05)		NS		$\frac{\text{NS}}{\text{I} C \text{ m}^{-2} \text{ hr}^{-1}}$	NS	

*NV = Natural vegetation -16.585; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
		0	50	100	management	Weall time
	Burned	-16.023	-22.822	-9.119	-15.988	
	Unburned	-6.897	-12.741	-18.918	-12.852	
<10	Mean N. Rates	-11.460	-17.781	-14.081		-14.420
	CV (%)		-68.38			-14.420
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-6.823	-4.949	-19.055	10.276	
	Unburned	-18.129	-17.210	-1.975	-12.438	-11.357
>10	Mean N. Rates	-12.476	-11.079	-10.515		-11.337
>10	CV (%)		-56.32			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-11.423	-13.885	-14.087	-13.132	
	Unburned	-12.513	-14.975	-10.446	-12.645	
Overall	Mean N. Rates	-11.968	-14.430	-12.267		
mean	CV (%)		-70.22			
	LSD,					
	(p≤0.05)		NS		NS	NS
*NV =	Natural vegetation -6	5.014; *Figu	ares are CH ₄ flu	x rate (µg	$CH_4 - C m^{-2} h$	r^{-1} ; *NS =

Appendix 32: Effect of conversion period, trash management and nitrogen fertilizer application on methane fluxes in week 31

None Significant ($p \le 0.05$)

Appendix 33: Influence of sugarcane management practices on methane fluxes on CH4 fluxes in week 32

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maan tima			
	_	0	50	100	management	Mean time			
	Burned	3.438	-8.691	-11.394	-5.549				
	Unburned	-9.521	-2.954	-4.689	-5.721				
<10	Mean N. Rates	-3.041	-5.822	-8.041		5 625			
	CV (%)		-191.62			-5.635			
	LSD, (p≤0.05)		NS		NS				
	Burned	0.023	1.064	-7.183	-2.032				
	Unburned	-11.629	-10.491	-20.351	-14.157	8 00 4			
>10	Mean N. Rates	-5.803	-4.713	-13.767		-8.094			
>10	CV (%)		-113.95						
	LSD, (p≤0.05)		NS		NS				
	Burned	1.730	-3.813	-9.288	-3.790				
	Unburned	-10.575	-6.722	-12.520	-9.939				
Overall	Mean N. Rates	-4.422	-5.268	-10.904					
mean	CV (%)		-142.95						
	LSD, (p≤0.05)		NS		NS $\overline{2}$	NS			

*NV = Natural vegetation 5.922; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maan tima	
	_	0	50	100	management	Mean time	
	Burned	-9.145	8.416	-3.043	-1.257		
	Unburned	-6.747	2.109	-13.501	-6.046		
<10	Mean N. Rates	-7.946	5.263	-8.277		-3.652	
	CV (%)		-341.18			-3.032	
	LSD, (p≤0.05)		NS		NS		
	Burned	-2.614	-10.506	-9.205	-7.442		
	Unburned	-10.865	-12.210	-3.898	-8.991	9.216	
>10	Mean N. Rates	-6.740	-11.358	-6.551		-8.216	
>10	CV (%)		-174.46				
	LSD, (p≤0.05)		NS		NS		
	Burned	-5.880	-1.045	-6.124	-4.349		
	Unburned	-8.806	-5.050	-8.700	-7.519		
Overall	Mean N. Rates	-7.343	-3.048	-7.412			
mean	CV (%)		-222.14				
	LSD, (p≤0.05)		NS		NS	NS	

Appendix 34: Factors contributing to methane fluxes in week 33

*NV = Natural vegetation -1.062; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Appendix 35: Variation of methane fluxes with sugarcane management practices in week 34

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
	-	0	50	100	management	weath time
	Burned	5.149	-3.932	7.186	2.801	
	Unburned	1.906	4.279	4.369	3.518	
<10	Mean N. Rates	3.527	0.174	5.777		2 150
	CV (%)		-483.07			3.159
	LSD, (p≤0.05)		NS		NS	
	Burned	1.110	-7.870	-3.207	-3.322	
	Unburned	-2.986	6.349	-20.503	-5.713	4 5 1 9
>10	Mean N. Rates	-0.938	-0.760	-11.855		-4.518
>10	CV (%)		-207.57			
	LSD, (p≤0.05)		NS		NS	
	Burned	3.130	-5.901	1.990	-0.261	
	Unburned	-0.540	5.314	-8.067	-1.098	
Overall	Mean N. Rates	1.295	-0.293	-3.039		
mean	CV (%)		-1841.29			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation -15.630; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time	
	_	0	50	100	management	Mean time	
	Burned	-2.681	6.848	-3.855	0.104		
	Unburned	-10.984	-6.620	-1.699	-6.434		
<10	Mean N. Rates	-6.832	0.144	-2.777		-3.165	
	CV (%)		-377.68			-5.105	
	LSD, (p≤0.05)		NS		NS		
	Burned	2.737	-5.340	7.592	1.663		
	Unburned	-7.075	-14.045	6.159	-4.987	1 662	
>10	Mean N. Rates	-2.169	-9.692	6.876		-1.662	
>10	CV (%)		-941.86				
	LSD, (p≤0.05)		NS		NS		
	Burned	0.028	0.754	1.869	0.884		
	Unburned	-9.030	-10.332	2.230	-5.711		
Overall	Mean N. Rates	-4.501	-4.789	2.049			
mean	CV (%)		-579.68				
	LSD, (p≤0.05)		NS		NS	NS	

A	C		· · · · · · · · · · · · · · · · · · ·	• • •	41	PI •	1 27
Appendix 36:	Nugarcane	management	i practices	infillencing	mernane	tilixes in	Week 35
repending 000	Sugarcane	management	practices	minucineing	meenane	indiaco in	week ee

*NV = Natural vegetation -7.512; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
		0	50	100	management	Mean time
	Burned	-0.0672	12.397	13.712	8.479	
	Unburned	-9.908	-10.262	0.438	-6.577	
<10	Mean N. Rates	-5.290	1.068	7.075		0.951
	CV (%)		1075.25			0.931
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-1.900	0.553	-1.914	-1.087	
	Unburned	-1.495	-11.992	-23.383	-12.290	-6.689
>10	Mean N. Rates	-1.698	-5.720	-12.648		-0.069
>10	CV (%)		-144.41			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	-1.286	6.475	5.899	3.696	
	Unburned	-5.701	-11.127	-11.472	-9.434	
Overall	Mean N. Rates	-3.494	-2.326	-2.787		
mean	CV (%)		-360.40			
	LSD,					
	(p≤0.05) tural vegetation 4.335		NS		NS	NS

Appendix 37: Drivers of methane fluxes in week 36

*NV = Natural vegetation 4.335; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Mean	
-	_	0	50	100	management	time	
<10	Burned	-3.082	0.762	-12.881	-5.067		
	Unburned	-10.560	11.501	3.879	-6.061		
	Mean N. Rates	-6.821	-5.370	-4.501		5 561	
	CV (%)		-136.96			-5.564	
	LSD, (p≤0.05)		NS		NS		
	Burned	-10.294	-3.976	-3.217	-5.829		
	Unburned	2.874	-9.362	-12.731	-6.406	6 1 1 0	
>10	Mean N. Rates	-3.710	-6.669	-7.974		-6.118	
>10	CV (%)		-335.64				
	LSD, (p≤0.05)		NS		NS		
	Burned	-6.688	-1.607	-8.049	-5.448		
	Unburned	-3.843	-10.432	-4.426	-6.234		
Overall	Mean N. Rates	-5.266	-6.019	-6.238			
mean	CV (%)		-253.74				
	LSD, (P≤0.05)		NS		NS	NS	

Appendix 38: Effect of conversion period, trash management and nitrogen fertilizer application on methane fluxes in week 37

*NV = Natural vegetation -0.067; *Figures are CH₄ flux rate (μ g CH₄ – C m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Appendix	39:	Cumulativefluxes	of	methane	due	to	conversion	period,	trash
manageme	nt an	d nitrogen fertilizer							

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maan tima
-		0	50	100	management	Mean time
	Burned	-0.589	-0.379	-0.547	-0.505	
	Unburned	-0.858	-0.319	-0.581	-0.586	
<10	Mean N. Rates	-0.723	-0.349	-0.564		-0.545
	CV (%)		-98.05			-0.545
	LSD, (p≤0.05)		NS		NS	
	Burned	-0.567	-0.596	-0.431	-0.531	
	Unburned	-0.414	-0.715	-0.911	-0.680	0.606
>10	Mean N. Rates	-0.491	-0.656	-0.671		-0.606
>10	CV (%)		-86.01			
	LSD, (p≤0.05)		NS		NS	
	Burned	-0.578	-0.487	-0.489	-0.518	
	Unburned	-0.636	-0.517	-0.746	-0.633	
Overall	Mean N. Rates	-0.607	-0.502	-0.617		
mean	CV (%)		-89.26			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 0.277; *Figures are CH₄ flux rate (kg / ha / yr); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management		Nitrogen rat	tes	Mean Trash	Mean
	-	0	50	100	management	time
	Burned	0.006	0.017	0.022	0.015	
	Unburned	0.014	0.023	0.004	0.014	
<10	Mean N. Rates	0.010	0.020	0.013		0.014
	CV (%)		65.40			0.014
	LSD,					
	(p≤0.05)		NS		NS	
>10	Burned	0.028	0.022	0.022	0.024	
	Unburned	0.01	0.017	0.019	0.015	0.020
	Mean N. Rates	0.019	0.019	0.020		0.020
>10	CV (%)		66.65			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	0.017	0.019	0.022	0.019	
	Unburned	0.012	0.020	0.011	0.014	
Overall	Mean N. Rates	0.014	0.020	0.017		
mean	CV (%)		64.80			
	LSD,					
	(p≤0.05) tural vegetation 0.019		NS		NS	NS

Appendix 40: Influence of conversion period, trash management and nitrogen fertilizer application on carbon dioxide fluxes in week 1

*NV = Natural vegetation 0.019; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS None Significant ($p \le 0.05$)

=

Appendix 41: Contribut	on of conversion	period, trash	management	and nitrogen
fertilizer application on c	rbon dioxide fluxe	es in week 2		

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Mean
		0	50	100	management	time
	Burned	0.050	0.026	0.034	0.037	
	Unburned	0.019	0.011	0.035	0.022	
<10	Mean N. Rates	0.035	0.019	0.035		0.029
	CV (%)		63.41			0.029
	LSD, (p≤0.05)		NS		NS	
	Burned	0.016	-0.002	0.003	0.006	
	Unburned	0.004	0.029	0.004	0.012	0.000
>10	Mean N. Rates	0.010	0.013	0.004		0.009
	CV (%)		242.83			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.033	0.012	0.018	0.021	
	Unburned	0.011	0.020	0.020	0.017	
Overall	Mean N. Rates	0.022	0.016	0.019		
mean	CV (%)		139.66			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 0.024; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time	
	-	0	50	100	management	Mean time	
	Burned	0.108	0.119	0.101	0.109		
	Unburned	0.006	0.080	0.057	0.047		
<10	Mean N. Rates	0.057	0.100	0.079		0.078	
	CV (%)		77.61			0.078	
	LSD, (p≤0.05)		NS		NS		
	Burned	0.078	0.096	0.082	0.085		
	Unburned	0.048	0.052	0.074	0.058	0.072	
>10	Mean N. Rates	0.063	0.074	0.078		0.072	
>10	CV (%)		62.59				
	LSD, (p≤0.05)		NS		NS		
	Burned	0.093	0.108	0.092	0.097		
	Unburned	0.027	0.066	0.065	0.053		
Overall	Mean N. Rates	0.060	0.087	0.078			
mean	CV (%)		78.04				
	LSD, ($p \le 0.05$)		NS		0.033	NS	

