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ABSTRACT 

In Western Kenya, malaria is a major cause of morbidity and mortality with more than 70% of the 

population at risk.Its decline over the last 25 years indicates a shift  to older children majority of who are  

asymptomatic. Kenya uses artemisinin combination therapy (ACT) specifically artemether-lumefantrine 

(AL) as first line for treatment of malaria infections and sulfadoxine-pyrimethamine (SP) as prophylaxis 

in pregnant women. However, delayed parasite clearance has been observed in Kenya. Resistance to 

antimalarials specifically ACT‟s and SP is associated with various polymorphisms in P. falciparum 

multidrug resistance gene 1 (Pfmdr1), multidrug resistance-associated protein 1 (Pfmrp1), dihydrofolate-

reductase (Pfdhfr), dihydropteroate-synthase (Pfdhps), and chloroquine resistance transporter (Pfcrt) 

genes. While symptomatic  malaria infections are recognized and treated, recent reports have revealed a 

largeproportion of asymptomaticinfections.A recent study in Kombewa indicated that some asymptomatic 

participants did not clear parasites or disrupt transmission in a large proportion of study population 

despite adequate treatment. Given the limited data on drug resistance in asymptomatic infections, 

molecular epidemiological studies of drug resistance are required to assess these infections. The first 

objective was to determine Plasmodium species prevalence (P.falciparum, P.malarie, P.ovale wallikeri, 

P.ovale curtisi- Pf, Pm, Pow, Poc), second objective was to determine frequency of anti-malarial 

resistance gene polymorphisms and third objective was toinvestigate gametocyte variability in 

symptomatic and asymptomatic infections. In a retrospective cross-sectional study molecular 

techniqueswere used toanalyze 230 archived whole blood samples collected between 2018 and 2021 in 

Kombewa under malaria epidemiology surveillance and malaria transmission study representing 

symptomatic and asymptomatic infection. The species composition(Pf, Pm, Pow, Poc) and gametocyte 

carriage (Pfs16, Pfs25) were determined using real-time polymerase chainreaction and analyzed using 

excel.Genotyping of Pfmdr1 86, 184 & 1246; Pfmrp1 437, 876 &1390; Pfdhfr 16, 22, 59 & 164; Pfdhps 

436, 437 & 581, and Pfcrt 72, 76, 271, 326, 356 single nucleotide polymorphisms (SNPs)were assayed 

using Mass ARRAY platform and analyzed against the reference 3D7 genome. Data and statistical 

analysis wasdone using excel and Chi square tests in STATA.Of the 230 samples analyzed, Plasmodium 

species prevalence was; Pf 64.35% (148/230), Pm 26.52%, (61/230), Pow 9.57% (22/230), Poc 6.09% 

(14/230).The symptomatic Pf comprised 70.59% (24/34), Pm 17.65% (6/34), Poc 11.76% (4/34), and 

Pow 8.82% (3/34) while for asymptomatic Pf 63.27% (63/196), Pm 28.06% (55/196), Poc 5.1% (10/196), 

and Pow 9.69% (19/196). Co-infections were higherfor Pf/Pm; symptomatic 11.76% (4/34), 

asymptomatic 19.39% (38/196) compared to all the other species combinations (≤6%).The Pfmdr1_184 

harbored symptomatic 68.75% (11/16) and asymptomatic 52% (26/50) mutations, while Pfmdr1_1246 

had 6% mutants in both symptomatic (1/16) and asymptomatic (2/30).For Pfmrp1 gene codon 437 had no 

mutations in symptomatic while asymptomatic had only one mutation (1/30). Pfmrp1 codon 876, 

symptomatic reported 47.05% (8/17) & asymptomatic 37.93% (11/29). Pfmrp1 1390 symptomatic had 

6.67% (1/15) and asymptomatic 6.9% (2/29) mutations respectively. Pfdhfr codons 16 and 22 had no 

mutations for symptomatic and asymptomatic. Pfdhfr 59 & 164 had 88.24% (15/17) and 90.91% (30/33) 

mutants for symptomatic and asymptomatic respectively. For both symptomatic and asymptomatic 

Pfdhps codons 436, 437 and 581 did not reveal any mutants.The Pfcrt gene, codons72, 76, & 356 did not 

have any mutations for either symptomatic or asymptomatic. Pfcrt 326 & 371 had 3.23% (1/31) and 

11.11% (4/36) mutations in asymptomatic only.Overall gametocyte carriage was 65.65% (151/230), 

symptomatic cases positives werePf16 85.29 (29/34); Pf25 79.41% (27/34); Pf16Pf25 93.1% (29/29) 

while asymptomatic had Pf16 68.88% (135/196); Pf25 67.86% (133/196) &Pf16Pf25 86.1% (124/144). 

Even though proportional comparisons did not reveal statistical significance, this study was critical in 

revealing variations of Plasmodium species prevalence, frequency of drug resistance markers, and 

gametocyte variability  in symptomatic and asymptomatic infections. Findings highlight the need for 

heightened molecular surveillance and management of malaria infectionsfor timely and informed 

interventions in all infections. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

Malaria is still considered to be a public health concern despite interventions with 249 million 

cases reported globally; the World Health Organization (WHO) African Region accounted for 

94% of these including the 608,000 deaths(WHO, 2021a, 2023), with Kenya accounting for 2%. 

InKenyamore than 70% of the population isat constant risk of getting malaria as reported by the 

2021 Kenya Malaria Indicator Survey.Kenya has several malaria epidemiological zones that 

includes; high lake endemic (including Kombewa), highland epidemic, moderate coast endemic, 

seasonal low transmission and low risk zones (Githinji et al., 2016) which presents as a 

challenge in malaria case management, interventions and control. Kombewa sub-county, located 

in western Kenya is classified as malaria holoendemic region with prerennial transmission. A 

study by Kapesa et al. showed that in 2016, malaria accounted for 29.9% of all outpatient visits, 

and 36.9% of hospital admissions with a 5.2% fatality ratein the sub-county. Asymptomatic 

infections were reported at >40% (Ondeto et al., 2022).This is a clear indication that malaria 

elimination strategies seem to have plateaued across sub-Saharan Africa despite sustained 

interventions (WHO, 2021a, 2023).Moreover,Lake Victoria region and the surrounding areas 

remain highly endemic with presence of symptomatic and asymptomatic infections but the true 

burden is underestimated because conventional diagnosis may miss a substantial amount of 

asymptomatic submicroscopicinfections(Idris et al., 2016; Imwong et al., 2014; Kapesa et al., 

2018).Furthermore the emergence and transmission of drug resistant parasites, insecticide 

resistance and asymptomatic submicroscopic infections include some of the stumbling blocks 

thatchallenge the goal for malaria elimination globally and threaten the recent gains in malaria 

control(WHO, 2021a).  

The contribution of asymptomaticparasite carriers in the persistent transmission of malaria is not 

well understood with few studies in Kenya comparing the symptomatic and asymptomatic 

infections.Studies have shown that asymptomatic infections are prevalent in endemic 

regions(Bousema et al., 2014; Dokunmu et al., 2019a; Idris et al., 2016; Lin et al., 2014; 

Lindblade et al., 2013) yet limited information is available about the Plasmodium species 

prevalence and parasite genotype circulating in this population. Challenges in detection and 

management of asymptomatic infections at the community level is attributed to the semi 
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convenient sampling of the symptomatic malaria(Kapesa et al., 2018)and diagnostic difficulties 

for the asymptomatic who mostly have sub-microscopic parasitemia and can be easily missed by 

microscopy which is the standard diagnostic method in most health care facilities(Andagalu et 

al., 2023; Andolina et al., 2021).This warrants the need for expansion of surveillance programs 

to include asymptomatic infections and incooperate use of molecular methods which are more 

sensitive for accurate assessment and evaluation of symptomatic and asymptomaticinfections as 

in the case of the current study. 

Eight species of malaria parasite that are known to infect humans include the following; P. 

falciparum, P. malariae, P. ovale curtisi, P. ovalewallikeri, P. vivax P. knowlesi, P. cynomolgi, 

and P. simium with the last three being zoonotic (Tang et al., 2020). P. ovale wallikeri, P. 

ovalecurtisi, and P. malariae species consists of less than 10% of all infections and are found in 

many parts of sub Saharan Africa(WHO, 2016).Although they are not regarded as being virulent, 

infections with P. ovale and P.malariecan be chronic and are associated with kidney disease, 

anemia among other comorbidities (Hawadak et al., 2021; Hayashida et al., 2017). The 

Plasmodium species vary in virulence, with P. falciparum and P. vivax being the most virulent 

and prevalent globally (Visser et al., 2014). Although most studies focus on P. falciparum and 

P.vivax species, their have been reports of steady increase in malaria cases linked to P.malarie 

and P. ovale species in many parts of South America and sub-Saharan Africa in both 

symptomatic and asymptomatic infections(Hayashida et al., 2017; Woldearegai et al., 

2019).However most programs focus on symptomatic leaving out asymptomatic infections and 

this raises concern for malaria control and elimination efforts. The sympatric co-existence of 

Plasmodium species may cause co-transmission of more than one species by the same mosquito 

during a blood meal or inoculation of various parasite species sequentially leading to 

superinfection (Akala et al., 2021; Tang et al., 2020). Moreover, the features associated with 

clinical malaria due to P. ovale species and P.malarie species are not well understood yet scanty 

data is available on the same (Hawadak et al., 2021). Previous study in Kombewa on therepeutic 

efficacy of ACT on non falciparum species revealed a prevalence of 28% of other Plasmodium 

species using molecular techniques that was missed by microscopy at enrollment among the 

symptomatic malaria (Chemwor et al., 2023). Futhermore another study in the same region on 

asymptomatic infections identified a large proportion of study participants who were 

continuously infected however they did not characterize the Plasmodium species prevalence 
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(Andagalu et al., 2023). This emphasizes the need for more studies using sensitive techniques on 

both symptomatic and asymptomatic infections to determinePlasmodiumspecies prevalence as in 

these study for proper identification and tailored interventions inorder to achieve the malaria 

elimination goals. 

The co-infections comprising of P. falciparumand P. malariae is significantly associated with 

reports of a decreased risk of presenting with fever at the clinic in a Kenyan study(Akala et al., 

2021) thus remaining asymptomatic and undetected. Furthermore, P.ovale and P.malarie species 

are often misdiagnosed as P.vivax and P.falciparum respectively thereby complicating diagnosis 

and causing asymptomatic infectious reservoirs that may jeopardize malaria control and 

elimination efforts (Kotepui et al., 2020a, 2020b).Some studies indicate that Plasmodium species 

interactions modulate malaria transmissionfor specific species infections yet they remain 

undetected by conventional diagnostic methods mostly used in the healthcare facilities (Gnémé 

et al., 2013; Tang et al., 2020; Zimmerman et al., 2004). Recently recognized as an important 

malaria transmission reservoir, asymptomatic infections is a major hurdle for malaria elimination 

(Schneider et al., 2007). Previous study in Kombewa region revealed increased prevalence of 

Plasmodium species however the study focused on symptomatic infections only (Akala et al., 

2021). Control and elimination strategies of malaria therefore need to employ highly sensitive 

techniques to identify such reservoirs (Woldearegai et al., 2019).These findings underscores the 

need for attention towards all Plasmodium speciesin symptomatic and asymptomatic infection. 

Based on this,the current study determined the prevalence of Plasmodium species using sensitive 

RT-PCR for symptomatic & asymptomatic  infections in Kombewa during 2018 – 2021 period. 

Antimalarial drug resistance is attributed to single nucleotide polymorphisms (SNPs) in various 

P.falciparum genes, including: the multidrug resistant (Pfmdr1) gene on chromosome 5 and 

multidrug resistant protein 1 (Pfmrp1) (ATP-binding cassette transporters associated with 

artemisinin, amodiaquine, chloroquine, lumefantrine and mefloquine, resistance); the 

dihydrofolate reductase (Pfdhfr) gene on chromosome 4 (associated with pyrimethamine 

resistance); dihydropteroate synthetase (Pfdhps) gene on chromosome 8 (associated with 

sulphadoxine resistance) and chloroquine transporter resistance gene (Pfcrt) on chromosome 7 (a 

drug-metabolite transporter associated with chloroquine resistance) (Njokah et al., 2016; Somé et 

al., 2016).Antimalaria drug resistance has been observed to emanate in well-defined regions that 
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have distinct epidemiological zones (Takala-Harrison et al., 2015).The emergence of P. 

falciparum resistance to chloroquine (CQ) and later sulfadoxine-pyrimethamine (SP) was first 

reported in southeastern Asia and later spread to sub-Saharan Africa which harbors the greatest 

malaria burden (Maïga-Ascofaré & May, 2016). Following resistance to chloroquine and 

sulfadoxine-pyrimethamine, the Artemisinin Combination Therapies (ACTs) were introduced 

leading to a steep decline in malaria globally.Howeverreports of emergingantimalaria drug 

resistance and delayed parasite clearance remains one of the biggest challenges for malaria 

eradication programs worldwide(Imwong et al., 2017; Su et al., 2019). Decreased parasite 

susceptibily and resistance to artemisinin have been reported in Greater Mekong sub-Region 

(GMS) in Asia(Nsanzabana, 2019) and is associated with Kelch 13 gene mutation in the 

propeller gene domain. In addition, studies have confirmed emerging Kelch 13 gene mutation 

linked with artemisinin resistance in Rwanda (Achieng et al., 2020) and Uganda (Asua et al., 

2021; Balikagala et al., 2021)even though the exact resistance mechanism is not clearly 

understood.Although the reported Kelch 13 gene mutation in Africa are associated with slow 

parasite clearance, ACTsare still in use and efficacious in Kenya, Uganda (Uwimana et al., 2020) 

and few other countries in the horn of Africa (WHO, 2020). Therefore, there is need for more 

studies and surveillance on the other antimalaria drug resistance genes (Nsanzabana et al., 2018). 