Appendix 42: Effect of conversion period, trash management and nitrogen fertilizer application on flu carbon dioxide fluxes in week 3

*NV = Natural vegetation 0.143; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Appendix 43:	Sugarcane	Management	practices	influencing	carbon	dioxide	fluxes in
week 4							

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maandimaa
-	-	0	50	100	management	Mean time
	Burned	0.099	0.088	0.089	0.092	
	Unburned	0.043	0.079	0.065	0.062	
<10	Mean N. Rates	0.071	0.084	0.077		0.077
	CV (%)		45.77			0.077
	LSD, (p≤0.05)		NS		NS	
	Burned	0.066	0.066	0.091	0.074	
	Unburned	0.090	0.047	0.064	0.067	0.070
	Mean N. Rates	0.078	0.056	0.077		0.070
	CV (%)		57.63			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.083	0.077	0.090	0.083	
	Unburned	0.066	0.063	0.065	0.065	
	Mean N. Rates	0.074	0.070	0.077		
Overall	CV (%)		51.78			
mean	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 0.612; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant (p \leq 0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maantim	
	-	0	50	100	management	Mean time	
	Burned	0.161	0.146	0.150	0.153		
	Unburned	0.090	0.068	0.079	0.079		
<10	Mean N. Rates	0.125	0.107	0.115		0.116	
	CV (%)		49.59			0.110	
L	LSD, (p≤0.05)		NS		0.043		
	Burned	0.093	0.088	0.066	0.082		
	Unburned	0.057	0.070	0.055	0.061	0.071	
>10	Mean N. Rates	0.075	0.079	0.061		0.071	
>10	CV (%)		44.54				
	LSD, (p≤0.05)		NS		NS		
	Burned	0.127	0.117	0.108	0.117		
	Unburned	0.074	0.069	0.067	0.070		
Overall	Mean N. Rates	0.100	0.093	0.088			
mean	CV (%)		52.34				
	LSD, (p≤0.05)		NS		0.027	NS	

Appendix 44:	Drivers of c	arbon dioxide	fluxes in week 5

*NV = Natural vegetation 0.373; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant (p \leq 0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
	-	0	50	100	management	Mean time
	Burned	0.152	0.137	0.143	0.144	
	Unburned	0.096	0.088	0.070	0.085	
<10	Mean N. Rates	0.124	0.113	0.107		0.114
	CV (%)		27.57			0.114
	LSD, (p≤0.05)		NS		NS	
	Burned	0.133	0.180	0.164	0.152	
	Unburned	0.102	0.128	0.111	0.114	0.122
>10	Mean N. Rates	0.108	0.154	0.137		0.133
	CV (%)		43.5			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.133	0.159	0.153	0.148	
	Unburned	0.099	0.108	0.090	0.099	
Overall	Mean N. Rates	0.116	0.133	0.122		
mean	CV (%)		52.46			
<u> </u>	LSD, ($p \le 0.05$)	بر ب	NS		0.036	NS

*NV = Natural vegetation 0.181; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maan tina
-		0	50	100	management	Mean time
	Burned	0.141	0.116	0.097	0.118	
	Unburned	0.066	0.094	0.053	0.071	
<10	Mean N. Rates	0.104	0.105	0.075		0.095
	CV (%)		41.39			0.095
	LSD, (p≤0.05)		NS		0.033	
	Bur ned	0.064	0.066	0.046	0.059	
	Unburned	0.109	0.106	0.081	0.099	0.079
>10	Mean N. Rates	0.087	0.086	0.063		
	CV (%)		37.15			
	LSD, (p≤0.05)		NS		0.025	
	Burned	0.103	0.091	0.071	0.088	
	Unburned	0.088	0.100	0.067	0.085	
Overall	Mean N. Rates	0.095	0.096	0.069		
mean	CV (%)		40.34			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 46: Sugarcane management practices contributing to carbon dioxide fluxes in week 7

*NV = Natural vegetation 0.128; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Appendix 47: Sugarcane management practices influencing carbon dioxide fluxes in
Week 8

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
	_	0	50	100	management	Mean time
	Burned	0.123	0.144	0.127	0.131	
	Unburned	0.076	0.093	0.050	0.073	
<10	Mean N. Rates	0.099	0.119	0.088		0.102
	CV (%)		45.44			0.102
	LSD, (p≤0.05)		NS		0.039	
	Burned	0.165	0.121	0.122	0.136	
	Unburned	0.138	0.092	0.097	0.109	0.123
>10	Mean N. Rates	0.152	0.107	0.11		0.125
>10	CV (%)		41.85			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.144	0.133	0.124	0.134	
	Unburned	0.107	0.093	0.074	0.091	
Overall	Mean N. Rates	0.126	0.113	0.099		
mean	CV (%)		47.96			
	LSD, (p≤0.05)		NS		0.030	NS

*NV = Natural vegetation 0.149; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
		0	50	100	management	wiean time
	Burned	0.156	0.169	0.121	0.149	
	Unburned	0.102	0.096	0.094	0.097	
<10	Mean N. Rates	0.129	0.133	0.107		0.123
	CV (%)		36.54			0.125
	LSD, (p≤0.05)		NS		0.038	
	Burned	0.117	0.089	0.108	0.105	
	Unburned	0.008	0.037	0.024	0.023	0.064
>10	Mean N. Rates	0.063	0.063	0.066		
>10	CV (%)		91.91			
	LSD, (p≤0.05)		NS		0.05	
	Burned	0.137	0.129	0.115	0.127	
	Unburned	0.055	0.067	0.059	0.060	
Overall	Mean N. Rates	0.096	0.098	0.087		
mean	CV (%)		92.88			
	LSD, ($p \le 0.05$) atural vegetation 0.142		NS		0.049	

Appendix 48: Influence of conversion period, trash management and nitrogen fertilizer application on carbon dioxide fluxes in week 9

*NV = Natural vegetation 0.143; *Figures are CH₄ flux rate (g $CO_2 - C m^{-2} hr^{-1}$); *NS = None Significant ($p \le 0.05$)

Appendix 49:	Contribution	of con	version	period,	trash	management	and	nitrogen
fertilizer applie	cation on carbo	on dioxi	ide fluxe	s in weel	s 10			

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maantinaa
	-	0	50	100	management	Mean time
	Burned	0.113	0.108	0.109	0.110	
	Unburned	0.076	0.086	0.081	0.081	
<10	Mean N. Rates	0.094	0.097	0.095		0.095
	CV (%)		16.16			0.093
	LSD, (≤0.05)		NS		0.013	
	Burned	0.177	0.107	0.094	0.106	
	Unburned	0.088	0.094	0.062	0.081	0.094
>10	Mean N. Rates	0.103	0.1	0.078		0.094
>10	CV (%)		33.21			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.115	0.108	0.101	0.108	
	Unburned	0.082	0.090	0.072	0.081	
Overall	Mean N. Rates	0.098	0.099	0.087		
mean	CV (%)		40.22			
	LSD, (p≤0.05)		NS		0.021	NS

*NV = Natural vegetation 0.114; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($P \le 0.05$)

Time(yrs)	Trash management	Nitrogen rates			Mean Trash	Mean time	
	-	0	50	100	management	wear time	
	Burned	0.102	0.111	0.066	0.093		
	Unburned	0.057	0.075	0.047	0.060		
<10	Mean N. Rates	0.08	0.093	0.057		0.076	
	CV (%)		51.38			0.070	
	LSD, (p≤0.05)		NS		NS		
	Burned	0.112	0.111	0.118	0.114	0.096	
	Unburned	0.113	0.080	0.040	0.077		
>10	Mean N. Rates	0.112	0.096	0.079		0.090	
>10	CV (%)		61.99				
	LSD, (p≤0.05)		NS		NS		
	Burned	0.107	0.111	0.092	0.103		
	Unburned	0.085	0.077	0.044	0.069		
Overall	Mean N. Rates	0.096	0.094	0.068			
mean	CV (%)		70.57				
	LSD, (p≤0.05)		NS		NS	NS	

Appendix 50: Management practices influencing carbon dioxide fluxes in week 11

*NV = Natural vegetation 0.136; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹) ;*NS = None Significant ($p \le 0.05$)

Appendix 51: Sugarcane management practices contributing to f carbon dioxide fluxes	5
in week 12	

Time(yrs)	Trash management		Nitrogen rat	es	Mean Trash	Maantina
-		0	50	100	management	Mean time
	Burned	0.105	0.120	0.125	0.117	
	Unburned	0.074	0.106	0.086	0.089	
<10	Mean N. Rates	0.090	0.113	0.105		0 102
	CV (%)		55.93			0.103
	LSD, (p≤0.05)		NS		NS	
	Burned	0.043	0.085	0.100	0.076	
	Unburned	0.041	0.095	0.052	0.063	0.070
>10	Mean N. Rates	0.042	0.09	0.076		0.069
>10	CV (%)		48.38			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.074	0.102	0.113	0.096	
	Unburned	0.058	0.100	0.069	0.076	
Overall	Mean N. Rates	0.066	0.101	0.091		
mean	CV (%)		77.41			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 0.083; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant (p \leq 0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maantina
		0	50	100	management	Mean time
	Burned	0.116	0.203	0.100	0.139	
	Unburned	0.125	0.093	0.091	0.103	
<10	Mean N. Rates	0.120	0.148	0.095		0.121
	CV (%)		55.74			0.121
	LSD, (p≤0.05)		NS		NS	
	Burned	0.097	0.138	0.132	0.122	
	Unburned	0.097	0.137	0.111	0.115	0.119
. 10	Mean N. Rates	0.097	0.137	0.122		0.119
>10	CV (%)		47.37			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.106	0.170	0.116	0.131	
	Unburned	0.111	0.115	0.101	0.109	
Overall	Mean N. Rates	0.109	0.143	0.108		
mean	CV (%)		54.12			
	LSD, (p≤0.05)		NS		NS	NS

 $\frac{(p \ge 0.05)}{(p \ge 0.05)}$ NS NS *NV = Natural vegetation 0.107; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant (p \le 0.05)

Appendix 53:	Effect of	conversion	period,	trash	management	and	nitrogen	fertilizer
application on	ı carbon di	ioxide fluxes	in week	x 14				

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Mean time
		0	50	100	management	Mean time
	Burned	0.128	0.159	0.115	0.134	
	Unburned	0.079	0.100	0.106	0.095	
<10	Mean N. Rates	0.103	0.130	0.110		0.114
	CV (%)		43.24			0.114
	LSD, (p≤0.05)		NS		NS	
	Burned	0.085	0.082	0.150	0.106	
	Unburned	0.095	0.135	0.091	0.107	0.106
>10	Mean N. Rates	0.090	0.109	0.120		0.100
>10	CV (%)		59.37			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.106	0.120	0.132	0.120	
	Unburned	0.087	0.118	0.098	0.101	
Overall	Mean N. Rates	0.097	0.119	0.115		
mean	CV (%)		68.72			
	LSD, (p≤0.05)		NS		NS	NS

 $\frac{(p \ge 0.05)}{\text{*NV} = \text{Natural vegetation 0.067; *Figures are CH₄ flux rate (g CO₂ - C m⁻² hr⁻¹); *NS = None Significant (p \le 0.05)}$

Гime(yrs)	Trash management	Nitrogen rates			Mean Trash	Mean time
		0	50	100	management	wean time
	Burned	0.076	0.109	0.086	0.811	
<10	Unburned	0.083	0.105	0.060	0.744	
<10	Mean N. Rates	0.079	0.107	0.073		0.086
	CV (%)		58.25			0.080
	LSD, (p≤0.05)		NS		0.043	
	Burned	0.057	0.099	0.166	0.966	
	Unburned	0.047	0.160	0.057	0.792	0.098
>10	Mean N. Rates	0.052	0.130	0.111		0.098
>10	CV (%)		87.05			
	LSD, (p≤0.05)		NS		0.072	
	Burned	0.067	0.104	0.126	0.099	
	Unburned	0.065	0.133	0.059	0.085	
Overall	Mean N. Rates	0.066	0.118	0.092		
mean	CV (%)		87.47			
	LSD, (p≤0.05)		NS		NS	NS

Annondin 54.	Monogoment	practices influencing	anthon	diarida flurras	in wool 15
Appendix 54:	Management	Dractices influencing	2 cardon	aloxide nuxes	III week 15
			,		

*NV = Natural vegetation 0.124; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant (p \leq 0.05)

Appendix 55:	Variation of	carbon dioxid	le fluxes with	n sugarcane	management pr	actices
in week 16						

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
		0	50	100	management	Mean time
	Burned	0.074	0.082	0.047	0.068	
	Unburned	0.067	0.096	0.057	0.073	
<10	Mean N. Rates	0.071	0.089	0.052		0.071
	CV (%)		30.66			0.071
	LSD, (p≤0.05)		NS		NS	
	Burned	0.049	0.113	0.048	0.070	
	Unburned	0.051	0.055	0.041	0.049	0.050
> 10	Mean N. Rates	0.050	0.084	0.044		0.059
>10	CV (%)		54.12			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.061	0.098	0.047	0.069	
	Unburned	0.059	0.075	0.049	0.061	
Overall	Mean N. Rates	0.060	0.086	0.048		
mean	CV (%)		40.98			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation -0.041; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant (p \leq 0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
		0	50	100	management	Mean time
	Burned	0.125	0.096	0.057	0.093	
<10	Unburned	0.066	0.071	0.097	0.078	
<10	Mean N. Rates	0.096	0.084	0.077		0.085
	CV (%)		50.72			0.085
	LSD,		NS		NS	
	(p≤0.05)		110		115	
	Burned	0.061	0.068	0.062	0.064	
	Unburned	0.072	0.088	0.092	0.084	0.074
>10	Mean N. Rates	0.067	0.078	0.077		0.074
>10	CV (%)		55.78			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.093	0.082	0.059	0.078	
	Unburned	0.069	0.080	0.095	0.081	
Overall	Mean N. Rates	0.081	0.081	0.077		
mean	CV (%)		69.49			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 56: Factors influencing carbon dioxide fluxes in week 17

*NV = Natural vegetation 0.058; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
	_	0	50	100	management	Weall time
	Burned	0.026	0.086	0.065	0.059	
	Unburned	0.054	0.042	0.058	0.051	
<10	Mean N. Rates	0.040	0.064	0.062		0.055
	CV (%)		53.52			0.055
	LSD, (p≤0.05)		NS		NS	
	Burned	0.035	0.045	0.055	0.045	
	Unburned	0.033	0.021	0.056	0.036	0.041
>10	Mean N. Rates	0.034	0.033	0.055		0.041
>10	CV (%)		44.14			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.031	0.066	0.060	0.052	
	Unburned	0.043	0.031	0.057	0.044	
Overall	Mean N. Rates	0.037	0.048	0.058		
mean	CV (%)		66.16			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 57: Management practices influencing carbon dioxide fluxes in week 18

*NV = Natural vegetation 0.050; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maanting
		0	50	100	management	Mean time
	Burned	0.075	0.068	0.076	0.073	
	Unburned	0.076	0.062	0.054	0.064	
<10	Mean N. Rates	0.076	0.065	0.065		0.068
	CV (%)		21.24			0.008
	LSD, (p≤0.05)		NS		NS	
	Burned	0.046	0.067	0.022	0.045	
	Unburned	0.063	0.052	0.047	0.054	0.050
× 10	Mean N. Rates	0.055	0.060	0.035		0.050
>10	CV (%)		77.74			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.061	0.068	0.049	0.059	
	Unburned	0.069	0.057	0.050	0.059	
Overall	Mean N. Rates	0.065	0.062	0.050		
nean	CV (%)		70.61			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 58: Effect of conversion period, trash management and nitrogen fertilizer application on carbon dioxide fluxes in week 19

*NV = Natural vegetation 0.036; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management		Nitrogen rate	S	Mean Trash	Mean time
		0	50	100	management	Mean time
	Burned	0.064	0.092	0.084	0.080	
	Unburned	0.081	0.057	0.086	0.075	
<10	Mean N. Rates	0.072	0.075	0.085		0.077
	CV (%)		40.12			0.077
	LSD, (p≤0.05)		NS		NS	
	Burned	0.107	0.082	0.086	0.092	
	Unburned	0.067	0.102	0.078	0.082	0.087
>10	Mean N. Rates	0.087	0.092	0.082		0.087
>10	CV (%)		38.82			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.086	0.087	0.085	0.086	
	Unburned	0.074	0.080	0.082	0.079	
Overall	Mean N. Rates	0.080	0.083	0.084		
mean	CV (%)		69.65			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 0.058; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Moon time
		0	50	100	management	Mean time
	Burned	0.019	0.025	0.047	0.031	
	Unburned	0.039	0.011	0.033	0.027	
<10	Mean N. Rates	0.029	0.018	0.04		0.029
	CV (%)		77.92			0.029
	LSD, (p≤0.05)		NS		NS	
	Burned	0.028	0.032	0.014	0.025	
	Unburned	0.003	0.032	0.031	0.022	0.410
>10	Mean N. Rates	0.015	0.032	0.023		0.419
>10	CV (%)		144.17			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.023	0.029	0.031	0.028	
	Unburned	0.021	0.021	0.032	0.025	
Overall	Mean N. Rates	0.022	0.025	0.031		
mean	CV (%)		150.71			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 60: Sugarcane management practices influencing carbon dioxide fluxes in week 21

*NV = Natural vegetation 0.031; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Appendix 61:	Contribution	of	conversion	period,	trash	management	and	nitrogen		
fertilizer appli	fertilizer application on carbon dioxide fluxes week 22									

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Moon time
-		0	50	100	management	Mean time
	Burned	0.035	0.048	0.035	0.039	
	Unburned	0.054	0.042	0.050	0.049	
<10	Mean N. Rates	0.045	0.045	0.042		0.044
	CV (%)		27.51			0.044
	LSD, (p≤0.05)		NS		NS	
	Burned	0.079	0.036	0.056	0.057	
	Unburned	0.041	0.042	0.041	0.041	0.040
>10	Mean N. Rates	0.060	0.039	0.049		0.049
>10	CV (%)		33.49			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.057	0.042	0.045	0.048	
	Unburned	0.048	0.042	0.045	0.045	
Overall	Mean N. Rates	0.052	0.042	0.045		
mean	CV (%)		62.15			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 0.023; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Maantina
		0	50	100	management	Mean time
	Burned	0.011	0.029	0.037	0.026	
	Unburned	0.031	0.031	0.024	0.029	
<10	Mean N. Rates	0.021	0.030	0.031		0.027
	CV (%)		36.41			0.027
	LSD, (P≤0.05)		NS		NS	
	Burned	0.028	0.027	0.048	0.034	
	Unburned	0.011	0.041	0.054	0.036	0.025
>10	Mean N. Rates	0.020	0.034	0.051		0.035
>10	CV (%)		83.2			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.020	0.028	0.043	0.030	
	Unburned	0.021	0.036	0.039	0.032	
Overall	Mean N. Rates	0.021	0.032	0.041		
mean	CV (%)		86.63			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 62: Effect of conversion period, trash management and nitrogen fertilizer application on carbon dioxide fluxes in week 23

*NV = Natural vegetation 0.019; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Appendix 63: Influence of sugarcane management practices on carbon dioxide fluxes in
week 24

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Moon time
•	_	0	50	100	management	Mean time
	Burned	0.052	0.044	0.054	0.050	
	Unburned	0.040	0.039	0.045	0.041	
<10	Mean N. Rates	0.046	0.042	0.050		0.046
	CV (%)		21.46			0.040
	LSD, (p≤0.05)		NS		NS	
	Burned	0.046	0.042	0.049	0.046	
	Unburned	0.054	0.060	0.039	0.051	0.049
>10	Mean N. Rates	0.050	0.051	0.044		0.048
>10	CV (%)		91.00			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.049	0.043	0.051	0.048	
	Unburned	0.047	0.050	0.042	0.046	
Overall	Mean N. Rates	0.048	0.046	0.047		
mean	CV (%)		64.59			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 0.051; *Figures are CH₄ flux rate (g CO₂ – C M⁻² hr⁻¹); *NS = None Significant (P \leq 0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maanting
		0	50	100	management	Mean time
	Burned	0.065	0.065	0.066	0.065	
<10	Unburned	0.064	0.050	0.043	0.052	
<10	Mean N. Rates	0.064	0.058	0.055		0.059
	CV (%)		23.58			0.039
LS	LSD, (p≤0.05)		NS		NS	
	Burned	0.054	0.076	0.082	0.071	
	Unburned	0.066	0.057	0.080	0.068	0.060
>10	Mean N. Rates	0.060	0.067	0.081		0.069
>10	CV (%)		30.64			
LSD,	LSD, (p≤0.05)		NS		NS	
	Burned	0.059	0.071	0.074	0.068	
	Unburned	0.065	0.054	0.062	0.060	
Overall	Mean N. Rates	0.062	0.062	0.068		
mean	CV (%)		64.65			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 64: Variation of carbon dioxide fluxes with sugarcane management practices in week 25