One of the most valuable methods used for assessing antimalarial drug efficacy is use of these 

molecular markers to detect and monitor drug resistant parasite (WHO, 2021a). Nevertheless, 

most of these studies focus on the profiles among the symptomatic malaria 

infectionsonly(Chebore etal., 2020; Eyase et al., 2013). Recent study on asymptomatic infections 

by Andagalu et al conducted in Kombewa ahigh malaria burden settings revealed that despite 

treatment with artemether-lumefantrine, theseasymptomatic infections were frequently positive 

for malaria raising the concern of poor response of asymptomatic infections to treatment 

(Andagalu et al., 2023). However the study by Andagalu did not conduct genetic characterization 

to determine the parasite drug resistance genotypes in these infections. Based on these findings, 

the current studydetermined the frequency ofmalaria drug resistance single nucleotide 

polymorphisms amongst symptomatic and asymptomatic malaria infections by genotyping of 

Pfmdr1, Pfmrp1, Pfdhfr andPfcrt genes using the iPLEX MassARRAY platform during the 

period of 2018 and 2021 in Kombewa sub county.These are validated markers associated with 

the current antimalarial used for treatment. This study was imperative to discern whether the 
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asymptomatic or symptomatic phase of the infections has a central reservoir of resistance role 

because monitoring the drug resistance to the available antimalarial drugs helps to implement 

effective drug policy (Antony & Parija, 2016).  

Gametocyte carriage is important for assessment because it is the key stage that is transmitted by 

mosquitoes during its blood meal. Data from Senegal, Cameroon, The Gambia and Mali indicate 

that over 25% of individuals with sub-microscopic gametocytes were capable of infecting 

mosquitoes (Bousema et al., 2012). Studies on gametocyte carriage indicate that increasing 

proportions of gametocytes in malaria infections are submicroscopic and asymptomatic(Koepfli 

et al., 2017; Ouédraogo et al., 2018). However, a study in Kombewa Kenya by Andagalu et al 

indicated that individuals having submicroscopic parasitemia were at a lower risk of 

gametocytemia compared to those who had microscopic parasitemia  yet they transmitted at a 

significantly higher rate. Moreover, no studies have compared the variability of gametocytes in 

symptomatic and asymptomatic malaria infections in this region therefore this study was 

paramount.These asymptomatic infections and gametocytes are usually challenging in their 

diagnosis as they occur at submicroscopic densities in older children and adults (Andagalu et al., 

2023; Myers-Hansen et al., 2020; Walldorf et al., 2015) and can be easily missed by the 

conventional diagnostic tools in most health care facilities yet they act as infectious reservoirs for 

malaria transmission(Koepfli et al., 2021). Furthermore, most malaria surveys use light 

microscopy for investigating gametocyte carriage thus the true prevalence and contribution of 

sub-microscopic gametocyte carriage in symptomatic and asymptomatic infections maybe 

underestimated thereby having huge implications for the design and application of anti-malarial 

interventions (D‟Alessandro, 2018; Galatas et al., 2016).  

Achieving malaria elimination requires interrupting transmission as well as identifying and 

treating all carriers, including symptomatic and asymptomatic malaria infections that provide 

silent transmission reservoirs. Currently, gametocyte detection has been revolutionized by 

introduction of RNA-based molecular diagnostic assay (Gaur et al., 2017; Imwong et al., 2014; 

Tedla, 2019). Specific RNA transcripts including Pfs25 expressed on female gametocytes, Pfs16 

(earliest marker of sexual stage developement) and Pfs230 expressed on both sexes can be used 

for screening (Gaur et al., 2017; Gebru, Lalremruata, et al., 2017; Singh et al., 2020; Wang et 

al., 2020). Use of sensitive molecular techniques like PCR are critical in screening and diagnosis 

of these infections to give a true estimate and their overall contribution to the transmission of 
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malaria in symptomatic and asymptomatic infections. The current study used reverse 

transcriptasereal time quantitative PCR to investigate the variability of gametocytes by targeting 

Pfs16 and Pfs25 markers in symptomatic and asymptomatic infectionsin Kombewa within 

Kisumu County, Kenya during the period between 2018 – 2021. 

Given that parasites with antimalarial drug-resistant genes have a higher probability of producing 

great numbers of gametocytes as compared to wild type parasites (Abdul-Ghani et al., 2015), 

transmission of drug-resistant genes through gametocytes is intensified hence the need for more 

studies on symptomatic and asymptomatic infections(Barnes et al., 2008; Méndez et al., 2002; 

Price et al., 1999).This data is essential for the evaluation and design of strategies to disrupt 

malaria transmission. 

1.2 Statement of the Problem 

Most programs and studies focus on P.falciparum and P.vivax globaly but P.malarie and P.ovale 

are not covered in many control programs. Recent studies have reported a steady rise in  

infections containing P.ovale species andP.malariewhich are associated with chronic anaemia 

and other cormobidities yet limited data is available on these species. Microscopy and rapid 

diagnostic tests results in poor differenciation of the Plasmodium species forP.ovale and 

P.malariae leading to improper case management.Moreover gene polymorphisms associated 

with antimalaria drug resistance is reported to be on the rise hence the need for heightened 

surveillanceespecially with reports of resistance to ACTs in sEA and recently in Rwanda and 

Uganda.Furthermore, drug pressure is the primary factor responsible for the evolution and spread 

of drug-resistant parasites, and it is often more significant in symptomatic infections than in 

asymptomatic cases.However the asymptomatic reservoir plays a vital role in the transmission of 

drug-resistant parasites after clinical interventions, and thus, it contributes to the evolution and 

spread of antimalarial resistance as in previous cases for chloroquine and sulphadoxine-

pyremethamine.In addition, large numbers of gametocytes are more likely to be produced in the 

presence of antimalarial drug-resistant parasites compared to wild type parasites therefore 

transmission of gametocytes harboring drug-resistant genes is enhanced yet microscopy may fail 

to detect submicrosopic gametocytes.Areas Surrounding Lake Victoria remain highly endemic, 

despite a declining transmission since 2000 (Collins et al., 2018; Kapesa et al., 2018, Idris et al., 

2016 Takala et al., 2009) with studies reporting increased asymptomatic infections in endemic 
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areas(Niang et al., 2017). Use of molecular techniques inassessing the prevalence of Plasmodium 

species, frequency of antimalarial drug resistance markers and gametocyte variability in 

symptomatic and asymptomatic infections during the period of 2018 to 2021 was essentialas it is 

the first study to conduct side by side comparison in Kombewa region. 

1.3 Objectives 

1.3.1 Main Objective 

To assessPlasmodium species prevalence, antimalarial drug resistance genes polymorphisms and 

gametocytesin symptomatic and asymptomatic  infections in Kombewa, Kenya. 

1.3.2 Specific Objectives 

i. To determine prevalence of Plasmodium species in symptomatic and asymptomatic  

infections in Kombewa, Kenya. 

ii. To determine the frequency of Pfmdr1, Pfmrp1, Pfdhfr, Pfdhps &Pfcrt single nucleotide 

polymorphisms associated with antimalarial drug resistance in symptomatic versus 

asymptomatic infections. 

iii. To determine the variability of gametocyte carriage in symptomatic and asymptomatic 

infections in populations in Kombewa within Kisumu County, Kenya. 

1.4 Research Questions 

i. What is the prevalence of Plasmodium speciesin symptomatic and asymptomatic malaria 

infections in Kombewa within Kisumu County, Kenya? 

ii. What is the frequency of Pfmdr1, Pfmrp1, Pfdhfr, Pfdhps &Pfcrt single nucleotide 

polymorphisms that are associated with antimalarial drug resistance in symptomatic and 

asymptomatic population in Kombewa Kisumu County, Kenya? 

iii. What is the variability of gametocytes carriage in symptomatic and asymptomatic malaria 

infections in populations in Kombewa within Kisumu County, Kenya? 
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1.5 Research Hypothesis 

i. Ho1: There is no difference in the prevalence of Plasmodium speciesin symptomatic 

malaria and asymptomatic infections in Kombewa within Kisumu County, Kenya. 

ii. Ho2: The frequency of Pfmdr1, Pfmrp1, Pfdhfr, Pfdhps &Pfcrt single nucleotide 

polymorphisms that are associated with antimalarial drug resistance are not different in 

symptomatic and asymptomatic infections in Kombewa Kisumu County, Kenya. 

iii. Ho3: There is no variability of gametocytes carriage in symptomatic malaria and 

asymptomatic  infections in Kombewa within Kisumu County, Kenya. 

1.6 Study Significance 

The current study used real time-PCR to determine Plasmodium species prevalence in 

symptomatic and asymptomatic infections which is paramount for accurate diagnosis and 

subsequent case management of all malaria infections(Woldearegai et al., 2019). The WHO has 

put in place programs that focus on P.falciparum and P.vivax leading to a significant decline 

globaly but P.malarie and P.ovale are not covered in many control programs (Iwagami et al., 

2017). Reports of rising prevalence of these non-falciparum species highlights the need for a 

focus on all Plasmodium species as opposed to targeted specific species inorder to determine 

their prevalence(Akala etal., 2021). Furthermore,recent study on asymptomatic infections 

reported increased frequency of malaria infections despite adequate treatment in Kombewa yet  

genotypes associated with drug resistance were not assessed (Andagalu et al., 2023). Therefore, 

the results from the current study are of great importance for determining the frequencies of the 

single nucleotide polymorphism in these genes following use of Mass ARRAY platform 

especially with recent reports of delayed parasite clearance and drug resistance to 

ACTs(Balikagala et al., 2021) in symptomatic and asymptomatic infections. In addition, a 

considerable proportion of malaria infections consist of gametocytes at various quantities 

however the conventional diagnostic tools may fail to detect submicroscopic  gametocytes and 

asymptomatic infections yet a  more robust sensitive tool applicable for clinical purposes is still 

lacking. Sensitive screening techniques i.e reverse transcriptase Real Time PCR as used in this 

study was crucial for accurate detection of submicroscopic parasitemia and asymptomatic 

infections subsequently resulting to improved estimation of the disease implication and better 

understanding as regards transmission dynamics of malaria in human populations. Asymptomatic 

infections have become increasingly prevalent in many endemic areas and is the parasite‟s best 
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asset for survival (Lin et al., 2014)yet they are not included in the malaria control and 

elimination programs. The assessment of symptomatic and asymptomatic  infections using 

molecular techniques is critical for acquisition of precise data to guide the design and 

implementation of strategies for interrupting malaria transmission and for informing the outcome 

of malaria control measures. Moreover, strengthened focus on malaria eradication is needed for 

disruption of transmission by use of sensitive techniques for proper identification and treatment 

of both symptomatic and asymptomatic (Woldearegai et al., 2019)infections whereby molecular 

techniques used in this study were essential. 

The findings from this study were essential in giving more insight on Plasmodium species 

prevalence, frequency of antimalaria drug resistant genotypes and the variability of gametocytes 

among symptomatic and asymptomatic infections as there are implications for understanding and 

forecasting their burden. This is key for enhancement and sustainability of the recent progress in 

malaria control and elimination whose efforts seem to have stalled. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Malaria Prevalence 

In the previous decades malaria declined slightly from 238 million cases in 2000 to 229 million 

in 2019 globally with reports of regression and elimination in several regions including; 

Armenia, Argentina, Algeria, Morroco, Paraguay, Kyrgyztan and United Arab Emirates (WHO, 

2015a). However, malaria is still considered to be a public health concern despite interventions 

whereby 249 million cases were reported globally and sub-Saharan Africa accounted for 94% of 

these including the 608, 000 deaths (WHO, 2021a, 2023).Slow progress in malaria decrease 

between 2019 and 2020 was reported in the World Health Organization (WHO) Africa region, 

where Kenya accounted for 2% of the burden (WHO, 2021a). One study in Kombewa region by 

Kapesa revealed that malaria accounted for 29.9% of all outpatient visits, 36.9% of hospital 

admissions with a 52% fatality rate in the Sub-County (Kapesa et al., 2018) predominantly in 

under five years old children. Despite declining malaria transmission, there are reports of 

resurgence by 56% in this region (Andagalu et al., 2023; Ondeto et al., 2022).Malaria prevention 

efforts such as the deployment of the RTS, S/AS01, which is a pre-erythrocytic vaccine may not 

replace the use of antimalarial drugs. This is because studies have reported moderate vaccine 

efficacy particularly in malaria endemic regions (Takala & Plowe, 2009; WHO, 2016). Malaria 

continues to persist as a result of increasing cases of non-falciparum Plasmodium species(Akala 

et al., 2021), emerging cases of anti-malaria drug resistance and asymptomatic submicroscopic 

infections(Andagalu et al., 2022; Asua et al., 2021; Nguitragool et al., 2017; WHO, 2017, 2018). 