*NV = Natural vegetation 0.066; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Mean
		0	50	100	management	time
	Burned	0.103	0.101	0.091	0.098	
	Unburned	0.091	0.112	0.101	0.101	
<10	Mean N. Rates	0.097	0.106	0.096		0.100
	CV (%)		30.24			0.100
	LSD, (p≤0.05)		NS		NS	
	Burned	0.059	0.068	0.073	0.067	
	Unburned	0.030	0.112	0.092	0.078	0.072
>10	Mean N. Rates	0.045	0.090	0.083		0.072
>10	CV (%)		53.92			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.081	0.084	0.082	0.083	
	Unburned	0.061	0.112	0.096	0.090	
Overall	Mean N. Rates	0.071	0.098	0.089		
mean	CV (%)		51.21			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 65: Factors influencing carbon dioxide fluxes in week 20	Appendix	x 65: Factor	s influencing	g carbon	dioxide	fluxes in	n week 26
---	----------	--------------	---------------	----------	---------	-----------	-----------

*NV = Natural vegetation 0.115; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management	1	Nitrogen rates	8	Mean Trash	Mean time
	-	0	50	100	management	Mean time
	Burned	0.080	0.101	0.074	0.085	
<10	Unburned	0.062	0.057	0.072	0.064	
<10	Mean N. Rates	0.071	0.079	0.073		0.074
	CV (%)		35.81			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.072	0.050	0.045	0.056	
	Unburned	0.059	0.059	0.053	0.057	0.050
>10	Mean N. Rates	0.065	0.055	0.049		0.056
>10	CV (%)		50.83			
LSD,	LSD, (p≤0.05)		NS		NS	
	Burned	0.076	0.075	0.060	0.070	
	Unburned	0.060	0.058	0.062	0.060	
Overall	Mean N. Rates	0.068	0.067	0.061		
mean	CV (%)		45.10			
	LSD, (≤0.05)		NS		NS	NS

Appendix 66: Sugarcane management practices influencing carbon dioxide fluxes in week 27

*NV = Natural vegetation 0.042; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management		Nitrogen rates	5	Mean Trash	Mean time
	-	0	50	100	management	Mean time
	Burned	0.070	0.057	0.073	0.067	
	Unburned	0.054	0.046	0.061	0.054	
<10	Mean N. Rates	0.062	0.052	0.067		0.060
	CV (%)		28.64			0.000
	LSD, (p≤0.05)		NS		NS	
	Burned	0.051	0.037	0.026	0.038	
	Unburned	0.054	0.058	0.064	0.059	0.048
>10	Mean N. Rates	0.052	0.047	0.045		0.048
	CV (%)		47.65			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.060	0.047	0.050	0.052	
	Unburned	0.054	0.052	0.062	0.056	
Overall	Mean N. Rates	0.057	0.049	0.056		
mean	CV (%)		41.01			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 67: Drivers of carbon dioxide fluxes in wee	k 28
--	------

*NV = Natural vegetation 0.045; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Fime(yrs)	Trash management		Nitrogen rates		Mean Trash	Moontim	
-		0	50	100	management	Mean time	
<10	Burned	0.060	0.071	0.042	0.058		
	Unburned	0.063	0.045	0.064	0.057		
	Mean N. Rates	0.062	0.058	0.053		0.058	
	CV (%)		44.82			0.038	
	LSD, (p≤0.05)		NS		NS		
	Burned	0.041	0.052	0.054	0.049		
	Unburned	0.047	0.066	0.054	0.056	0.052	
>10	Mean N. Rates	0.044	0.059	0.054			
>10	CV (%)		40.71				
	LSD, (p≤0.05)		NS		NS		
	Burned	0.050	0.062	0.048	0.053		
	Unburned	0.055	0.055	0.059	0.056		
Overall	Mean N. Rates	0.053	0.058	0.053			
mean	CV (%)		49.16				
	LSD, (p≤0.05)		NS		NS	NS	

Appendix 68: Influence of sugarcane management practices on carbon dioxide fluxes fluxes in week 29

*NV = Natural vegetation 0.014; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹) ;*NS = None Significant ($p \le 0.05$)

Appendix	69:	Contribution	of	conversion	period,	trash	management	and	nitrogen
fertilizer ap	oplic	cation on carbo	on d	lioxide fluxe	s in weeł	x 30			

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maan time
•		0	50	100	management	Mean time
	Burned	0.026	0.066	0.059	0.050	
	Unburned	0.063	0.035	0.044	0.047	
<10	Mean N. Rates	0.044	0.051	0.052		0.049
	CV (%)		56.96			0.049
	LSD, (p≤0.05)		NS		NS	
	Burned	0.035	0.034	0.053	0.041	
	Unburned	0.038	0.046	0.054	0.046	0.042
>10	Mean N. Rates	0.036	0.04	0.054		0.043
>10	CV (%)		33.53			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.030	0.050	0.056	0.045	
	Unburned	0.050	0.040	0.049	0.047	
Overall	Mean N. Rates	0.040	0.045	0.053		
mean	CV (%)		43.68			
	LSD, (≤0.05)		NS		NS	NS

*NV = Natural vegetation 0.023; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Гime(yrs)	Trash management		Nitrogen rates		Mean Trash	Moon time	
		0	50	100	management	Mean time	
	Burned	0.045	0.067	0.065	0.059		
	Unburned	0.063	0.057	0.062	0.061		
<10	Mean N. Rates	0.054	0.062	0.063		0.060	
	CV (%)		35.82			0.000	
	LSD, (p≤0.05)		NS		NS		
	Burned	0.036	0.037	0.061	0.044		
	Unburned	0.043	0.075	0.042	0.053	0.049	
>10	Mean N. Rates	0.040	0.056	0.052			
>10	CV (%)		39.11				
	LSD, (≤0.05)		NS		NS		
	Burned	0.040	0.052	0.063	0.052		
	Unburned	0.053	0.066	0.052	0.057		
Overall	Mean N. Rates	0.047	0.059	0.057			
mean	CV (%)		37.09				
	LSD, (p≤0.05)		NS		NS	NS	

Appendix 70: Effect of conversion period, trash management and nitrogen fertilizer application on carbon dioxide fluxes in week 31

*NV = Natural vegetation 0.052; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Appendix 71:	Influence of	sugarcane	management	practices	on c	carbon	dioxide	fluxes
fluxes in week	32							

Time(yrs)	Trash management	Nitrogen rates			Mean Trash	Mean time	
		0	50	100	management	wean time	
	Burned	0.032	0.073	0.049	0.051		
	Unburned	0.034	0.070	0.030	0.045		
<10	Mean N. Rates	0.033	0.071	0.039		0.048	
	CV (%)		NS			0.048	
	LSD, (p≤0.05)		NS		NS		
	Burned	0.033	0.015	0.029	0.025		
	Unburned	0.036	0.033	0.029	0.033	0.020	
>10	Mean N. Rates	0.034	0.024	0.029		0.029	
>10	CV (%)		31.1				
	LSD, (p≤0.05)		NS		NS		
	Burned	0.032	0.044	0.039	0.038		
	Unburned	0.035	0.051	0.030	0.039		
Overall	Mean N. Rates	0.034	0.048	0.034			
mean	CV (%)		66.65				
	LSD, (p≤0.05)		NS		NS	NS	

*NV = Natural vegetation 0.051; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant (p \leq 0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time	
		0	50	100	management	Mean time	
	Burned	0.057	0.035	0.059	0.050		
<10	Unburned	0.048	0.044	0.046	0.046		
	Mean N. Rates	0.053	0.039	0.052		0.048	
	CV (%)		56.59			0.048	
	LSD,		NS		NS		
	(p≤0.05)				IND		
	Burned	0.045	0.061	0.054	0.053		
	Unburned	0.054	0.063	0.053	0.057	0.055	
>10	Mean N. Rates	0.050	0.062	0.053		0.033	
>10	CV (%)		33.64				
	LSD, (p≤0.05)		NS		NS		
	Burned	0.051	0.048	0.056	0.052		
	Unburned	0.051	0.053	0.049	0.051		
Overall	Mean N. Rates	0.051	0.051	0.053			
mean	CV (%)		43.19				
	LSD, (p≤0.05)		NS		NS	NS	

Appendix 72: Factors contributing to carbon dioxide fluxes in week 33

*NV = Natural vegetation 0.079; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant (p \leq 0.05)

Appendix 73: Variation of carbon dioxide	fluxes with sugarcane management practices
in week 34	

Time(yrs)	Trash management		Nitrogen rate	es	Mean Trash	Mean
		0	50	100	management	time
	Burned	0.051	0.056	0.054	0.054	
<10	Unburned	0.072	0.062	0.080	0.071	
(10	Mean N. Rates	0.061	0.059	0.067		0.062
	CV (%)		34.07			0.002
	LSD,		NS		NS	
	(p≤0.05)		115		115	
	Burned	0.030	0.036	0.048	0.038	
	Unburned	0.048	0.068	0.062	0.059	0.049
>10	Mean N. Rates	0.039	0.052	0.055		
>10	CV (%)		39.34			
	LSD,		NS		NS	
	(p≤0.05)		IND		IND .	
	Burned	0.040	0.046	0.051	0.046	
	Unburned	0.060	0.065	0.071	0.065	
Overall	Mean N. Rates	0.050	0.055	0.061		
mean	CV (%)		39.69			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 0.089; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹) ;*NS= None Significant (p \leq 0.05)

Time(yrs)	Trash management	-	Nitrogen rates		Mean Trash	
		0	50	100	management	Mean time
	Burned	0.068	0.067	0.047	0.061	
<10	Unburned	0.059	0.033	0.063	0.052	
	Mean N. Rates	0.064	0.050	0.055		0.056
	CV (%)		55.35			0.030
	LSD, (p≤0.05)		NS		NS	
	Burned	0.028	0.036	0.033	0.032	
	Unburned	0.022	0.029	0.015	0.022	0.027
>10	Mean N. Rates	0.025	0.032	0.024		0.027
>10	CV (%)		45.38			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.048	0.052	0.040	0.047	
	Unburned	0.040	0.031	0.039	0.037	
Overall	Mean N. Rates	0.044	0.041	0.040		
mean	CV (%)		69.39			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 74: Sugarcane management practices contributing to GHGs fluxes in week 35

*NV = Natural vegetation 0.061; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Appendix 75: Contribution	of conversion	period, trash	management	and nitrogen
fertilizer application on carbo	on dioxide fluxe	es in week 36		

Time(yrs)	Trash management	1	Nitrogen rates		Mean Trash	Maan tima	
	-	0	50	100	management	Mean time	
	Burned	0.098	0.095	0.052	0.082		
<10	Unburned	0.088	0.054	0.071	0.071		
	Mean N. Rates	0.093	0.074	0.061		0.076	
	CV (%)		67.91			0.070	
	LSD, (p≤0.05)		NS		NS		
	Burned	0.063	0.068	0.089	0.073		
	Unburned	0.065	0.071	0.050	0.062	0.068	
>10	Mean N. Rates	0.064	0.069	0.069			
>10	CV (%)		18.98				
	LSD, (p≤0.05)		NS		NS		
	Burned	0.080	0.081	0.070	0.077		
	Unburned	0.076	0.062	0.061	0.066		
Overall	Mean N. Rates	0.078	0.072	0.065			
mean	CV (%)		54.35				
	LSD, (p≤0.05)		NS		NS	NS	

*NV = Natural vegetation 0.068; *Figures are CH₄ flux rate (g CO₂ – C m⁻² hr⁻¹); *NS = None Significant ($p \le 0.05$)

Time(yrs)	Trash management	N	Nitrogen rates	8	Mean Trash	Mean time
	-	0	50	100	management	Mean time
	Burned	0.092	0.098	0.074	0.088	
	Unburned	0.087	0.065	0.057	0.070	
<10	Mean N. Rates	0.089	0.082	0.065		0.079
	CV (%)		43.87			0.079
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	0.074	0.074	0.065	0.071	
	Unburned	0.034	0.049	0.066	0.050	0.060
>10	Mean N. Rates	0.054	0.062	0.065		0.000
	CV (%)		45.26			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	0.083	0.086	0.069	0.080	
	Unburned	0.060	0.057	0.061	0.060	
Overall	Mean N. Rates	0.072	0.072	0.065		
mean	CV (%)		57.49			
	LSD,					
	(p≤0.05)		NS		NS	NS
*NV	= Natural vegetation	0.051; *Fi	igures are C	CH ₄ flux r	ate ($\mu g N_2 O -$	$N m^{-2} hr^{-1}$

Appendix 76: Factors influencing nitrous oxide fluxes in week 37

*NV = Natural vegetation 0.051; *Figures are CH₄ flux rate ($\mu g N_2 O - N m^{-2} hr^{-1}$); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management]	Nitrogen rat	es	Mean Trash	Maantina
		0	50	100	management	Mean time
	Burned	7.237	8.220	6.895	7.451	
	Unburned	5.954	5.840	5.732	5.842	
<10	Mean N. Rates	6.595	7.030	6.313		6.646
	CV (%)		25.03			0.040
	LSD, (p≤0.05)		NS		NS	
	Burned	5.852	6.265	6.478	6.198	5.000
	Unburned	5.115	6.418	5.442	5.658	5 029
>10	Mean N. Rates	5.484	6.342	5.960		5.928
>10	CV (%)		23.54			
	LSD, (p≤0.05)		NS		NS	
	Burned	6.545	7.242	6.687	6.825	
	Unburned	5.534	6.129	5.587	5.750	
Overall	Mean N. Rates	6.040	6.686	6.137		
mean	CV (%)		37.07			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 77: Cumulativecarbon dioxide emission due to conversion period, trash management and nitrogen fertilizer application

*NV = Natural vegetation 15.465; *Figures are CH_4 flux rate (Mg / ha / hr); *NS = None Significant (p \leq 0.05)

Time(yrs)	Trash management	1	Nitrogen rates		Mean Trash	Moon tim	
	_	0	50	100	management	Mean time	
<10	Burned	0.193	-1.657	0.934	-0.177		
	Unburned	-0.661	0.069	0.284	-0.103		
	Mean N. Rates	-0.234	-0.794	0.609		-0.140	
	CV (%)	-1145.31					
	LSD, (p≤0.05)		NS		NS		
	Burned	4.550	-1.299	2.081	1.778		
	Unburned	-1.200	0.443	0.278	-0.160	0.809	
>10	Mean N. Rates	1.675	-0.428	1.18		0.809	
>10	CV (%)		393.96				
	LSD, (p≤0.05)		NS		NS		
	Burned	2.371	-1.478	1.508	0.800		
	Unburned	-0.931	0.256	0.281	-0.131		
Overall	Mean N. Rates	0.720	-0.611	0.894			
mean	CV (%)		729.41				
	LSD, (p≤0.05)		NS		NS	NS	

Appendix 78: Influence of conversion period, trash management and nitrogen fertilizer application on nitrous oxide fluxes in week 1

*NV = Natural vegetation -0.697; *Figures are CH₄ flux rate ($\mu g N_2 O - N m^{-2} hr^{-1}$); *NS = None Significant (p≤0.05)

Appendix 79:	Contribution	of	conversion	period,	trash	management	and	nitrogen
fertilizer applie	cation on nitro	us c	oxide fluxes i	in week 2	2			

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time	
	_	0	50	100	management	Mean time	
	Burned	8.445	7.282	-3.848	3.960		
<10	Unburned	-1.909	3.298	5.084	2.158		
	Mean N. Rates	3.268	5.290	0.618		3.059	
	CV (%)		289.15			5.039	
	LSD, (P≤0.05)		NS		NS		
	Burned	1.149	-0.091	-0.184	0.291		
	Unburned	0.688	0.801	-0.449	0.346	0.319	
>10	Mean N. Rates	0.918	0.355	-0.317		0.319	
>10	CV (%)		211.27				
	LSD, (p≤0.05)		NS		NS		
	Burned	4.797	3.595	-2.016	2.125		
	Unburned	-0.611	2.049	2.317	1.252		
Overall	Mean N. Rates	2.093	2.822	0.151			
mean	CV (%)		424.49				
	LSD, (p≤0.05)		NS		NS	NS	

*NV = Natural vegetation 1.756; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management	1	Nitrogen rates	8	Mean Trash	Maan time			
	_	0	50	100	management	Mean time			
	Burned	8.379	5.492	16.847	10.239				
	Unburned	4.492	2.898	7.735	5.042				
<10	Mean N. Rates	6.435	4.195	12.291		7.640			
	CV (%)		53.67			7.640			
	LSD, (p≤0.05)		NS		NS				
	Burned	8.187	18.860	10.065	12.371				
>10	Unburned	-2.761	23.205	4.336	8.260	10.315			
	Mean N. Rates	2.713	21.032	7.201		10.315			
>10	CV (%)		151.43						
	LSD, (p≤0.05)		NS		NS				
	Burned	8.283	12.176	13.455	11.305				
	Unburned	0.866	13.051	6.036	6.651				
Overall	Mean N. Rates	4.574	12.614	9.746					
mean	CV (%)		142.23						
	LSD, $(p \le 0.05)$		NS		NS	NS			

Appendix 80: Effect of conversion period, trash management and nitrogen fertilizer application on nitrous oxide fluxes in week 3

*NV = Natural vegetation 7.113; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Appendix 81: Sugarcane Management practices influencing nitrous oxide fluxes in week	
4	

Time(yrs)	Trash management	Nitrogen rates			Mean Trash	Maan tima
	-	0	50	100	management	Mean time
	Burned	18.367	14.434	28.325	20.375	
<10	Unburned	-14.927	12.364	4.090	0.509	
	Mean N. Rates	1.72	13.399	16.207		10.442
	CV (%)		173.78			10.442
	LSD, (p≤0.05)		NS		NS	
	Burned	36.532	5.698	-6.793	11.812	
	Unburned	8.502	-2.600	4.268	3.390	7.601
>10	Mean N. Rates	22.517	1.549	-1.263		7.001
>10	CV (%)		355.49			
	LSD, (p≤0.05)		NS		NS	
	Burned	27.449	10.066	10.766	16.094	
	Unburned	-3.213	4.882	4.179	1.950	
Overall	Mean N. Rates	12.118	7.474	7.472		
mean	CV (%)		258.73			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 3.897; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management	Nitrogen rates			Mean Trash	Mean time
	_	0	50	100	management	Iviean time
	Burned	13.916	10.449	15.112	13.159	
<10	Unburned	4.861	12.697	5.805	7.788	
	Mean N. Rates	9.389	11.573	10.459		10.474
	CV (%)		63.58			10.474
	LSD,		NS		NS	
	(p≤0.05)		145		115	
	Burned	16.986	5.332	2.567	8.295	
	Unburned	14.019	16.863	-13.174	5.903	7.099
>10	Mean N. Rates	15.502	11.097	-5.303		1.099
>10	CV (%)		311.48			
	LSD,		NS		NS	
	(p≤0.05)		145		115	
	Burned	15.451	7.891	8.840	10.727	
	Unburned	9.440	14.780	-3.684	6.845	
Overall	Mean N. Rates	12.446	11.335	2.578		
mean	CV (%)		207.69			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 82: Drivers of nitrous oxide fluxes in week 5

*Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NV = Natural vegetation; *NS = None Significant (p≤0.05)

Time(yrs)	Trash management	Nitrogen rates			Mean Trash	Mean time
		0	50	100	management	Mean time
	Burned	8.000	3.141	4.332	5.158	
	Unburned	5.531	8.772	4.864	6.389	
<10	Mean N. Rates	6.765	5.957	4.598		5.773
	CV (%)		58.69			5.775
	LSD,		NS		NS	
	(p≤0.05)		113		IND	
	Burned	23.315	16.320	21.328	20.321	
	Unburned	22.674	6.722	7.394	12.263	16.292
>10	Mean N. Rates	22.995	11.521	14.361		10.292
	CV (%)		81.75			
	LSD, (NS		NS	
	(p≤0.05)		113			
	Burned	15.658	9.731	12.830	12.739	
	Unburned	14.102	7.747	6.129	9.326	
Overall	Mean N. Rates	14.880	8.739	9.479		
mean	CV (%)		103.72			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 83: Factors influencing nitrous oxide fluxes in week 6

*NV = Natural vegetation 14.175; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management	1	Nitrogen rates	8	Mean Trash	Mean time	
	-	0	50	100	management	Mean time	
	Burned	31.123	13.102	23.330	22.518		
<10	Unburned	4.431	10.752	4.657	6.613		
	Mean N. Rates	17.777	11.927	13.994		14.566	
	CV (%)		101.96			14.300	
	LSD, (p≤0.05)		NS		NS		
	Burned	66.753	14.850	11.430	31.011		
	Unburned	30.289	12.895	16.899	20.028	25 510	
>10	Mean N. Rates	48.521	13.873	14.164		25.519	
>10	CV (%)		152.58				
	LSD, (p≤0.05)		NS		NS		
	Burned	48.938	13.976	17.380	26.765		
	Unburned	17.360	11.824	10.778	13.321		
Overall	Mean N. Rates	33.149	12.900	14.079			
mean	CV (%)		158.75				
	LSD, (p≤0.05)		NS		NS	NS	

Appendix 84: Sugarcane management practices contributing nitrous oxide fluxes in week 7

*NV = Natural vegetation 5.565; *Figures are CH₄ flux rate ($\mu g N_2 O - N m^{-2} hr^{-1}$);*NS = None Significant (p≤0.05)

Appendix 85: Variation of nitrous oxide fluxes with sugarcane management practices in week 8