Consequently,assessment ofPlasmodium parasites in symptomatic and asymptomatic 

infectionsas in the case of the current study is important for precise case management and 

informed control strategies. 

2.2 Symptomatic and Asymptomatic  Infections 

Symptomatic malaria is characterized by a high temperature of 38°C and above, muscle pains 

and generally feeling un-well, vomittingwith recurrent fever and chills, which often trigger 

treatment-seeking behavior once parasite replication becomes synchronous(WHO, 2015a). In 

some cases, the infection may result in parasitemia of different densities, without fever or other 

symptoms, in otherwise healthy individuals, therefore regarded asymptomatic or chronic 

infections(Ramaswamy et al., 2020). Asymptomatic infections have been reported in various 
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regions across the globe including; Solomon Island, Brazil, Peru and Colombia (Branch et al., 

2005; Cucunubá et al., 2008; Laishram et al., 2012; Lee et al., 2010).In Africa, over 90% of 

asymptomatic infectionsare in older children and adults(Golassa et al., 2015a; Kapesa et al., 

2018; Njama‐ Meya et al., 2004) including Western Kenya,with Kombewaregion having the 

highest prevalence of 40%(Ondeto et al., 2022) and also bearing the highest risk of 

asymptomatic infections(Baliraine et al., 2009; Kapesa et al., 2018; Ondeto et al., 2022). While a 

majority of studies and programs focus on symptomatic malaria which is well studied, the 

epidemiological variables that are linked to asymptomatic submicroscopic infections are not 

captured well in the malaria control programs (Golassa et al., 2015b; Lindblade et al., 2013). 

Furthermore, following recent reports of declines in clinical symptomatic malaria, studies 

indicate the increasing asymptomatic parasite carriers are key in maintaining transmission 

(Iwagami et al., 2017; Lover, Dantzer, et al., 2018; Niang et al., 2017; Sáenz et al., 2017). Sub-

microscopic parasitemia are not easily detected by microscopy or RDT in asymptomatic 

individuals yet they serve as a silent infectious reservoir for transmission by anopheles 

mosquitoes and may advance to symptomatic malaria (Golassa et al., 2015b; Njama‐ Meya et 

al., 2004).Therefore sensitive diagnostic techniques are needed to determine their prevalence for 

infomed descion making and intervention strategies(Cheaveau et al., 2019).This study used 

sensitive molecular techniques to assess the Plasmodium species prevalence, frequency of drug 

resistance gene polymorphisim and gametocyte variability in symptomatic and asymptomatic 

infections in Kombewa a lake endemic malaria region inorder to inform malaria control 

strategies and timely intervention. 

The WHO recommends diagnosis of malaria by microscopy (considered as the gold standard)and 

rapid diagnostic test (RDT) for patients with suspected malaria for confirmation before 

treatment(WHO, 2013). Microscopy requires high level of expertise inorder to achieve 

sensitivity that can be used for quantificationofthe parasite, species differentiation and parasite 

life cycle stage identification(Golassa et al., 2015a)however it can not detect low levels of 

submicroscopic asymptomatic parasitemia hence a substantial proportion is missed. The RDTs 

are much easier to use for detection ofspecific Plasmodium antigen from the parasite using one 

or more of the three antigen targets including lactate dehydrogenase (LDH),Histidine-rich 

protein 2(HRP2), and aldolase.The HRP2 is the most used target antigen broadly for malaria 

RDTs and is only expressed by P. falciparum while aldolase and LDH are expressed by all 
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Plasmodium species however they normally yield lower accuracy in diagnosis in the 

commercially available RDTs (Golassa et al., 2015a; WHO, 2013). Molecular techniques such as 

PCR are useful in the determination of the true burden of malaria among symptomatic and 

asymptomatic infections in endemic areas which is facilitated in this study for planning effective 

malaria control strategies. 

Some studies have revealed that infections remain asymptomatic due to sustained 

submicroscopic peripheral parasitemia, (Kho et al., 2021; Pava et al., 2016) age and therefore 

immunity of the infected individual, and varying malaria pyrogenic threshold that is dependent 

on immunity. Moreover, untreated asymptomatic infections can end up into a chronic infection 

characterized by changes in the red cell precursors and high levels of erythrophagocytosis, 

anaemia and other associated commorbidities (Matangila et al., 2014). Malaria intervention and 

elimination efforts requires more than treatment of symptomatic clinical cases to focusing on 

community transmission by prompt identification and treatment of asymptomatic infections (Wu 

et al., 2015).This is key because the sensitivity of tests may be lower in the asymptomatic 

infections as compared to the symptomatic malaria. Elimination programs should therefore target 

both symptomatic and the challenging asymptomatic infectious reservoirs to rapidly eliminate 

the disease (Price et al., 2004). Consequently, this study used molecular techniques to determine 

prevalence of Plasmodium species, frequency of antimalarial drug resistance genes and 

gametocyte variability in symptomatic and asymptomatic infections in Kombewa Kisumu 

County, Kenya. 

2.3 Plasmodium Species  in Symptomatic and Asymptomatic  Infections 

2.3.1 Plasmodium Species Prevalence 

Recent studies have revealed that different Plasmodium species composition also play a critical 

role in malaria infection (Akala et al., 2021) yet limited information on their prevalence is 

available. In addition, studies have reported conflicting findings about Plasmodium species 

infection in asymptomatic infections and its role in symptomatic malaria, whereas some studies 

have found decreased P. falciparum parasitemia, (Bereczky et al., 2007; Males et al., 2008; 

Portugal et al., 2017; Sondén et al., 2015), some have indicated an increase in P. falciparum 

parasitemia in different populations (Eldh et al., 2020; Le Port et al., 2008; Liljander et al., 2011; 

Njama‐ Meya et al., 2004; Nsobya et al., 2004). Asymptomatic infection is prevalent in malaria 
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endemic areas and is mostly associated with high prevalence of anemia that varies from mild to 

moderate (Amato et al., 2017). Findings of infections comprising multiple Plasmodium species 

have been documented from various reports (Bruce et al., 2000; Ebrahimzadeh et al., 2007; 

Snounou, Pinheiro, et al., 1993). Moreover, studies have focused on P.falciparum and P. vivax 

because they are more virulent and prevalent however in recent years, their have been reports of 

increase in P. ovale wallikeri, P. ovale curtisi and P.malarie in many parts of South America and 

WHO African regionin symptomatic and asymptomatic  infections yet they remain as neglected 

tropical diseases (Hayashida et al., 2017). In malaria endemic regions with consistently high 

transmission like Nigeria (Engelbrecht et al., 2000),Tanzania (Babiker et al., 1999) and partly 

Senegal (Babiker et al., 1999; Konaté et al., 1999), it has been estimated that between 70% and 

90% of all infections harbors more than one Plasmodium species (Soulama et al., 2009). Another 

study in Lagos reported that of the seemingly healthy individuals, 20% (175/888) were infected 

with Plasmodium species (Phommasone et al., 2016). The most abundant and virulent malaria 

parasite in Kenya is P. falciparum which is associated with symptomatic malaria nevertheless, 

there have been reports of other Plasmodium species including P. ovale wallikeri, P. ovale 

curtisi and P.malarie with trends of increase in P. ovale(Akala et al., 2021; Chemwor et al., 

2023)in Kombewa. However, scanty data is available on their prevalence in symptomatic and 

asymptomatic infections which is key for assessing malaria intervention programs and informing 

control strategies.  

 

2.3.2 Clinical Symptoms 

The clinical symptoms of malaria start between 7 to 85 days after initial inoculation depending 

on the infecting Plasmodium species nonetheless, parasitemia may also persist in non-immune 

individuals for as long as two, four or eight years before onset of symptoms depending on the 

Plasmodium species present (Greenwood et al., 2008). Some of the factors that influence 

progression and development of symptomatic malaria that are well studied include age, 

immunity and transmission intensity of the site (Buchwald et al., 2019; Worku et al., 2014). 

The clinical characteristics associated with P. ovale wallikeri, P. ovale curtisi and P.malarie are 

poorly understood with very few reported studies available as compared to P. falciparum and 

P.vivax. Although they are not regarded as being virulent, P. ovale and P.malarie are associated 

with kidney disease and anemia among other comorbidities (Hawadak et al., 2021; Hayashida 

etal., 2017). Moreover, diagnostic challenges for species differenciation based on microscopy 
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whereby P.ovale and P.malarie species are often misdiagnosed as P.vivax and P.falciparum 

respectively thereby complicating diagnosis and causing asymptomatic infectious reservoirs that 

may jeopardize malaria control and elimination efforts (Kotepui et al., 2020a, 2020b). There 

have been reports that chemokines produced when the body mounts an immune response will 

interact depending on the Plasmodium species present whereby when an individual is reinfected 

by a second species, parasitemia due to the first species is down-regeulated (Bruce & Day, 

2003). Some studies indicate that these interactions modulate malaria transmission (Gnémé et 

al., 2013; Tang et al., 2020; Zimmerman et al., 2004) for certain species in an infection and 

Plasmodium species co-infections may determine the resource allocation within a host depending 

on the species present yet scanty data is available on the prevalence of these species. This study 

provides valuable insight on the prevalence of Plasmodium species among symptomatic and 

asymptomatic infections during the period of 2018 to 2021 in Kombewa region. 

2.3.3 Infection Diagnosis 

These asymptomatic infections that comprise of different  Plasmodium species, including those 

that can be easily missed by microscopy or Rapid Diagnostic Tests (Eichner et al., 2001; Tadesse 

et al., 2018) result in transmission to mosquitoes during blood meal (Wu et al., 2015). Moreover, 

even though RDTs takes a shorter time and can be easily used by nonskilled personell, they do 

not offer improved sensitivity as it decreases when parasitemia falls below 100 parasites per 

microlitre (Milne et al., 1994) in addition to false positivity due to antigens in circulation after 

the parasite has been cleared and failure to distinguish the different Plasmodium species 

present(Perandin etal., 2004). Several assays have been designed based on genus and species 

specific sequence of the single strand rRNA of the parasites 18S subunit rRNA(Balbir Singh et 

al., 1999; Kawamoto et al., 1996; Seesod et al., 1997).PCR assays are more sensitive over RDT 

and microscopy because they are highly specific and can detect as few as five parasites per 

microlitre(Moody, 2002) therefore they are idealfor identifying mixed species infections that can 

be overlooked by the conventional diagnosis used in most healthcare facilities(Balbir Singh et 

al., 1999; Snounou, Viriyakosol, et al., 1993).Most recent PCR based on fluorescent label tags 

enables continuous monitoring of PCR product formation as the assay is ongoing and has been 

adapted for detection of human Plasmodium parasite species that can be used for screening large 

number of samples(Calderaro et al., 2013; Lee et al., 2002).On this account, this study used real 

time PCR molecular assays as previously described by Calderaro and co-wokers to determine the 
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prevalence of Plasmodium species in symptomatic and asymptomatic infections in Kombewa a 

lake endemic malaria region in Kenya. 

 

2.4 Malaria Drug Resistance Markers in Symptomatic and Asymptomatic Infections 

2.4.1Resistance to Artemisinin Combination Therapy 

The programs for malaria control recommends prophylaxis or therapeutic measures using 

chemotherapeutic agents (WHO, 2010, 2015b). However, implementation of these strategies are 

threatened by the inception and spread of drug-resistance (Happi et al., 2005; WHO, 2018). 

Presently, the global distribution and frequency of drug-resistant P.falciparum is variable and is 

partly a reflection of the transmission intensity and drug deployment patterns (Ippolito et al., 

2021). Currently, in malaria endemic countries uncomplicated malaria is treated by use of 

artemisinin based combination therapies (ACTs) which is the first-line treatment (Ebenebe et al., 

2018; Ishengoma et al., 2019; Sowunmi et al., 2016; WHO, 2018). Nevertheless, the parasites 

habouring Kelch 13 gene mutations on chromosome 13 associated with resistance to artemisinin 

have been reported in Cambodia and subsequently in all countries of Greater Mekong Subregion 

(GMS) in Asia (WHO, 2010). Studies have confirmed emerging Kelch 13 gene mutation linked 

with artemisinin resistance in Rwanda (Achieng et al., 2020) and Uganda (Asua et al., 2021; 

Balikagala et al., 2021). Moreover, although delayed clearance of the parasite following 

artemisinin treatment has been reported in several African countries including Kenya (Beshir et 

al., 2013) Nigeria (Sowunmi et al., 2016) and Angola (Plucinski et al., 2017), the association of 

Kelch13 mutations with clinical resistance is not clear furthermore those mutations reported in 

South East Asia have not been observed in Africa commonly (Balikagala et al., 2017; Ménard et 

al., 2016; Muwanguzi et al., 2016). Such studies as that of Beshir  highlighted above emphasize 

the need for surveys on other targets linked to antimalaria resistance. This will broaden strategies 

that prevent resistance and account for genomic evolution that greatly vary and differ as per 

geographic regions.  