Time(yrs)	Trash management	Nitrogen rates			Mean Trash	Mean time
	-	0	50	100	management	Mean time
	Burned	15.720	12.764	10.908	13.131	
<10	Unburned	5.687	11.081	3.689	6.819	
	Mean N. Rates	10.704	11.923	7.298		9.975
	CV (%)		90.59			9.975
	LSD, (P≤0.05)		NS		NS	
	Burned	56.468	51.626	87.472	65.189	
	Unburned	94.392	30.071	68.528	64.330	64.759
>10	Mean N. Rates	75.430	40.848	78.000		
>10	CV (%)		69.45			
	LSD, (p≤0.05)		NS		NS	
	Burned	36.094	32.195	49.190	39.160	
	Unburned	50.040	20.576	36.109	35.575	
Overall	Mean N. Rates	43.067	26.386	42.649		
mean	CV (%)		142.08			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 4.395; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management	Ν	Vitrogen rate	s	Mean Trash	Maantinaa
		0	50	100	management	Mean time
	Burned	7.624	9.172	6.476	7.757	
	Unburned	6.858	15.611	18.946	13.805	
<10	Mean N. Rates	7.241	12.391	12.711		10.781
	CV (%)		68.00			10.781
	LSD, (p≤0.05)		NS		NS	
	Burned	0.441	9.389	16.922	8.917	
	Unburned	1.720	5.314	1.655	2.896	5 007
>10	Mean N. Rates	1.081	7.352	9.288		5.907
	CV (%)		185.91			
	LSD, (p≤0.05)		NS		NS	
	Burned	4.032	9.280	11.699	8.337	
	Unburned	4.289	10.462	10.300	8.351	
Overall	Mean N. Rates	4.161	9.871	11.000		
mean	CV (%)		135.80			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 86: Influence of conversion period, trash management and nitrogen fertilizer application on nitrous oxide fluxes in week 9

*NV = Natural vegetation 7.111 ;*Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹) ; *NS = None Significant (p≤0.05)

Appendix 8	37: (Contri	bution	of	conversion	period,	trash	management	and	nitrogen
fertilizer ap	plica	ation o	n nitro	us o	oxide fluxes i	n week 1	10			
	-				N 71				-	

Time(yrs)	Trash management	N	litrogen rates		Mean Trash	Mean time
	_	0	50	100	management	Mean time
	Burned	6.134	9.363	12.378	9.292	
	Unburned	7.588	23.980	31.836	21.135	
<10	Mean N. Rates	6.861	16.672	22.107		15.213
	CV (%)		79.45			15.215
	LSD, (p≤0.05)		NS		NS	
	Burned	4.706	5.971	4.699	5.125	
	Unburned	3.635	16.368	5.906	8.636	6.881
>10	Mean N. Rates	4.171	11.169	5.303		0.001
>10	CV (%)		64.99			
	LSD, (p≤0.05)		NS		NS	
	Burned	5.420	7.667	8.539	7.209	
	Unburned	5.611	20.174	18.871	14.886	
Overall	Mean N. Rates	5.516	13.920	13.795		
mean	CV (%)		92.49			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 24.408; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹);*NS = None Significant (p≤0.05)

Time(yrs)	Trash management]	Nitrogen rates		Mean Trash	Mean time
		0	50	100	management	wiean time
	Burned	53.613	65.448	67.190	62.084	
	Unburned	66.497	87.666	57.565	70.576	
<10	Mean N. Rates	60.055	76.557	62.377		66.330
	CV (%)		57.17			00.330
	LSD, (p≤0.05)		NS		NS	
	Burned	10.025	15.906	23.815	16.582	
	Unburned	11.682	14.028	6.761	10.824	12 702
> 10	Mean N. Rates	10.853	14.967	15.288		13.703
>10	CV (%)		115.79			
	LSD, (p≤0.05)		NS		NS	
	Burned	31.819	40.677	45.502	39.333	
	Unburned	39.090	50.847	32.163	40.700	
Overall	Mean N. Rates	35.454	45.762	38.832		
mean	CV (%)		111.72			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 88: Management practices influencing nitrous oxide fluxes in week 11

*NV = Natural vegetation 1.538 ;*Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Appendix 89: Sugarcane management	practices contributin	g to nitrous or	kide fluxes in
week 12			

Time(yrs)	Trash management		Nitrogen rates	3	Mean Trash	Moon time
	_	0	50	100	management	Mean time
	Burned	11.919	23.399	44.835	26.718	
	Unburned	0.943	131.041	114.716	82.233	
<10	Mean N. Rates	6.431	77.220	79.776		54.475
	CV (%)		73.94			54.475
	LSD, (p≤0.05)		41.82		34.15	
	Burned	8.983	35.443	77.714	40.713	
	Unburned	2.079	85.542	27.075	38.232	39.473
>10	Mean N. Rates	5.531	60.493	52.395		39.475
>10	CV (%)		124.77			
	LSD, (p≤0.05)		NS		NS	
	Burned	10.451	29.421	61.275	33.716	
	Unburned	1.511	108.291	70.896	60.233	
Overall	Mean N. Rates	5.981	68.856	66.085		
mean	CV (%)		126.55			
	LSD, (p≤0.05)		40.63		NS	NS

*NV = Natural vegetation 5.209; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹);*NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rate	s	Mean Trash	Mean time
	-	0	50	100	management	Mean time
	Burned	4.986	61.338	13.298	26.541	
	Unburned	27.366	41.769	173.793	80.976	
<10	Mean N. Rates	16.176	51.553	93.545		53.758
	CV (%)		198.29			33.730
	LSD, (p≤0.05)		NS		NS	
	Burned	3.130	9.590	74.093	28.938	
	Unburned	0.631	89.628	173.063	87.774	58.356
>10	Mean N. Rates	1.880	49.609	123.578		38.330
>10	CV (%)		79.37			
	LSD, (p≤0.05)		48.090		39.26	
	Burned	4.058	35.464	43.696	27.739	
	Unburned	13.998	65.698	173.428	84.375	
Overall	Mean N. Rates	9.028	50.581	108.562		
mean	CV (%)		149.44			
	LSD, (p≤0.05)		57.25		46.740	NS

Appendix 90: Drivers of nitrous oxide fluxes in week 13

*NV = Natural vegetation -1.455; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹);*NS = None Significant (p≤0.05)

Appendix 91: Effect of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes in week 14

Time(yrs)	Trash management]	Nitrogen rate	es	Mean Trash	Mean time
	_	0	50	100	management	Mean time
	Burned	2.383	7.697	7.765	5.948	
	Unburned	11.483	13.365	131.917	52.255	
<10	Mean N. Rates	6.933	10.531	69.841		29.101
	CV (%)		278.54			29.101
	LSD, (p≤0.05)		NS		NS	
	Burned	5.249	8.979	119.088	44.438	
	Unburned	2.725	57.603	99.409	53.246	10 0 1 2
>10	Mean N. Rates	3.987	33.291	109.248		48.842
>10	CV (%)		154.59			
	LSD, (p≤0.05)		NS		NS	
	Burned	3.816	8.338	63.426	25.193	
	Unburned	7.104	35.484	115.663	52.750	
Overall	Mean N. Rates	5.460	21.911	89.545		
mean	CV (%)		222.43			
	LSD, (p≤0.05)		59.24		NS	NS

*NV = Natural vegetation 2.694; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management	Ν	Vitrogen rate	S	Mean Trash	Moon time
	- 	0	50	100	management	Mean time
	Burned	7.637	3.518	4.878	5.344	
	Unburned	7.915	3.684	68.452	26.683	
<10	Mean N. Rates	7.776	3.601	36.665		16.014
	CV (%)		244.00			10.014
	LSD, (p≤0.05)		NS		NS	
	(p_0.03) Burned	0.650	9.223	55.206	21.693	
	Unburned	-0.047	16.901	34.387	17.080	10 207
>10	Mean N. Rates	0.301	13.062	44.796		19.387
>10	CV (%)		190.75			
	LSD, (p≤0.05)		NS		NS	
	Burned	4.143	6.370	30.042	13.519	
	Unburned	3.934	10.293	51.420	21.882	
Overall	Mean N. Rates	4.039	8.332	40.731		
mean	CV (%)		222.97			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 92: Influence of sugarcane management practices on nitrous oxide fluxes in week 15

*NV = Natural vegetation 0.648; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant(p≤0.05)

Appendix 93:	Variation of nitrous	oxide fluxes wit	th sugarcane i	management p	practices in
week 16					

Time(yrs)	Trash management	Ν	Vitrogen rates	¢	Mean Trash	
Time(yrs)		0	50	100	management	Mean time
	Burned	2.999	2.451	3.048	2.833	
	Unburned	15.594	5.156	3.349	8.033	
<10	Mean N. Rates	9.296	3.803	3.198		5 122
	CV (%)		164.51			5.433
	LSD, (p≤0.05)		NS		NS	
	Burned	0.297	8.489	6.479	5.088	
	Unburned	0.406	3.647	14.057	6.037	5 5 6 2
>10	Mean N. Rates	0.352	6.068	10.268		5.563
>10	CV (%)		108.45			
	LSD, (p≤0.05)		6.260		NS	
	Burned	1.648	5.470	4.763	3.960	
	Unburned	8.000	4.401	8.703	7.035	
Overall	Mean N. Rates	4.824	4.936	6.733		
mean	CV (%)		147.84			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 32.545; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant($p \le 0.05$)

Time(yrs)	Trash management	Nitrogen rates			Mean Trash	Mean time
		0	50	100	management	Mean time
	Burned	2.584	0.601	0.324	1.170	
	Unburned	0.500	0.624	2.717	1.281	
<10	Mean N. Rates	1.542	0.613	1.521		1.225
	CV (%)		161.95			1.223
	LSD, (p≤0.05)		NS		NS	
	Burned	0.001	4.027	6.061	3.364	
	Unburned	0.639	4.742	28.460	11.281	7.322
>10	Mean N. Rates	0.320	4.385	17.261		1.322
>10	CV (%)		227.72			
	LSD, (p≤0.05)		NS		NS	
	Burned	1.293	2.314	3.192	2.266	
	Unburned	0.570	2.683	15.589	6.281	
Overall	Mean N. Rates	0.931	2.499	9.391		
mean	CV (%)		293.98			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 94: Factors influencing nitrous oxide fluxes in week 17

*NV = Natural vegetation 0.319; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹);*NS = None Significant (p≤0.05)

Appendix 95:	Contribution	of	conversion	period,	trash	management	and	nitrogen
fertilizer applie	cation on nitro	us (o <mark>xide fluxes</mark> i	in week 1	18			

Time(yrs)	Trash management	Nitrogen rates			Mean Trash	Mean
	_	0	50	100	management	time
	Burned	-14.862	17.445	1.207	1.263	
	Unburned	1.522	3.256	1.586	2.121	
<10	Mean N. Rates	-6.67	10.351	1.397		1.692
	CV (%)		1064.92			1.092
	LSD, (p≤0.05)		NS		NS	
	Burned	0.599	1.059	0.602	0.753	
	Unburned	16.530	0.564	2.425	6.506	3.630
>10	Mean N. Rates	8.564	0.812	1.513		5.050
>10	CV (%)		284.9			
	LSD, (p≤0.05)		NS		NS	
	Burned	-7.132	9.252	0.905	1.008	
	Unburned	9.026	1.910	2.005	4.314	
Overall	Mean N. Rates	0.947	5.581	1.455		
mean	CV (%)		536.08			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 0.545; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant(p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
	-	0	50	100	management	Mean time
	Burned	3.448	9.248	4.250	5.649	
	Unburned	3.788	4.991	5.277	4.685	
<10	Mean N. Rates	3.618	7.120	4.764		5.167
	CV (%)		122.53			5.107
	LSD, (p≤0.05)		NS		NS	
	Burned	4.955	1.696	10.915	5.855	
	Unburned	53.729	-9.646	31.453	25.178	15.517
>10	Mean N. Rates	29.342	-3.975	21.184		13.317
>10	CV (%)		272.75			
	LSD, (p≤0.05)		NS		NS	
	Burned	4.202	5.472	7.582	5.752	
	Unburned	28.758	-2.328	18.365	14.932	
Overall	Mean N. Rates	16.480	1.572	12.974		
mean	CV (%)		306.75			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 96: Sugarcane management practices influencing to nitrous oxide fluxes in week 19

*NV = Natural vegetation; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant($p \le 0.05$)

Appendix 97: Effect of conversion	period, trash	management	and nitroger	n fertilizer
application on nitrous oxide fluxes in	n week 20			

Time(yrs)	Trash management	ment Nitrogen rates		Mean Trash	Moon time	
	-	0	50	100	management	Mean time
	Burned	2.170	0.994	3.513	2.226	
	Unburned	2.766	2.715	3.890	3.124	
<10	Mean N. Rates	2.468	1.855	3.702		2.675
	CV (%)		105.23			2.075
	LSD, (p≤0.05)		NS		NS	
	Burned	4.059	14.680	0.619	6.453	
	Unburned	-0.192	4.383	4.365	2.852	4.652
>10	Mean N. Rates	1.934	9.531	2.492		4.032
>10	CV (%)		218.56			
	LSD, (p≤0.05)		NS		NS	
	Burned	3.114	7.837	2.066	4.339	
	Unburned	1.287	3.549	4.128	2.988	
Overall	Mean N. Rates	2.201	5.693	3.097		
mean	CV (%)		221.22			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation -0.243; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant(p≤0.05)

Fime(yrs)	Trash management	Ν	Vitrogen rate	Nitrogen rates		
	_	0	50	100	management	Mean time
	Burned	0.116	0.466	1.345	0.642	
	Unburned	0.648	12.403	-0.056	4.331	
<10	Mean N. Rates	0.382	6.434	0.645		2.487
	CV (%)		343.94			2.407
	LSD, (p≤0.05)		NS		NS	
	Burned	1.184	1.120	-47.629	-15.108	
	Unburned	-1.129	-2.753	0.500	-1.127	-8.118
>10	Mean N. Rates	0.027	-0.816	-23.564		-0.110
>10	CV (%)		-414.69			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.650	0.793	-23.142	-7.233	
	Unburned	-0.240	4.825	0.222	1.602	
Overall	Mean N. Rates	0.205	2.809	-11.460		
mean	CV (%)		-869.01			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 98: Driver	s of nitrous ox	xide fluxes ir	n week 21
----------------------------	-----------------	----------------	-----------

*NV = Natural vegetation -0.061; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant(p≤0.05)

Time(yrs)	Trash management	Ν	Vitrogen rate	s	Mean Trash	Mean time
	-	0	50	100	management	wiean time
	Burned	-10.502	-10.391	-44.919	-21.937	
<10	Unburned	-9.748	-8.471	-8.083	-8.768	
<10	Mean N. Rates	-10.125	-9.431	-26.501		-15.352
	CV (%)		-158.23			-13.332
	LSD, (p≤0.05)		NS		NS	
	Burned	84.209	0.630	-0.644	28.065	
	Unburned	-0.408	-16.897	1.444	-5.287	11.389
>10	Mean N. Rates	41.900	-8.134	0.4		11.369
>10	CV (%)		537.98			
	LSD, (p≤0.05)		NS		NS	
	Burned	36.853	-4.881	-22.781	3.064	
	Unburned	-5.078	-12.684	-3.320	-7.027	
Overall	Mean N. Rates	15.888	-8.782	-13.050		
mean	CV (%)		-2567.63			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 99: Management	nractices influen	cing nitrous	avide fluxes	in v	veek 22
Appendix <i>77</i> . Management	practices influen	ung mu ous	OVINC HUNCS		VUUN 22

*NV = Natural vegetation 12.522; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant(p≤0.05)

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Mean time
		0	50	100	management	Mean time
	Burned	-2.083	-0.610	0.972	-0.558	
<10	Unburned	0.410	15.990	4.281	6.894	
<10	Mean N. Rates	-0.814	7.690	2.627		3.168
	CV (%)		341.27			5.108
	LSD, (p≤0.05)		NS		NS	
	Burned	0.281	0.041	-0.167	0.054	
	Unburned	-0.121	0.028	-0.359	-0.150	-0.048
>10	Mean N. Rates	0.084	0.035	-0.263		-0.048
>10	CV (%)		-778.35			
	LSD, (p≤0.05)		NS		NS	
	Burned	-0.874	-0.284	0.402	-0.252	
	Unburned	0.144	8.009	1.961	3.372	
Overall	Mean N. Rates	-0.365	3.862	1.182		
mean	CV (%)		471.70			
mean	LSD, (p≤0.05)		NS		NS	NS

Appendix 100: Contribution of conversion period, trash management and nitrogen fertilizer application on nitrous oxide fluxes in week 23

*NV = Natural vegetation 0.884; *Figures are CH₄ flux rate ($\mu g N_2 O - N m^{-2} hr^{-1}$); *NS = None Significant ($p \le 0.05$)

Appendix 101: Effect of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes in week 24

Time(yrs)	Trash management]	Nitrogen rates	3	Mean Trash	Mean time
	_	0	50	100	management	Mean time
	Burned	-0.464	1.475	-19.642	-30.210	
	Unburned	-7.800	1.488	-6.684	-4.332	
<10	Mean N. Rates	-4.132	1.481	-49.163		-17.271
	CV (%)		-193.82			-1/.2/1
	LSD, (p≤0.05)		NS		NS	
	Burned	2.613	3.780	2.614	3.002	
	Unburned	-0.584	1.902	-0.510	0.269	1 626
>10	Mean N. Rates	1.014	2.841	1.052		1.636
>10	CV (%)		196.89			
	LSD, (p≤0.05)		NS		NS	
	Burned	1.075	2.627	-44.514	-13.604	
	Unburned	-4.192	1.695	-3.597	-2.031	
Overall	Mean N. Rates	-1.559	2.161	-24.056		
mean	CV (%)		-605.34			
incan	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 0.382; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS =None Significant (p≤0.05)

Time(yrs)	Trash management	١	Nitrogen rates	5	Mean Trash	Maan tima
		0	50	100	management	Mean time
	Burned	12.177	19.360	18.936	16.824	
	Unburned	22.564	33.733	27.334	27.877	
<10	Mean N. Rates	17.371	26.547	23.135		22.351
	CV (%)		61.65			22.331
	LSD, (p≤0.05)		NS		NS	
	Burned	1.400	2.694	3.700	2.598	
	Unburned	0.516	4.871	3.048	2.812	2 705
>10	Mean N. Rates	0.958	3.783	3.374		2.705
>10	CV (%)		116.38			
	LSD, (p≤0.05)		NS		NS	
	Burned	6.789	11.027	11.318	9.711	
	Unburned	11.540	19.302	15.191	15.344	
Overall	Mean N. Rates	9.164	15.165	13.254		
mean	CV (%)		162.57			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 102: Influence of sugarcane management practices on nitrous oxide fluxes in week 25

*NV = Natural vegetation 0.212; *Figures are CH₄ flux rate ($\mu g N_2 O - N m^{-2} hr^{-1}$); *NS = None Significant (p≤0.05)

Appendix 103: Variation of nitrous oxide fluxes with sugarcane management practices in week 26

Time(yrs)	Trash management	Ν	Vitrogen rate:	S	Mean Trash	Maan tima
		0	50	100	management	Mean time
-	Burned	-0.856	-9.632	-0.615	-3.701	
	Unburned	-9.549	-5.200	2.913	-3.945	
<10	Mean N. Rates	-5.203	-7.416	1.149		-3.823
	CV (%)		-283.87			-3.823
	LSD, (p≤0.05)		NS		NS	
	Burned	1.896	5.887	2.446	3.410	
	Unburned	-0.696	3.092	-0.076	0.773	2.001
>10	Mean N. Rates	0.600	4.489	1.185		2.091
>10	CV (%)		202.81			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.520	-1.873	0.916	-0.146	
	Unburned	-5.122	-1.054	1.418	-1.586	
Overall	Mean N. Rates	-2.301	-1.463	1.167		
	CV (%)		-1095.84			
mean	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 1.647; *Figures are CH₄ flux rate ($\mu g N_2 O - N m^{-2} hr^{-1}$); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rate	s	Mean Trash	Mean time
	_	0	50	100	management	Mean time
	Burned	1.520	2.161	1.064	1.582	
<10	Unburned	0.413	1.322	2.772	1.502	
(10	Mean N. Rates	0.966	1.742	1.918		1.542
	CV (%)		137.36			1.542
	LSD, (p≤0.05)		NS		NS	
	Burned	2.032	0.991	-0.265	0.919	
	Unburned	-2.733	0.716	-3.935	-1.984	0.522
>10	Mean N. Rates	-0.350	0.853	-2.100		-0.532
>10	CV (%)		-872.82			
	LSD, (p≤0.05)		NS		NS	
	Burned	1.776	1.576	0.399	1.250	
	Unburned	-1.160	1.019	-0.581	-0.241	
Overall	Mean N. Rates	0.308	1.297	-0.091		
mean	CV (%)		740.87			
	LSD, (p≤0.05)		NS		NS	NS

Appendix	104: Factors	influencing	nitrous	oxide fl	uxes in	week 27

*NV = Natural vegetation -0.200; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Appendix	105: Sugarcane	management	practices	influencing	nitrous	oxide	fluxes	in
week 28								

Time(yrs)	Trash management		Nitrogen rates		Mean Trash	Maan tima
	-	0	50	100	management	Mean time
	Burned	1.260	0.083	0.711	0.684	
	Unburned	0.601	0.368	0.140	0.370	
<10	Mean N. Rates	0.931	0.225	0.425		0.527
	CV (%)		125.59			0.327
	LSD,		NS		NS	
	(p≤0.05)				115	
	Burned	-4.288	-0.417	5.553	0.283	
	Unburned	-4.115	-5.330	0.046	-3.113	-1.425
>10	Mean N. Rates	-4.201	-2.873	2.800		-1.423
>10	CV (%)		-656.26			
	LSD,		NS		NS	
	(p≤0.05)		IND		INS	
	Burned	-1.514	-0.167	3.132	0.484	
	Unburned	-1.757	-2.481	0.093	-1.382	
Overall	Mean N. Rates	-1.635	-1.324	1.612		
mean	CV (%)		-1392.29			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation -0.985; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management	Ν	Vitrogen rate:	S	Mean Trash	Mean time
		0	50	100	management	Mean time
	Burned	0.587	0.160	-0.299	0.149	
	Unburned	2.521	-1.275	2.024	1.090	
<10	Mean N. Rates	1.554	-0.557	0.863		0.620
	CV (%)		336.26			0.020
	LSD, (p≤0.05)		NS		NS	
	Burned	-0.265	-0.315	0.207	-0.125	
	Unburned	1.252	0.861	-1.927	0.062	-0.031
>10	Mean N. Rates	0.493	0.273	-0.86		-0.031
>10	CV (%)		-11897.3			
	LSD, (p≤0.05)		NS		NS	
	Burned	0.161	-0.078	-0.046	0.012	
	Unburned	1.886	-0.207	0.049	0.576	
Overall	Mean N. Rates	1.023	-0.142	0.001		
mean	CV (%)		1016.06			
mean	LSD, (p≤0.05)		NS		NS	NS

Appendix 106: Drivers of nitrous oxide fluxes in week 29

*NV = Natural vegetation 0.194; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Appendix 107: Sugarcane management practices contributing to nitrous oxide fluxes in week 30.