 

2.4.2 Plasmodium falciparum Single Nucleotide Polymorphisms 

Antimalarial drug resistance is attributed to single nucleotide polymorphisms (SNPs) in various 

P.falciparum genes, including: the multidrug resistant (Pfmdr1) gene on chromosome 5 and 

multidrug resistant protein 1 (Pfmrp1) (ATP-binding cassette transporters associated with 

artemisinin, amodiaquine, chloroquine, lumefantrine and mefloquine, resistance); (Kavishe et al., 
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2009; Sanchez et al., 2010) the dihydrofolate reductase (Pfdhfr) gene on chromosome 4 

(associated with pyrimethamine resistance); dihydropteroate synthetase (Pfdhps) gene on 

chromosome 8 (associated with sulphadoxine resistance) (Gesase et al., 2009; Sridaran et al., 

2010), and chloroquine transporter resistance gene (Pfcrt) on chromosome 7 (a drug-metabolite 

transporter associated with chloroquine resistance) (Njokah et al., 2016; Somé et al., 2016). 

Studies have reported resistance of the parasite to ACT patner drugs including aminoquinolines, 

amodiaquine and also chloroquine which is associated with polymorphisms in the Pfmdr1, 

Pfmrp1, Pfdhfr, Pfdhps and Pfcrt genes (Sidhu et al., 2006; Venkatesan et al., 2014), however 

majority of these studies have been conducted on symptomatic malaria infections only leaving 

out asymptomatic infections. Moreover, reports of high frequency of positivity for malaria 

infection despite treatment in asymptomatic infections in Kombewa a malaria endemic region in 

Kenya is a cause for worry (Andagalu et al., 2023). It was therefore essential to evaluate the 

genotypes of parasite isolates circulating in symptomatic and asymptomatic infections because 

these parasites are often exposed to sub-optimal doses of anti-malarial drugs and the single 

nucleotide polymorphisms alter parasite susceptibility to ACTs (WHO, 2017). 

Although previous studies have been conducted in Western Kenya on polymorphisms in these 

drug resistance markers, none has done a comparison of symptomatic and asymptomatic 

infections (Achieng et al., 2015; Chebore et al., 2020; Ngalah et al., 2015). Most studies focus 

on symptomatic malaria with scanty information on parasite genotypes in asymptomatic 

infections yet they arereported to be silent infectious reservoirs that enhance malaria 

transmission. Drug pressure is the primary factor responsible for the evolution and spread of 

drug-resistant parasites, and it is often more significant in symptomatic infections than in 

asymptomatic cases (Myers-Hansen et al., 2020) however, the asymptomatic reservoir plays a 

vital role in the transmission of drug-resistant parasites after clinical interventions, (Khalid, 

2013)and thus, it contributes to the evolution and spread of antimalarial resistance as in previous 

cases for chloroquine (CQ) and sulphadoxine-pyremethamine (SP) (Hastings & Watkins, 2005; 

Myers-Hansen et al., 2020). The emergence of P. falciparum resistance to chloroquine and later 

sulfadoxine-pyrimethamine was first reported in South East Asia and later spread to sub-Saharan 

Africa which harbors the greatest malaria burden (Maïga-Ascofaré & May, 2016). Continuous 

surveillance of single nucleotide polymorphisms associated with changes in antimalarial drug 
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sensitivity is essential for monitoring parasite genetic profile, conserving ACT efficacy and 

keeping track of selection(Venkatesan, 2014).  

 

2.4.3 Artemether Lumefantrine and Sulphadoxine Pyremethamine Drug Resistance 

In Kenya, artemether lumefantrine is used as first-line treatment for malaria and also 

sulphadoxine-pyrimethamine is administered for intermittent preventive treatment in pregnancy. 

Nonetheless, ACTs regimen of a short acting and a long acting drug comes with the potential of 

promoting resistance to the patner drugs which has a longer halflife and exists in the body system 

at subtherapeutic concentrations for several weeks (Venkatesan, 2014) and the persistence 

presence of SP resistance may render the drugs to be ineffective(Osborne et al., 2023).Findings 

show changing frequency of these genotypes in the population and persistence of others long 

after change of antimalaria drug policy(Eyase et al., 2013). In addition studies have revealed 

reports of synergism on the various drug resistance genotypes and continuous high prevalence of 

mutations in genes associated with antimalaria drug resistance(Bustamante et al., 2012; 

Gbotosho et al., 2012). However, most of these studies focus on the profiles among the 

symptomatic malaria infections only therefore this study was imperative to discern whether the 

asymptomatic or symptomatic phase of the infections has a central reservoir of resistance role. 

The speed of mutants selections occurring within parasite populations is dependent on the 

pharmacokinetics of the antimalarial drug as well as the level of its utilization in 

thecommunity(Adamu et al., 2020).The development ofanti-malaria drug resistance is a big 

challenge in malaria endemic regions(Blasco et al., 2017; Cravo et al., 2015) and even though 

in-vitroand in vivotechniques can be used for assessing antimalria efficacy, it is expensive and 

skilled expertise is required. Consequently assessing antimalarial drug efficacy using these 

molecular marker analyses to detect and monitor drug resistant parasite provides a less costly 

alternative for assessing a large number of genes targets (Apinjoh et al., 2019)that 

providesequally valuable information for putting in place informed malaria control measures and 

strategies (WHO, 2021a).Rapid and timely molecular surveys such as the use of MassARRAY 

molecular techniques to establish the frequency of single nucleotide polymorphisms (SNPs)in 

antimalarial drug resistance genes as in this study is essential in order to inform regional drug 

policies and other stakeholders.  
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The MassARRAY platform utilizes the extension of PCR based single nucleotide base and has 

been previously described as being suitable for assaying SNPs linked to antimalaria drug 

resistance in Kenya (Yeda et al., 2016).The system uses a matrix-assisted laser desorption 

ionization time of flight mass spectrometry (MALDI-TOF) paired with single base extension 

PCR for single nucleotide polymorphism detection of the multiplex reaction (Syrmis et al., 2011) 

and is considered to be less expensive. The current study assessed the frequency of Pfmdr1 86, 

184 & 1246; Pfmrp1 437, 876 &1390; Pfdhfr 16, 22, 59 & 164; Pfdhps 436, 437 & 581, and 

Pfcrt 72, 76, 271, 326, 356 gene polymorphisms using MassARRAY platform in symptomatic 

and asymptomatic infections in Kombewa region during the period of 2018-2021 as tracking 

these molecular markers provides a tool for detecting emergence and distribution of parasites 

resistance genes (Nsanzabana et al., 2018). 

2.4.5 Pfmdr1 Single Nucleotide Polymorphisms 

The Pfmdr1 gene encodes for P-glycoprotein homologue 1 protein and is located on 

chromosome 5.It is a transmembrane protein with two domains that act as a site for ATP 

bindingin the digestive vacuole of the parasite (Antony & Parija, 2016). Moreover, antagonistic 

selective pressures following separate use of the antimalarials have been suggested by several 

genetic studies whereby the parasites harboring Pfmdr1 N86, 184F and D1246 genotypes are 

prevalent in African countries that use AL as the first line drug for treatment of malaria whereas 

those containing 86Y, Y184 and 1246Y alleles are prevalent in African countries that use 

artesunate-amodiaquine as first-line antimalarial drug (Okell, Reiter, Ebbe, Baraka, Bisanzio, 

Watson, Bennett, Verity, Gething, & Roper, 2018). Emergence of single nucleotide 

polymorphisms in Pfmdr1 N86Y, Y184F and D1246Y N86Y, Y184F and D1246Y is linked to 

the predominant use of artemether-lumefantrine and artesunate-amodiaquine in Africa for the 

treatment of uncomplicated malaria (Tukwasibwe et al., 2014). The changes in sensitivity to 

lumefantrine and amodiaquine which are partner drugs in artemisisnin based combination 

therapy is assessed by evaluating frequency of these mutations(Okell, Reiter, Ebbe, Baraka, 

Bisanzio, Watson, Bennett, Verity, Gething, & Roper, 2018). Findings from various studies have 

revealed that parasites carrying a combination of Pfmdr1 N86, 184F, and D1246 (NFD) portray 

reduced susceptibility to artemether-lumefantrine and that treatment with this drug can select for 

such haplotypes (Baliraine & Rosenthal, 2011; Sondo et al., 2016). In Uganda, Dokomajilar 

etal.,(Lee et al., 2006; Somé et al., 2010) highlighted that after treatment with artemether 
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lumefantrine, there was increased frequency of these Pfmdr1 alleles and the trend persisted in 

patients presenting with clinical failure. Moreover, in Tanzania, a high frequency of Pfmdr1 

86Y, Y184 and 1246Y was observed by Humphreys et al in patients who failed treatment with 

amodiaquine but observed contradicting results in those who were treated with artemether-

lumefantrine but failed treatment. Polymorphisms on Pfmdr1 in Nigeria is mostly found in 

Southern part and the frequency showed positive association between clinical failure and Pfmdr1 

N86, F184 and D1246 alleles (Happi et al., 2009). The Pfmdr1 alleles carrying wild type N86 

residue are associated with higher IC50 and IC90 values for mefloquine, lumefantrine and 

dihydroartemisinin while the alternative 86Y residue seems to confer increased resistance against 

amodiaquine and chloroquine(Veiga et al., 2016). 

2.4.6 Pfmrp1 Single Nucleotide Polymorphisms 

The P.falciparum multidrug resistance-associated protein 1 (Pfmrp1) is similar to Pfmdr1. MRP 

assists in the the transportation of organic anionic substrates and drug. The two mutations on 

positions Y191H and A437S in PfMRP are associated with chloroquine and quinine resistance 

(Mu et al., 2003). It is involved in varying antimalaria response to drug in association with other 

transporters(Antony & Parija, 2016). 

2.4.7 Pfdhps and Pfdhfr Single Nucleotide Polymorphisms 

Resistance to sulphadoxine pyrimethamine occurs through mutations at the genes encoding P. 

falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) (Gesase etal., 

2009; Sridaran et al., 2010). Nonetheless sulphadoxine pyrimethamine treatment failure is 

strongly associated with single nucleotide polymorphisms commonly referred to as the triple 

mutations are found at Pfdhfr gene in three codons namely,N51I, C59R and S108N and double 

mutations in the Pfdhps at codons A437G and G540E and mutations at Pfdhps codon 613S have 

been reported and documented in Africa (McCollum et al., 2008) whereas the 436 and 581 

mutations confer some degree of resistance. Recent findings have indicated that the presence of 

the 581G mutation may compromise continued IPTp using sulphadoxine pyrimethamine, 

however other studies suggest that IPTp with this drug seems to be effective even in regions with 

a high frequency of quintuple P. falciparum mutants (Spalding et al., 2010). This study analyzed 

Pfdhfr codons 16, 22, 59 & 164; Pfdhps codons 436, 437 & 581 to assess their frequency in the 

symptomatic and asymptomatic infections in Kombewa Kenya.The swift spread of P. falciparum 
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resistant genes that are associated with reduced susceptibility to sulphadoxine pyrimethamine in 

areas of malaria endemicity poses a major threat to the prevention of malaria in pregnancy where 

the WHO‟s 2021 world malaria report revealed that of the estimated 33.8 million in the WHO 

Africa region, one in three pregnancies (34 per cent, 11.6 million pregnancies) were exposed to 

malaria infection (Mockenhaupt et al., 2007; Staedke et al., 2001). Sulphadoxine pyrimethamine 

drug combination was adapted into the Kenyan National Policy in 1998 for use as Intermittent 

Preventative Treatment prophylaxis (IPTp) for malaria in pregnancy (Eijk et al., 2015) and also 

in Tanzania (Mikomangwa et al., 2020) however the continued selection pressure for mutations 

associated with sulphadoxine pyrimethamine resistance may render it to be 

ineffective.Previously, increased mortality in African children was attributed to P. falciparum 

resistance to chloroquine and later to sulfadoxine-pyrimethamine (Greenwood, 2004; Korenromp 

et al., 2003) therefore surveillance is warranted for detection of emerging resistance to enable 

timely intervention and averting similar occurence.  