Time(yrs)	Trash management	Ν	Vitrogen rates	3	Mean Trash	Moon time
		0	50	100	management	Mean time
	Burned	-1.108	1.494	4.121	1.502	
	Unburned	2.591	-2.148	3.451	1.298	
<10	Mean N. Rates	0.742	-0.327	3.786		1.400
	CV (%)		220.36			1.400
	LSD, (p≤0.05)		NS		NS	
	Burned	0.582	1.305	1.203	1.030	
	Unburned	-4.781	0.452	1.774	-0.852	0.089
>10	Mean N. Rates	-2.100	0.879	1.488		
>10	CV (%)		4900.21			
	LSD, (p≤0.05)		NS		NS	
	Burned	-0.263	1.400	2.662	2.266	
	Unburned	-1.095	-0.848	2.612	0.223	
Overall	Mean N. Rates	-0.679	0.276	2.637		
mean	CV (%)		494.20			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation -0.601;*Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management	Ν	itrogen rate	es	Mean Trash	Maantina
		0	50	100	management	Mean time
	Burned	-0.423	0.859	1.336	0.590	
	Unburned	0.687	0.627	0.142	0.485	
<10	Mean N. Rates	0.132	0.743	0.739		0.538
	CV (%)		350.35			0.558
	LSD, (p≤0.05)		NS		NS	
	Burned	0.087	0.114	-0.093	0.036	
	Unburned	0.065	1.193	-0.078	0.393	0.215
>10	Mean N. Rates	0.076	0.653	-0.086		0.215
>10	CV (%)		231.57			
	LSD, (p≤0.05)		NS		NS	
	Burned	-0.168	0.486	0.621	0.313	
	Unburned	0.376	0.910	0.032	0.439	
Overall	Mean N. Rates	0.104	0.698	0.327		
mean	CV (%)		388.43			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 108: Contribution of conversion period, trash management and nitrogen fertilizer application on nitrous oxide fluxes week 31

*NV = Natural vegetation 1.413;*Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Appendix 109: Effect of conversion period, trash management and nitrogen fertilizer
application on nitrous oxide fluxes in week 32

Гime(yrs)	Trash management	1	Nitrogen rates	3	Mean Trash	Moonting
	-	0	50	100	management	Mean time
	Burned	4.005	0.452	-8.121	-1.221	
	Unburned	1.133	-0.168	5.290	2.085	
<10	Mean N. Rates	2.569	0.142	-1.416		0.432
	CV (%)		1439.76			0.432
	LSD, (p≤0.05)		NS		NS	
	Burned	0.314	5.434	0.483	2.077	
	Unburned	0.213	1.256	-0.674	0.265	1.171
	Mean N. Rates	0.264	3.345	-0.095		1.1/1
	CV (%)		330.91			
	LSD, (p≤0.05)		NS		NS	
	Burned	2.159	2.943	-3.819	0.428	
	Unburned	0.673	0.544	2.308	1.175	
Overall	Mean N. Rates	1.416	1.744	-0.756		
mean	CV (%)		621.46			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 0.906; *Figures are CH₄ flux rate ($\mu g N_2 O - N m^{-2} hr^{-1}$);*NS = None Significant (p≤0.05)

Time(yrs)	Trash management	Nitrogen rates			Mean Trash	Maria
-		0	50	100	management	Mean time
	Burned	1.693	1.127	1.732	1.517	
	Unburned	1.763	4.424	0.684	2.291	
<10	Mean N. Rates	1.728	2.776	1.208		1.904
	CV (%)		89.49			1.904
	LSD, (p≤0.05)		NS		NS	
	Burned	1.344	0.831	1.584	1.253	
	Unburned	-5.424	1.539	0.769	-1.039	0 107
>10	Mean N. Rates	-2.040	1.185	1.177		0.107
>10	CV (%)		3340.05			
	LSD, (p≤0.05)		NS		NS	
	Burned	1.519	0.979	1.658	1.385	
	Unburned	-1.831	2.982	0.727	0.626	
Overall	Mean N. Rates	-0.156	1.980	1.192		
mean	CV (%)		268.03			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 110: Influence of sugarcane management practices on nitrous oxide fluxes in week 33

*NV = Natural vegetation -1.168; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management	Nitrogen rates			Mean Trash	Maan time
	-	0	50	100	management	Mean time
	Burned	4.065	-0.121	2.818	2.254	
	Unburned	2.125	2.347	1.677	2.050	
<10	Mean N. Rates	3.095	1.113	2.248		2.152
	CV (%)		121.87			2.132
	LSD, (p≤0.05)		NS		NS	
	Burned	2.282	-1.153	0.576	0.568	
	Unburned	0.203	4.459	-0.461	1.400	0.004
>10	Mean N. Rates	1.242	1.653	0.058		0.984
>10	CV (%)		273.01			
	LSD, (p≤0.05)		NS		NS	
	Burned	3.173	-0.637	1.697	1.411	
	Unburned	1.164	3.403	0.608	1.725	
Overall	Mean N. Rates	2.169	1.383	1.153		
mean	CV (%)		163.84			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 111: Factors contributing to nitrous oxide fluxes in week 34

*NV = Natural vegetation -3.274; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹) ;*NS = None Significant (p≤0.05)

Time(yrs)	Trash management	Ν	Vitrogen rate	s	Mean Trash	Mean time
		0	50	100	management	Mean time
	Burned	3.617	2.398	7.760	4.592	
	Unburned	6.087	1.766	0.472	2.775	
<10	Mean N. Rates	4.852	2.082	4.116		3.683
	CV (%)		113.71			5.085
	LSD, (p≤0.05)		NS		NS	
	Burned	3.096	2.450	-2.360	1.062	
	Unburned	-4.635	2.797	2.420	0.194	0.60
>10	Mean N. Rates	-0.770	2.624	0.030		0.628
	CV (%)		661.08			
	LSD, (p≤0.05)		NS		NS	
	Burned	3.356	2.424	2.700	2.827	
	Unburned	0.726	2.282	1.446	1.485	
Overall	Mean N. Rates	2.041	2.353	2.073		
mean	CV (%)		187.19			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 112: Variation of nitrous oxide fluxes with sugarcane management practices in week 35

*NV = Natural vegetation 1.647; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management		Nitrogen rates	2	Mean Trash	
Time(yis)		0	50	100	management	Mean time
	Burned	5.364	8.322	1.010	4.899	
	Unburned	0.522	2.519	5.672	2.905	
<10	Mean N. Rates	2.943	5.421	3.341	2.905	
	CV (%)	2.913	150.14	5.511		3.902
	LSD, $(p \le 0.05)$		NS		NS	
	Burned	2.855	7.659	0.689	3.734	
	Unburned	-2.519	2.868	-12.699	-4.117	0 101
>10	Mean N. Rates	0.168	5.264	-6.005		-0.191
>10	CV (%)		-5148.61			
	LSD, (p≤0.05)		NS		NS	
	Burned	4.110	7.990	0.849	4.316	
	Unburned	-0.998	2.694	-3.513	-0.606	
Overall	Mean N. Rates	1.556	5.342	-1.332		
mean	CV (%)		418.42			
	LSD, (p≤0.05)		NS		NS	NS

Appendix 113: Sugarcane management practices influencing nitrous oxide fluxes in week 36

*NV = Natural vegetation 3.595; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Time(yrs)	Trash management	l	Nitrogen rates	Mean Trash	Maantima	
	_	0	50	100	management	Mean time
	Burned	-0.280	0.871	3.670	1.421	
	Unburned	1.190	1.480	-5.168	-0.833	
<10	Mean N. Rates	0.455	1.175	-0.749		0.294
	CV (%)		2132.01			0.294
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	2.485	-0.766	16.249	5.989	
	Unburned	-4.567	4.928	6.355	2.239	4.114
>10	Mean N. Rates	-1.041	2.081	11.302		4.114
>10	CV (%)		304.00			
	LSD,					
	(p≤0.05)		NS		NS	
	Burned	1.103	0.052	9.960	3.705	
	Unburned	-1.689	3.204	0.593	0.703	
Overall	Mean N. Rates	-0.293	1.628	5.277		
mean	CV (%)		516.23			
	LSD,					
	(p≤0.05)		NS		NS	NS
*NV = N	atural vegetation -0.27	6; *Figures	are CH ₄ flu	ix rate (µ	$g N_2 O - N m^{-2}$	hr^{-1}); *NS =

Appendix 114: Contribution of conversion period, trash management and nitrogen fertilizer application on nitrous oxide fluxes in week 37

*NV = Natural vegetation -0.276; *Figures are CH₄ flux rate (μ g N₂O –N m⁻² hr⁻¹); *NS = None Significant (p≤0.05)

Appendix 115: Cumulativenitrous oxide emission due to conversion period, trash management and nitrogen fertilize

Time(yrs)	Trash management	Ν	Nitrogen rate	s	Mean Trash	Mean time
	-	0	50	100	management	Mean time
	Burned	0.540	0.655	0.653	0.616	
	Unburned	0.371	0.977	1.568	0.972	
<10	Mean N. Rates	0.455	0.816	1.110		0.794
	CV (%)		80.89			0.794
	LSD, (p≤0.05)		NS		NS	
	Burned	1.007	0.972	1.451	1.144	
	Unburned	0.745	0.965	1.384	1.032	1.088
>10	Mean N. Rates	0.876	0.969	1.418		1.000
>10	CV (%)		NS	NS		
	LSD, (p≤0.05)		62.740			
	Burned	0.774	0.813	1.052	0.880	
	Unburned	0.558	0.971	1.476	1.002	
Overall	Mean N. Rates	0.650	1.422	0.750		
mean	CV (%)		92.48			
	LSD, (p≤0.05)		NS		NS	NS

*NV = Natural vegetation 0.626; *Figures are CH₄ flux rate (kg / ha / yr); *NS = None Significant ($p \le 0.05$)