2.4.8 Pfcrt Single Nucleotide Polymorphisms 

Previously, chloroquine was the drug of choice for treating malaria until drug resistance 

emerged. The Pfcrt gene on chromosome 7, is responsible for encoding a digestive vacuole 

transmembrane protein, and mutations on this gene are associated with chloroquine resistance 

(Bray et al., 2005). P.falciparum susceptibility to lumefantrine, mefloquine and other aryl amino 

alcohols, (Sisowath et al., 2005) are attributed to point mutations at Pfcrt codon 76. There have 

been reports of re-emergence of chloroquine sensitive strains (Lu et al., 2017) however, it is 

uncertain if this re-emergence is a result the re-expansion of the susceptible parasites that 

survived the widespread drug pressure or reversal of mutations in formally resistant parasites in 

asymptomatic patients who serve as infectious reservoirs (Laufer et al., 2010). Pfcrt mutations 

are associated with resistance to amodiaquine, chloroquine and lumefantrine;in Kenya the Pfcrt 

gene particularly codons 72 – 76 CVIET and SVMNT haplotypes have been insinuated (Eyase 

etal., 2013) with the 76T point mutation being the main indicator for chloroquine resistance, 

while the SVMNT haplotype is associated with resistance to amodiaquine. Moreover, mutations 

on Pfcrt gene impact the intracellular disposition of heme, which serves as the ART activator 

(Combrinck et al., 2013; Lewis et al., 2014; Ross et al., 2018)(Fidock et al., 2000). Parasites 

harboring CVIET are highly resistant to chloroquine but moderately resistant to amodiaquine 

(Eyase et al., 2013) whereas those parasites carrying SVMNT haplotype behave inversely and 
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are highly resistant to amodiaquine, but moderately resistant to chloroquine (Sa & Twu, 2010). 

Furthermore, Pfcrt codon K76 is associated with emerging tolerance to lumefantrine (Lekana-

Douki et al., 2011; Mwai et al., 2009; Sa & Twu, 2010).  

2.4.9 Antimalaria Drug Resistance Genes and Synergism 

Following the deployment of artemether lumefantrine and discontinuation of chloroquine in 

Western Kenya, there was drastic increases in the frequency of Pfmdr1 N86 and Pfcrt K76 wild 

genotypes, however artemether lumefantrine was still efficacious despite the changes in this gene 

(Achieng et al., 2015). The EC50s for lumefantrine and mefloquine are reported to increase 

reciprocally with decrease in amodiaquine and chloroquine EC50s and these synergestic 

switching are linked to contrasting changes in the frequency of wild type versus mutant 

polymorphisms in Pfcrt and Pfmdr1 genes (Eyase et al., 2013; Humphreys et al., 2007). 

Conformational changes in the transporter protein due to mutations on the Pfmdr1 gene causes 

decreased intracellular drug accumulation which play a critical role and effect on parasite 

resulting in variable parasite response to artemisinin, ACT and non-ACT (Dokunmu et al., 

2019a; Gil & Krishna, 2017; Kaewpruk et al., 2016; Wurtz et al., 2014). There is known synergy 

between Pfcrt and Pfmdr1 gene mutations (Dokunmu et al., 2019b) with reports of decreased in 

vivo and in vitro sensitivity to chloroquine in resistant isolates habouring the Pfcrt 76T 

polymorphisim that is strongly associated with Pfmdr1 mutation in codon 86Y (Bustamante etal., 

2012; Gbotosho et al., 2012).This highlights the need to investigate their frequencies for timely 

intervention to stop the expansion of resistant parasites habouring antimalarial gene mutations 

and for efficient malaria control strategies. 

2.5 Gametocyte Variability in Symptomatic and Asymptomatic  Infections 

2.5.1 Gametocyte Prevalence 

Malaria transmission in humans is dependent on the presence of mature gametocyte stages in the 

circulating peripheral blood and their release from asexual progenitors is variable among 

Plasmodium species. A significant portion of malaria infections habour gametocytes (Bousema 

et al., 2006; Koepfli et al., 2017). Studies across the globe have reported different gametocyte 

densities in Peru, Indonesia, and Papua New Guinea (Kosasih et al., 2021; Rovira-Vallbona etal., 

2017). In sub-saharan Africa, a considerable proportion of the malaria infections contain 

gametocytes, Mali 89%, (Adomako-Ankomah et al., 2017), Burkina Faso 97% (Ouédraogo et 

al., 2008) and Malawi (Coalson et al., 2018). Reports from Senegal, Gambia, Mali and 
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Cameroon indicate that over 25% of individuals with sub-microscopic gametocytes are capable 

of infecting Anopheles mosquitoes (Bousema et al., 2012). In Western Kenya prevalence of 

gametocytes has been reported with varying densities in symptomatic and asymptomatic 

infections (Andagalu et al., 2023; Omondi et al., 2019; Touray et al., 2020). Gametocyte 

production is dependent on immunity among other factors whereby in symptomatic infections, 

the gametocyte infectivity might be reduced because of gametocyte-inactivating activity 

associated with inflammation and commitment to gametocytes might also be early or lower when 

parasites invest more in asexual multiplication compared with asymptomatic infections (Price 

etal., 1999; Shute & Maryon, 1951; Smalley et al., 1981). However limited studies have assessed 

the variability of gametocytes in symptomatic and asymptomatic infections yet they are key for 

transmission (Stone et al., 2015). Gametocyte screeningis key for malaria diagnosis, determining 

response to treatment and for characterizing the dynamics of malaria transmission (Babiker et 

al., 2008;WHO, 2018, 2021b). However, gametocytes normaly circulate at low density therefore 

detection using microscopy may capture only 50% of the carriers leaving out a considerable 

proportion of  undetected gametocytes (Kepple et al., 2022; Wampfler et al., 2013). An infection 

with P.falciparum normally exhibits a gametocyte sex ratio of approximately one male to three 

or four females however the ratios varies by place, season and clone (Paul & Brey, 2003; 

Sowunmi et al., 2007; Talman et al., 2004). Moreover almost a quarter of the plasmodial genes 

are expressed during the sexual stages whereby specific RNA transcripts including Pfs25 and 

Pvs25 are expressed on female gametocytes while Pfs230 are expressed on both sexes (Gebru, 

Ajua, et al., 2017; Khan et al., 2005). The Pfs16 m RNA is the earliest sexual stage marker that 

is expressed in all gametocyte stages and Pfs25 is is expressed in mature gametocytes(Babiker et 

al., 2008; Baker, 2010; Wang, 2020). Studies have reported that gametocytes can be 

intermittently seen and disappear therefore detection by microscopy is limited (Kepple et al., 

2022; Okell et al., 2012). Furthermore, most malaria surveys use light microscopy for 

investigating gametocyte carriage thus the true prevalence and contribution of sub-microscopic 

gametocyte carriage in symptomatic and asymptomatic infections might be underestimated and 

this may have having huge implications for the design and application of anti-malarial 

interventions (D‟Alessandro, 2018; Galatas et al., 2016). Use of sensitive molecular techniques 

like real time PCR are critical in screening and diagnosis of these submicroscopic parasitemia to 

give a true estimate and their overall contribution to the transmission of malaria (Omondi et al., 
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2019), however limited studies have assessed the variability of gametocytes in symptomatic and 

asymptomatic infections. The current study investigated gametocyte variability in symptomatic 

and asymptomatic infections by targeting Pfs16 and Pfs25 markers using reverse transcription-

quantitative PCR (RT-qPCR) in Kombewa Kisumu County, Kenya during the period of 2018 – 

2021. 

2.5.2 Gametocyte Density 

The mature Plasmodium falciparum gametocytes appear and circulate for a few weeks 10–12 

days following clearing of asexual parasites (Eichner et al., 2001). The gametocyte density is 

positively associated with parasite density within the asymptomatic population, and 83.8% of 

those who contribute to the infectious reservoir are individuals harboring microscopically 

detectable infections while the symptomatic malaria infections are uncommon comprising 0.6% 

only of the human infectious reservoir (0·040 episodes per person-year) (Koepfli et al., 2015). 

This very small contribution of symptomatic malaria infections to transmission is consistent with 

recent estimates for P. falciparum transmission in Ethiopia(Tadesse et al., 2018), but markedly 

different from findings in Thailand and Cambodia, where symptomatic malaria cases with high 

gametocyte densities were suggested to be more important than asymptomatic infections for 

maintaining malaria transmission (Lin et al., 2014; Vantaux et al., 2018). In Uganda, the 

episodes of symptomatic malaria are less likely to be gametocytaemic on presentation as 

compared with asymptomatic infections, suggesting that majority of symptomatic malaria cases 

present early, before the 9–12 days maturation of gametocytes is completed confirming that 

chronic asymptomatic infections with microscopically detectable parasitaemia are the most 

important drivers of transmission (Andolina et al., 2021; Rek et al., 2022). A recent study in 

Western Kenya by Andagalu et al indicated that individuals having submicroscopic parasitemia 

were at a lower risk of gametocytemia compared to those who had microscopic parasitemia (OR 

0.04, p < 0.001) yet they transmitted at a significantly higher rate (OR 2.00, p = 0.002). 

Furthermore, given that parasites with antimalarial drug-resistant genes have a higher probability 

of producing great numbers of gametocytes as compared to wild type parasites (Abdul-Ghani 

etal., 2015), transmission of drug-resistant genes through gametocytes is intensified. Moreover, 

even though treatment is given, the impact of antimalarial drugs on gametocytes is dependent on 

the drug type and level of drug resistance (Beshir et al., 2013; Dunyo et al., 2006)hence the need 

to assess their variability in symptomatic and asymptomatic  infections (Barnes etal., 2008; 



24 
 

Méndez et al., 2002; Price et al., 1999). However, limited studies have compared the variability 

of gametocytes in symptomatic and asymptomatic infections side by side in Kombewa and this 

formed the basis of the current study.  
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Study Area 

This study analyzed samples collected from Kisumu County specifically Kombewa in Western 

Kenya. Kombewa covers an area of about 369 km
2
andis in a rural part on the north-eastern 

shores of Lake Victoria about 25 km from Kisumu town along Bondo-Kisumu Road (Figure 

3.1). The area is positioned along Lake Victoria which is an important factor in etiology and 

transmission of malaria and is classified as lake endemic region(Peter Sifuna et al., 2014). 

Figure 3.1: Map of Kombewa HDSS Area. Adapted from “Health & Demographic 

Surveillance System Profile: The Kombewa Health and Demographic Surveillance System 

(Kombewa HDSS)”, by Sifuna et al., 2014. 

3.2 Study Population 

The study analyzed archived 230 samples that had been collected from symptomatic individuals 

seeking treatment at Kombewa hospital as symptomatic group(n=34) alongside samples obtained 

from healthy individuals from randomly selected households in Kombewa Community during 

random study visits, the asymptomatic group(n=196). The symptomatic samples were collected 

from Kombewa County hospital under ongoing epidemiology of malaria surveillance study 

while the asymptomatic samples were collected from community homesteads mapped in the 

Kombewa Health Demographic Surveillance System (HDSS)(P. Sifuna et al., 2014)under the 
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malaria transmission dynamics study from 2018 to 2021.Symptomatic infections were as per the 

classical clinical manifestation of malaria i.e a high temperature of 38°C and above, muscle pains 

and generally feeling un-well often characterized by recurrent fever and chills, which often 

trigger treatment-seeking behavior once parasite replication becomes synchronous. 

Asymptomatic infections presented as parasitemia of different densities, without fever or other 

symptoms, in otherwise healthy individuals. Therefore, asymptomatic infection referered to 

Plasmodium infections of any density in an individuals who did not have fever (< 37.5C) or 

acute illness. 

3.2.1 Inclusion Criteria 

 Symptomatic 

I. Samples collected from patients who presented with symptoms of malaria and had a 

positive parasitological test by microscopy or malaria Rapid Diagnostic Test. 

 Asymptomatic 

II. Samples collected from residents within the study area in good general health as 

evidenced by medical history and clinical examination by the clinician. 

III. Samples positive for Plasmodium genus. 

3.2.2 Exclusion Criteria 

 Symptomatic 

I. Samples with participant age below 10 years. 

 Asymptomatic 

II. Samples with incomplete demographic data. 

1.1 Study design 

The study design was a retrospective cross-sectional survey on archived samplesobtained from 

symptomatic and asymptomatic participants with infections between 2018 and 2021 and the 

assays were conducted at malaria drug resistance laboratory in Kenya Medical Research 

Institute,Centre for Global Health Research(KEMRI-CGHR) in Kisian. 

3.3 Sample Size Calculation 

Sample size for this study was calculated usingFisher‟s formula(Fisher, 1936)where malaria 

prevalence in Kombewawas estimated at18.4% and a population of 141,956(Peter Sifuna et al., 

2014). 
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The following formula was used: 

n= Z
2 

pq 

d
2 

n = desired sample size (for population target >10,000) 

Z = value for 95% confidence level (1.96) 

p = approximate proportion of the population with the attribute in question (18.4%)  

q =1-p 

           d
2
 = standard error at 95% confidence limit (0.05) 

1.96
2
x0.184x0.816=230 

0.05
2
 

The proposed sample size was230. 

The samples were randomly distributed between the symptomatic (n=34) and asymptomatic 

(n=196) infections. 

3.4 Sample Accession, Retrieval and Processing 

Permission was sought from the Principal Investigator of the parent study and the supervisor in 

line with the office protocol to access and retrieve the samples. Subsequently, whole blood 

samples that were collected in EDTA microtainers and stored at -80°C freezers were used for 

nucleic acid extraction. Consent for long term storage and characterization of samples in -line 

with emerging scientific innovations had been obtained from all the study participants prior to 

enrolment to the parent study. It is based on that consent that the samples remain available for 

additional studies. Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) was extracted from 

200µl of whole blood samples that had been stored at -80
0
C using Kingfisher™ Flex Purification 

System (Applied Biosystem) which is based on automated magnetic-particle processor. It was 

eluted at 100 µl and stored at -20
0
C pending laboratory assays. 

3.5 Laboratory Procedures 

3.5.1 Plasmodium Genus Detection and Species Determination 

Detection of Plasmodium using genus specific 18srRNA based Real-Time PCR assay was 

conducted using primers and other components of PCR in the assay as described by (Kamau et 

al., 2011). Amplification and real-time measurements were performed in the Applied Biosystems 

7500 analytical PCR system with the following thermal profile for qPCR: 10 min at 95°C, 40 

cycles of 15 s at 95°C, and 1 min at 60°C. For qRT-PCR, a 30-min cycle at 50°C was added as 
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the initial step for the reverse transcription process. For the reaction, 1 μl of template was added 

to 9 μl of reaction master mix containing 1× QuantiTect Probe RT-PCR Master Mix (Qiagen), 

0.4 μM each primer, 0.2 μM probe, and 4 mM MgCl2. For the qRT-PCR assay, 1 μl of 

QuantiTect RT Mix of enzymes was added to the reaction master mix. Subsequently, 

characterization of species composition assay for Plasmodium falciparum (Pf), Plasmodium 

malariae (Pm), Plasmodium ovale curtisi (Poc) and Plasmodium ovale wallikeri (Pow) using 

QuantStudio 6 Flex (Applied Biosystems) real-time PCR (qPCR) to confirm the species 

composition was done. All Plasmodium positive samples were assayed for species composition 

using a separate set of primers indicated in Table 3.1. The speciation assays forPf and Pmwas 

similar as the genus-specific Real-time PCR assay except for the primers used (similar PCR 

reaction components and conditions only). Genus-specific primers were replaced respectively by 

the species-specific primers. Specifically, FAL Reverse, FAL Forward, and FAL Probe were 

used for Pfidentification while MAL Forward, MAL Reverse, and MAL Probe were used for 

Pmidentification. All these primer sets were stored at -20
0
C freezer and were removed only when 

the need to use arose. Detection of the two P. ovale sub species adopted previously described 

methods (Calderaro et al., 2012). 

Table 3.1: Primers and probes used for screening and diagnosis of Plasmodium species  

Primers Probes Sequence 5‟-3‟ Target Spp.  
 

PLU F GCTCTTTCTTGATTTCTTGGATG Plasmodium spp. 

PLU R AGCAGGTTAAGATCTCGTTCG Plasmodium spp. 

PLU P ATGGCCGTTTTTAGTTCGTG Plasmodium spp. 

RNaSP F TGTTTGCAGATTTGGACCTGC Human RNase p 

RNaSeP R AATAGCCAAGGTGGAGCGGCT Human RNase p 

RNaseP P TGCGCGGACTTGTGGA Human RNase p 

FAL F ATTGCTTTTGAGAGGTTTTGTTACTT P. falciparum 

FAL R GCTGAGTATTCAAACACAATGAACTCAA P. falciparum 

FAL P CATAACAGACGGGTAGTCAT P. falciparum 

MAL F GCATGGAATTTTGTTACTTTGA P. malariae 

MAL R ATGCCTGTAGTATTCAACACAGAAAC P. malariae 

MAL P TGTTCAAAGCAAACAGTTAAAACA P. malariae 

OVA F TTTTGAAGAATACATTAGGATACAATTAATG P. ovale curtisi 

OVA R CATGCTTCCTCTAAGAAGCTTTACAAT P. ovale  

OVA-V F TTTTGAAGAATATATTAGGATACATTATAG P. ovale Wallikeri 

OVA-V R CATCGTTCCTCTAAGAAGCTTTACAAT P. ovale Wallikeri 

OVA P CCTTTTCCCTATTCTACTTAATTCGCAATTCATG P. ovale curtisi 

OVA-V P CCTTTTCCCTACTTAATTCGCTATTCATTG P. ovale Wallikeri 
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3.5.2 Gametocyte Detection 

Diagnosis of gametocytes specificallyPfs16 (early stage) andPfs25 (late stage) detection was 

carried out following RNA extraction using Applied Biosystems QuantStudio 6 Flex Real-Time 

PCR System.Specific primers and probesfor Pfs16 and Pfs25 wereusedto diagnose for the 

presence of gametocytes (Table.3.4).This was done using a one-step RT-PCR that enabled 

amplification of template RNA for the detection of gametocyte. Briefly, the assay consisted of a 

duplex assay encompassing 0.6 µl of AgPath-ID™ One-Step RT-PCR Reagent (Applied 

Biosystems, Foster City, California USA), 2 µl of the RNA template, 7.5 µl 2X RT-PCR Buffer, 

0.4 µl of each primer and probe and 0.5 µl of nuclease-free water. The PCR cycling conditions 

included an initial cDNA synthesis step at 50°C for 10mins, followed by a PCR initiation step at 

95°C for 5 minutes followed by 40 cycles of denaturation at 95°C for 15 seconds then annealing 

and elongation steps for 30 seconds at 60°C. A positive gametocyte sample was determined to be 

either having amplified either one or both of the two targets, i.e. Pfs16 and Pfs25.  

Table 3.2: Primers and probes used for gametocyte detection and amplification. 

Pf16 F ATGCTTATATTCTTCGCTTTTGCA 

Pf16 R AATTCTAATACGACTCACTATAGGGAGAAGGGCGGGCTTTTTTGCTTTGT 

Pf16 P 6FAM-AACCTG GTATTATCAGATGCAAATG-MGB 

Pf25 F CAGATGAGTGGTCATTTGGAATG 

Pf25 R AATTCTAATACGACTCACTATAGGGAGAAGGCTCCACATGGTTTATTTAC

AGTCTTTTC 

Pf25 P VIC-CCCGTTTCATACGCTTGTAA-MGB 

 

3.5.3 Genotyping for Malaria Drug Resistance Markers using Mass ARRAY 

The alleles were determined by PCR-based single-base extension on Sequenom Mass ARRAY 

platform which uses matrix-assisted laser desorption ionization time-of flight mass spectrometry 

(MALDI-TOF MS) (Agena Biosciences, San Diego, CA, USA) . Extension of single bases based 

on PCR on Sequenom Mass ARRAY platform were used for analyzing the Pfmdr1, Pfmrp1, 

Pfdhps, Pfdhfr and Pfcrt genes .Mass ARRAY assay for SNP genotyping using genomic DNA 

was done to amplify selected loci and polymorphisms in thePfmdr1 86, 184 & 1246; Pfmrp1 

437, 876 &1390; Pfdhfr 16, 22, 59 & 164; Pfdhps 436, 437 & 581, and Pfcrt 72, 76, 271, 326, 

356 single nucleotide polymorphisms (SNPs) as shown below. 

https://en.wikipedia.org/wiki/Foster_City,_California
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3.5.4 First PCR Amplification 

This PCR was for primary amplifications of the targeted gene of interest using specific primers. 

Briefly, 0.5µM each primer mix was prepared, comprisingforward and reverse primers for each 

gene target in an Eppendorf tube including the dNTPs, MgCl2, enzyme and nuclease free water 

to make up the master mix and then mixed well by vortexing. Subsequently, 4 μl of the master 

mix prepared wastransferred into each well of the 0.2 conventional PCR plate followed by 2 μl 

of the DNA template. An adhesive sealer was used to cover the plates followed by centrifugation 

(Eppendorf). Amplification process was done using GeneAmp 9700 thermocycler (Applied 

Biosystems) using thermocycling conditions as follows: 95ºC for 2 minutes followed by 44 

cycles of 95ºC for 30 seconds, 56 ºC for 30 seconds, 72ºC for 60 seconds, 72ºC for 5minutes and 

the final hold at 10ºC.  

3.5.5 Shrimp Alkaline Phosphatase (SAP) Clean up PCR 

After primary PCR, 2 μl of the ready-madeSAP master mixwas dispensed into the plate having 

samples, sealed, and centrifuged. This assay was used for removal of unwanted or unused 

reagents e.g.,dNTPs and it was done by incubating the plate in GeneAmp 9700 thermocycler 

(Applied Biosystems) at 37ºC for 40 minutes followed by 85ºC for 5 min and a 10ºC hold. 

The SAP enzyme was used to dephosphorylate unincorporated nucleotides to prevent further 

reaction or addition/ elongation of chain. 

3.5.6 Second iPLEX PCR 

Multiplexed primer extension reaction was performed using mass-modified nucleotides. The 

iPLEX master mix was prepared by adding an adjusted multiplex of the target gene sequence 

specific primers, mass-modified nucleotides, iPLEX buffers, enzymes, and the terminator. 2 μl of 

this master mixwasadded into the plate having the samples mixed, sealed, vortexed and the plate 

centrifuged. The reaction occurred following incubation of the plate in GeneAmp 9700 

thermocycler (Applied Biosystems) using the following conditions: 94ºC for 30 seconds, 45 

cycles at 94ºC for 5 seconds, 52ºC for 5 seconds 80ºC for 5 secondsand 10ºC to infinity. This 

PCR was important for Addition Of The Mass-Modified Nucleotides. 

3.5.7 Resin Clean up Conditioning 

Clean up conditioning was performed by spreading clean resin paste into a 96-well dimple plate 

followed by incubation period for 10minutes at room temperature to dry. Subsequently, 42 μl of 
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nuclease free water was added into each well of the sample plate. Finally, the dimple plate with 

the dried resin was inverted into the sample plate and gently tapped on topfor the resin to drop 

into the wells containing the samples. The plate content was then sealed and mixed by rotating 

for 30 minutes followed by spinning down at 3000rpm for 5 minutes. This resin treatment was 

done to remove excess salts. 

3.5.8 Sample Spotting on Mass ARRAY Chip and Loading onto Mass ARRAY Analyzer 

The reaction product was dispensed onto a Spectro chip using a Nano dispenser. The chip was 

loaded and run on a Mass ARRAY Typer workstation (Agena Bioscience, Inc.) where detection 

of extension products occurred using matrix-assisted laser desorption ionization time-of-flight 

mass spectrometry (MALDI-TOF MS) (Agena Biosciences, San Diego, CA, USA). Analysis of 

genotyping results was carried out using Spectro Typer 4.0 software automated allele calling. 

Summary statistics was performed in excel file.  

3.6 Data Management 

The speciation and gametocytes qualitative PCR data was entered into excel spread sheet and 

percentage frequency was calculated to determine the species composition and gametocyte 

carriage for the two groups. Tables and Graphs (by MS Excel) were generated to show the 

percentage prevalence and frequencies of various variables. The data were exported to STATA 

version 12.0 for analysis of the variables: 1) Specific objective 1: the Chi-square test was used to 

test if there is a difference in Plasmodiumspecies prevalence between symptomatic and 

asymptomatic infections; 2) Specific objective 2& 3: MassArray typer version.4.0 was used in 

SNP genotype calling against the reference 3D7 genome. The proportions of variables and 

parameters comparisons were assessed by Chi square tests using STATA version 12.0 forSingle 

Nucletide Polymorphisms (SNPs) and gametocyte carriage in the symptomatic and 

asymptomatic infections. All the statistical analyses were performed ata 5% significance 

levelwiththe Confidence Interval (CI) set at 95%; the statistical significance was defined as 

p<0.05. The data is presented in tables and graphs.  

3.7 Ethical Consideration 

All the sample IDs were assigned unique identifiers for data protection and confidentiality. 

Moreover, the sample IDs are not linked to any personal identifiable information of the 

participant. Permission to carry out this study wassought from Maseno University Scientific and 
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Ethics Review Committee (MUSERC) approval number MUSERC 01260/23. Ethical approval 

was acquiredfrom theHuman Subjects Protection Branch, of the Walter Reed Army Institute of 

Research (WRAIR #2454) and the Scientific and Ethics Review Units (SERU) at the Kenya 

Medical Research Institute (SERU #3628)for symptomaticand WRAIR #2739 / KEMRI 

#4082for the asymptomatic studies (Appendix 1).NACOSTI licence and approval was obtained 

to conduct the study (Appendix 2). Informed written consent was obtained from the participants 

and parents or legal guardians of the children who were enrolled in the study (Appendix3). The 

risks and how they were minimized as well as the benefits of the study and how the obtained data 

was stored were described in the consent forms (Appendix3). Informed assent was also obtained 

(Appendix 4). 
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CHAPTER FOUR 

RESULTS 

4.1 Participants Demographics 

A total of 230 samples (34 symptomatic &196 asymptomatic)enrolled in malaria surveillance 

and transmission dynamics studies from the year 2018 – 2021 were analyzed.The females were 

marginaly less than the males (Table 4.1). A majority of the population was adults and the mean 

temperature was slightly variable;fever and chills characterized the symptomatic infetions(Table 

4.1). 

Table 4.1: Participants demographics 

General characteristics Symptomatic(n=34) Asymptomatic(n=196) 

Gender 

Female 

Male 

 

16 (47%) 

18 (53%) 

 

91 (46%) 

105 (54%) 

Mean age years (SD, Range) 17.1 (7.2, 10-48) 33.9 (8.8, 18-55) 

Mean weight Kgs (SD, Range) 51.5 (14.6, 20-75) 63 (9.6, 38-100) 

Mean temperature (
o
C) (SD, Range) 37.6 (0.9, 36-40) 36.4 (0.3, 35-37) 

The demographic data is presented as percentages and means including standard deviation (SD) 

and the minimum and maximum range.  

 

4.2 Plasmodium Species Prevalence in Symptomatic and Asymptomatic Infections 

The overallspecies prevalence was 73.91% (170/230)whereby four species were detected as 

follows; Pf64.35% (148/230), Pm26.52% (61/230), Pow9.57% (22/230), Poc6.09% 

(14/230).Mixed species coinfections werehigher for PfPm 18.26% (42/230) followed by PfPow 

3.91% (9/230) and PfPoc2.61% (6/230), the remaining compositions were <1%.Furthermore, 

thespecies prevalence was variable in both symptomatic and asymptomatic infections.For the 

symptomatic,Pf comprised 70.59% (24/34), Pm 17.65% (6/34), Poc 11.76% (4/34), and Pow 

8.82% (3/34) while for asymptomatic Pf 63.27% (63/196), Pm 28.06% (55/196), Poc 5.1% 

(10/196), and Pow9.69%(19/196) however the p-values were not significant(Table 4.2).Co-

infections were higherfor PfPm;symptomatic11.76% (4/34), asymptomatic 19.39% (38/196) 

compared to all the other species combinations (≤6%)(Table 4.2).  
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Table 4.2:Plasmodium species prevalence in symptomatic and asymptomatic infections 

Plasmodium species Symptomatic (n)% Asymptomatic (n)% p-value 

Plasmodium falciparum (24/34) 70.59% (63/196) 63.27% 0.411 

Plasmodium malariae (6/34) 17.65% (55/196) 28.06% 0.204 

Plasmodium ovale curtisi (4/34) 11.76% (10/196) 5.1% 0.134 

Plasmodium ovale wallikeri (3/34) 8.82% (19/196) 9.69% 0.904 

PfPm (4/34) 11.76% (38/196) 19.39% 0.288 

PfPoc (2/34) 5.88% (4/196) 2.04% 0.195 

PfPow (2/34) 5.88% (7/196) 3.57% 0.521 

PmPoc (0/34) 0 (1/196) 0.51% 0.676 

Pmpow (1/34) 2.94% (0/196) 0 0.016 

PfPmPoc (1/34) 2.94% (2/196) 1.0% 0.362 

PfPmPow (0/34) 0% (4/196) 2.04% 0.401 

Comparison of single and multiple Plamodium species prevalence in symptomatic and 

asymptomatic infections. Chi square test was used for statistics. 

 

4.3 Frequency of Pfmdr1, Pfmrp1, Pfdhfr, Pfdhps & Pfcrt Single Nucleotide 

Polymorphisms in Symptomatic and Asymptomatic Infections 

A subset of of 40 samples that were positive for Plasmodium falciparumspeciesby real time PCR 

with cycle threshold of 30 and below was analyzed for the antimalarial drug resistance 

genotypes.The successful assays havinggood qualitycalls were included in the final analysis 

(Figure 4.1). Mixed/heterozygous genotypiccalls were considered as mutations. 

 

4.3.1 Pfmdr1 Codons 86, 184 & 1246 SNPs 

Successful sequences for Pfmdr1_86 did not have any mutations in symptomatic and only 5% 

(1/17) mutation was seen in asymptomatic. Pfmdr1_184 harbored symptomatic 68.75% (11/16) 

and asymptomatic 52% (26/50)mutations, while Pfmdr1_1246 had 6% mutants in both 

symptomatic (1/16) and asymptomatic (2/30). 

4.3.2 Pfmrp1 Codons 437, 876 and 1390 SNPs 

For this genePfmrp1 437 had no mutations in symptomatic while asymptomatic had only one 

mutation 3.23% (1/30). Pfmrp1 codon 876,symptomatic reported 47.05% (8/17)and 

asymptomatic 37.93% (11/29). Pfmrp1 1390 symptomatic had 6.67% (1/15) and asymptomatic 

6.9% (2/29) mutations respectively. 

4.3.3 Pfdhfr Codons 16, 22, 59, 164 and Pfdhps Codons 436, 437, 581 SNPs 

Pfdhfr codons 16 and 22 had no mutations for symptomatic and asymptomatic.Pfdhfr codon 59 

revealed88.24% (15/17) and 90.91% (30/33) mutantswhilePfdhfr codon164 revealed6.67%  

(1/15)and 3.13% (2/32) mutants in symptomatic and asymptomatic, respectively. 
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For both symptomatic and asymptomatic,Pfdhps codons 436, 437 and 581 did not reveal any 

mutants. 

4.3.4 Pfcrt Codons 76, 271, 326, 356, 371 

Pfcrt codons76, & 356 did not have any mutations for either symptomatic or asymptomatic. Pfcrt 

326 & 371 had 3.23% (1/31) and 11.11% (4/36) mutations in asymptomatic only. 

 
 

Figure 4.1: Frequency of polymorphisms in Pfmdr1, Pfmrp1, Pfdhfr, Pfdhps &Pfcrt genes 

associated with antimarial drug resistance among symptomatic and asymptomatic 

infections. 

4.4 Variability of Gametocytes in Symptomatic and Asymptomatic Infections 

Overall gametocyte positives detected was 65.6% (151/230). The symptomatic cases revealed 

positives for Pfs16 85.29% (29/34); Pfs25 79.41% (27/34); Pfs16Pfs25 79.41% (27/34) while 

asymptomatic had Pfs16 68.88% (135/196); Pfs25 67.86% (133/196) &Pfs16Pf25 63.26% 

(124/196)even though it was not statistically significant (Table 4.3). 
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Table 4.3: Gametocyte carriage in symptomatic and asymptomatic infections 

Gametocytes Symptomatic (n)% Asymptomatic (n)% p-value 

Pfs16 (29/34) 85.29 (135/196) 68.88 0.051 

Pfs25 (27/34) 79.41 (133/196) 67.86 0.176 

Pfs16Pfs25 (27/34) 79.41 (124/196) 63.26 0.302 

Prevalence of gametocyte carriage in symptomatic and asymptomatic infections. Comparison of 

the proportions was done using Chi-square test in STATA. 
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CHAPTER FIVE 

 DISCUSSION 

5.1 Plasmodium Species Prevalence in Symptomatic and Asymptomatic Infections 

This study aimed to assess the prevalence of Plasmodium species, frequency of antimalarial drug 

resistance markers andtheir role in transmission among the symptomatic and asymptomatic 

infections. The global burden of malaria has reduced significantly due to the efforts made in 

malaria control(WHO, 2021b) which focuses mostly on P.falciparum and P.vivax however, there 

have been reports of rising prevalence of non-falciparum species.All samples analyzed in the 

current study were positive for Plasmodium genus and PCR assays revealed presence of four 

species in both symptomatic and asymptomatic infections. The most prevalent species was 

P.falciparumat 64.35%and this is in line with other studies followed by P. malarie, P.ovale 

wallikeri and the least wasP.ovale curtisi(Dao et al., 2023). The prevalence of Plasmodium 

species co-infections was highest for PfPmat 18.26% followed by PfPowand PfPoc. Previous 

studies have reported thatP.falciparum co-infection with P. malariaeis common and is 

significantly associated with a decreased risk of presenting with fever at the clinic in Kenya 

(Akala et al., 2021)similar to a study in Mali (Dao et al., 2023)thus remaining asymptomatic and 

undetected. This auger well with our study whereby co-infections comprising of PfPm 

prevalence was higher for asymptomatic19.39% than the symptomatic 11.76% malaria 

infectionsalthough it was not statistically significant.  

The marginally higher prevalence of P. malariae in asymptomatic than symptomatic in the 

current study may suggest that although former population (asymptomatic) may not present at 

the hospital, they may be affected by the comorbidities associated with this speciesincluding 

anaemia and kidney disease (Langford et al., 2015). The ability to sustain prolonged and low 

level parasitemia that is linked to increased burden of anaemia (Woldearegai et al., 2019)and 

subsequent hospitalization can be ascribed to Plasmodium malariae species which accounts for 

approximately 10% of clinical malaria,(Douglas et al., 2013; Langford et al., 2015), including 

tropical splenomegaly(Kotepui et al., 2020a; Leoni et al., 2015). The two sub species of P. 

ovaleare characterized by varying epidemiology(Sutherland, 2016)whichare often misdiagnosed 

by microscopy in clinics and hospitals as other species, suggesting underreporting(Hawadak et 

al., 2021; Kotepui et al., 2020b).This study revealed the presence of both P. ovale species with 

P. ovale walllikeri being slightly higher in asymptomatic than symptomatic population.There 
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have been reports of increasing P.ovale species over time in both symptomatic and asymptomatic 

infections(Akala et al., 2021; Hawadak et al., 2021)and this can be attributed to the increased use 

of more sensitive techniques(WHO, 2017). 

Following a four year study conducted in Burkina-Faso between 2007 and 2010, it was revealed 

that P.ovale species increased fourfold while P.malarie increased fifteenfold (Gnémé et al., 

2013), similarly Democratic Republic of Congo reported increase in P.ovale species (Mitchell 

etal., 2021) after use of PCR which is a more sensitive method. A study done in Myanmar on 

asymptomatic infections(Nyunt, Shein, et al., 2017) revealed mixed Plasmodium species similar 

to the current study with microscopy and Rapid Diagnostic Test missingmajority of these 

asymptomatic infections that were eventually detected by PCR thus emphasizing the need for 

sensitive molecular techniques for screening and diagnosis of these sub-microscopic malaria 

infections.Furthermore, the Myanmar study reported that these asymptomatic infections were 

massively distributed in the study region a majority being males who were most affected (19/28, 

67.8%).Similarly , another study in Kombewa Kenya on mixed Plasmodium species among 

symptomatic participantsrevealed co-infections that contained P. falciparum and other species 

which were not detected by microscopy on initial day of screening (Chemwor et al., 2023).Data 

on the contribution of asymptomatic infections to malaria transmission is limited(Lin et al., 

2014) and the presence of varying Plasmodiumspecies reported in the current study for both 

symptomatic and asymptomatic may indicate that they play an important role in maintaining 

malaria transmission in this holoendemic region. 

There have been reports that chemokines produced when the body mounts an immune response 

will interact depending on the Plasmodium species present and some studies indicate that these 

interactions modulate malaria transmission (Gnémé et al., 2013; Tang et al., 2020) for certain 

species in an infection. Furthermore, Plasmodium species co-infections may determine the 

resource allocation within a host depending on the species present (Mideo & Day, 2008; Reece 

etal., 2010), P. falciparum is a generalist consuming all types of red blood cells whilst P. ovale 

and P. malariae are specialists with the latter being a heavy consumer of mature red blood cells 

while the former requires young red blood cells. Different specialized forms are achieved during 

parasite replication inside the host and transmission between hosts and resource allocation is also 

variable (Koella & Antia, 1995; Mideo & Day, 2008; Reece et al., 2010). Based on this results, 
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determination of species prevalence in symptomatic and asymptomatic infections is essential for 

informing malaria control strategies and timely case management.  

5.2 Frequency of Pfmdr1, Pfmrp1, Pfdhfr, Pfdhps & Pfcrt Single Nucleotide 

Polymorphisms in Symptomatic and Symptomatic Infections 

In this study, sequences for Pfmdr1 N86 did not have any mutations in symptomatic and only 

(1/17) mutation was seen in asymptomatic infection. The high prevalence of the wild type N86 

allele in this study is similar to a Nigerian study (Idowu et al., 2019) and may imply decreased 

susceptibility to artemeter lumefantrine(Venkatesan, 2014).For Pfmdr1184Finsymptomatic 

harbored 68.75%and asymptomatic 52% mutations, while Pfmdr1 D1246 had 6% mutants in 

both symptomatic and asymptomatic infections. Artemether-lumefantrine is used as firstline 

treatment in Kenya but single nucleotide polymorphisms in the Pfmdr1 gene may compromise its 

sensitivity because N86, 184F and D1246 are favoured by treatment with this drug(Okell, Reiter, 

Ebbe, Baraka, Bisanzio, Watson, Bennett, Verity, Gething, Roper, et al., 2018).A steady 

decrease of Pfmdr1codon 86 mutation was observed in Kenya following the drug policy change 

from SP to AL(Eyase et al., 2013).The observed frequencies on Pfmdr1 gene in the present data 

may be due to use of AL over time in Kombewathus imposing selective pressure similar to a 

previous studies in Kisumu (Eyase et al., 2013; Hemming-Schroeder et al., 2018). 

The current study reported a frequency of symptomatic 47.05% and asymptomatic 37.93% 

respectively, for polymorphisms at Pfmrp1 codon I876V which was higher than polymorphisms 

at codon F1390I symptomatic 6.67% and asymptomatic 6.9%. These mutations were previously 

found to be linked with in-vitro parasite susceptibility and in-vivo response to ACT (Dahlström 

et al., 2009)and have been also reported in Kenyasimilar to the current study.Moreover, previous 

study in Myanmar region also reported frequencies of 58.8% and 8.5% for Pfmrp1 876V and 

1390I respectively(Veiga et al., 2011). Only one mutant was observed in asymptomatic Pfmrp1 

437A. The observed high frequency of 876V mutations which is similar to the current findings 

might be linked to AL drug pressure and subsequent selection and increased prevalence of 

Pfmrp1 I876V single nucleotide polymorphisms. Findings from the current study indicated that 

P.falciparum isolates from symptomatic and asymptomatic infections in Kombewa harbored 

some of the SNPs associated with antimalarial resistance for Pfmdr1 &Pfmrp1 genes that have 

been implicated. Although there was no significant variation of the SNPS inPfmdr1 &Pfmrp1, 
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establishing the frequency of these drug resistance markers for timely detection and curbing the 

spread of mutations is key as ACT is used for treatment in Kombewa region specifically AL in 

the effort towards malaria elimination. 

Sulphadoxine pyrimethamine is used in Kenya and Tanzania as intermittent preventive therapy 

during pregnancy(Mikomangwa et al., 2020). High frequency of mutants revealed in Pfdhfr 

C59Rwhich had 88.24% and 90.91% mutations for symptomatic and asymptomatic infections 

respectively in the current study is similar to a study on migrant workers from Africa reported in 

China(Yan et al., 2021)and another study on pregnant women in coastal Kenya(Gikunju et al., 

2020)may suggest sustained resistance to sulphadoxine pyrimethamine in Kombewa region, 

which supports its use for intermittent prophylaxis treatment amongst pregnant women in this 

high malaria endemic lake region.The Pfdhfr I164L which is also linked to mutation in 

cycloguanil had one and two mutations for symptomatic and asymptomatic respectively, and has 

been reported withlowfrequencies in East Africa and Asia (Basuki et al., 2018; Lynch et al., 

2017) but very rare in central Africa.It was also noted that the travellers study in China on 

migrant workers did not find any polymorphisms in Pfdhfr I164L and this maybe be attributed to 

high fitness cost(Yan et al., 2021).Furthermore, the absence of this mutation in Kisumu 

previously reported by Spalding and co-wokers indicates that theparasites habouring this 

mutation did not become widespread (Spalding et al., 2010).Taken together, these findings are 

harmonious with the evidence that I164L mutations are very rare Kenya and sub-Saharan 

Africa.The remaining codons Pfdhfr 16 and 22 did not have any mutations similar to Kenyan 

study conducted on samples from different sites including Kombewa(Juma et al., 2014). 

Resistance to sulfadoxine has also been associated with single nucleotide polymorphisms in 

Pfdhps gene at codons S436A/F, G437A, K540E, A581G, and A613T/S (Bwire et al., 

2020).Mutations at codons 437 and 540 were strongly associated with sulphadoxine 

pyrimethamine treatment failure, whereas the 436, 581, and 613 mutations confer some 

resistance.The current study analyzed Pfdhps codons S436A/F, G437A, A581G and no mutation 

was reported in both symptomatic and asymptomatic population suggesting that SP may still be 

used for prophylaxis during pregnancy. While studies have reported fixation of sulphadoxine 

pyrimrthamine resistant allele in Western Kenya (Spalding et al., 2010), and South East Asia 

(Alam et al., 2011), the contrary has been reported in Peru with decline in these alleles being 
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reported five years following change of policy(Vinayak et al., 2010).Fixation of the mutant 

alleles reported in the current study and others may be attributed to the fact that the fitness cost 

does not impact the population of the parasite(Alam et al., 2011). In addition, there might be the 

probability of additional selection pressure resulting from other antifolate drugs such as 

cotrimoxazole (Garner & Gülmezoglu, 2006; Gasasira et al., 2010).However, rapid spread of P. 

falciparum parasites that are resistant to SP in areas of malaria endemicity poses a major threat to 

the prevention of malaria in pregnancy (Hommerich et al., 2007; Mockenhaupt et al., 2007).The 

findings from the current study similar to previous study in this region that reported increased 

frequency of these polymorphisms (Hemming-Schroeder et al., 2018)have highlighted the 

variations in the alleles hence the need for continued surveillance. 

Mutations in Pfcrt codons 72-76 are known to confer resistance to previously chloroquine and 

other quinoline drugs including lumefantrine and amodiaquine (Holmgren et al., 2006; Sisowath 

et al., 2009). Moreover,Pfcrt codons72, 76, & 356 did not have any mutations for either 

symptomatic or asymptomatic.The absence of mutations in codon 76 as shown in the current 

study indicates the conversion of the parasite population to the chloroquine sensitive alleles 

attributed to the comprehensive use of AL in Kenya for treatment of malaria and the reduction of 

amodiaquine use lead to the release of drug resistance pressure on Pfcrt gene(Eyase et al., 

2013).Mutations on Pfcrt codon 356 were repoted in Uganda in 2.4% of the isolates in mixed 

alleles infection before use of AL but was not detected in the isolates after use of AL(Balikagala 

et al., 2017). The Pfcrt codon 356 mutations were found in isolates collected from different parts 

of Africa from malaria patients in France who had travelled to sub saharan Africa 54.7%(Foguim 

et al., 2020), Malaysia 24% (Atroosh et al., 2012), Thailand 99.2% and Cambodia 67.7% 

(Dhingra et al., 2019).Increasing trends of wild type codon 76 have been reported in other areas 

of East Africa however the travellers study revealed mutations on Pfcrt codon 76 was at 20.6% 

with significant associations in the frequencies of Pfcrt codons 76 and 356 in West African 

isolates while no mutation was reported Pfcrt codon 72 (Foguim et al., 2020) similar to the 

current study. Pfcrt 326 & 371 had 3.23% (1/31) and 11.11% (4/36) mutations in asymptomatic 

only similar to a Nigerian study and is reported to be rare for Pfcrt 371(Idowu etal., 2019). 

Studies have reported the potential selection of Pfcrt K76 and Pfmdr1 N86/Y184/D1246 

following treatment with AL (Happi et al., 2009; Sisowath et al., 2009) with reports of higher 

frequencies of these alleles than previously reported(Happi et al., 2009).The Pfcrt gene had the 
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least number of mutations, and these may be attributed to the absence of drug pressure causing 

the parasites to revert to the wild form. This is a positive indicator that chloroquine may be re-

introduced into the market. 

The observed variability of single nucleotide polymorphisms trends in the current study are not 

novel, however Kombewa region supports the use of ACTs and SP for malaria infection 

treatment and prophylaxis respectively. This emphasizes the need for continous molecular 

surveillance of these strains particularly those harbouring mutations with a previously 

demonstrated association with antimalaria drug resistance as they have implications for planning 

strategies to cycle drugs or use multiple first-line therapies to maintain drug efficacy. 

5.3 Variability of Gametocytes in Symptomatic and Asymptomatic Infections 

The assessment of gametocyte variabilitywas assayed using Pfs16 and Pfs25 gene markers 

among the symptomatic and asymptomatic infections. In the current study the symptomatic 

exhibited slightly higher prevalence of gametocytes than asymptomatic, this may be attributed to 

the fact that gametocyte production is influenced by immunity among other factors (Price et al., 

1999).Although the current study revealed that the gametocyte carriage was slightly higher in 

symptomatic than asymptomatic similar to previous studies reported in Kenya(Idris et al., 2016), 

the presence of gametocytes in asymptomatic population indicates that theymay serve as the 

infectious reservoirs of transmission in Kombewa as reported previously (Andagalu et al., 2022; 

Koepfli et al., 2021; WHO, 2018).This may be attributed to the fact that gametocyte densities 

remain modest relative to asexual densities so that transmissible forms of the parasite are masked 

from nonspecific immune responses by asexual forms and to avoid eliciting specific 

transmission-blocking immune responses (Mideo & Day, 2008; Taylor et al., 1997). 

It is important to note that as drug resistance seizes a population, there occurs delays in the time 

taken to clear the peripheral parasitemia and this was significantly associated with subsequent 

gametocyte production therefore increased gametocyte carriage may be an essential factor that 

drives resistance of P. falciparum(White, 1999). A study reported that the parasite status i.e wild 

type or drug resistant parasite was significant in determining the conversion rates of 

gametocytes, moreover the conversion rates were not altered in response to drug in the case of 

drug resistant parasites(Reece et al., 2010). The study in Sudan by by Reece et al showed wild 

type parasites that are drug sensitive tend to transmit gametocytes at a slower rate following 



43 
 

exposure than the parasites habouring drug resistant genes promoting transmission and 

expansion of drug resistant parasites. Therefore this warrants the assessment ofgametocyte 

varibility and transmission in both symptomatic and asymptomatic infections. 

The aim of this study was toassess prevalence of Plasmodium species, antimalarial drug 

resistance markers and gametocytes among the symptomatic and asymptomatic infections at 

Kombewa which is a holoendemic area. With recent declines in clinical symptomatic malaria, 

there is increasing evidence to suggest that asymptomatic parasite carriers play an important role 

in maintaining transmission (Iwagami et al., 2017; Lover, Baird, et al., 2018; Lover, Dantzer, 

etal., 2018; Niang et al., 2017; Sáenz et al., 2017). Asymptomatic infections play an essential 

role in continuity of malaria transmission and in clinical malaria (Niang et al., 2021). Critically, 

both infections may harbor varying antimalaria drug resistance genes(Tukwasibwe et al., 2014), 

hence enabling the expansion of mutant parasites that are drug resistant (Nyunt, Shein, et al., 

2017; Nyunt, Wang, et al., 2017) yet very few studies have been done to compare the 

symptomatic and asymptomatic infections. 

5.4 Limitations of the Current Study 

Samples were collected from one geographic region with one transmission setting. Data from 

different regions with varying malaria endemicities preferably would give a much better 

assessment of symptomatic and asymptomatic infections. Study period stretches through the 

years that COVID 19 pandemic was rife however implication of the pandemic on malaria 

infections was not assessed in this study. 
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CHAPTER SIX 

SUMMARY OF FINDINGS, CONCLUSION AND RECOMMENDATION 

6.1 Summary of Findings 

In the efforts towards malaria control and elimination, the accurate diagnosis and timely 

treatment of both symptomatic and asymptomatic Plasmodium infections is essential since they 

entail Plasmodium species, drug resistance markers and gametocytes. The current study has 

highlighted the variability of these parameters hence the need for continued surveillance and use 

of sensitive technology to screen and ascertain both symptomatic and asymptomatic infections. 

Moreover, their role in malaria transmission needs more in-depth analysis tostop and limit the 

spread of antimalaria drug resistance and transmission of malaria. Due to their elusive nature, 

these infections have significant implications for the development and implementation of anti-

malarial measures. 

6.2 Conclusions 

i. Four Plasmodium species were detected, and theirprevalence was variable in both 

symptomatic and asymptomatic infections. The co-infections/mixed species may interact 

depending on the species present hence more studies on the same are needed. 

ii. The frequencies ofsingle nucleotide polymorphisms in Pfmdr1, Pfmrp1, Pfdhfr &Pfcrt 

genes observedin symptomatic and asymptomatic infections may have implications such 

as delayed parasite clearance and subsequent treatment failure because Kombewa 

supports the use of ACTs and SP for malaria infection treatment and prophylaxis.  

iii. Although the variability in gametocyte carriage was marginal in symptomatic and 

asymptomatic infections,presence of gametocytes in asymptomatic population may 

indicate that they serve as the silent infectious reservoirs of transmission in Kombewa 

hence the sustained high malaria transmission. 

6.3 Recommendations from the Current Study 

According to the conclusions of this study, the following recommendations should be 

considered: 

i. ThePlasmodium species prevalencewas marginallyvariable in symptomatic and 

asymptomatic hence the need to monitor their trends in both infections because they are 

linked to fatal consequences even in well resourced settings. 



45 
 

ii. Mutations revealed in this study highlight the need for molecular surveillance of these 

SNPS associated with antimalaria drug resistance for planning strategies because 

Kombewa supports the use of AL and SP as therapeutics. This is essential for timely 

intervention strategies such as cycling drugs or use of multiple first-line therapies to 

maintain drug efficacy and curb the spread of resistance genes insymptomatic and 

symptomatic infections. 

iii. The marginal variability in gametocyte carriage in symptomatic and asymptomatic 

infections suggeststhat malaria intervention strategies should not only 

targetsymptomatic infections. Asymptomatic infections should also be consideredin the 

malaria elimination programs by putting in place proper structures with the help of the 

community at the local and national level for screening and treating to reduce, and 

ultimately prevent malaria transmission. 

6.4 Recommendations for Future Studies 

Based on the current study findings, future studies should consider the following: 

i. To increase the chances of success in eliminating malaria, strategies for control should 

be reoriented from targeting individual species sequentially which is currently 

influenced by P.falciparum, to a strategy that is inclusive of all species simultaneously. 

It is important to integrate molecular detection tools into all epidemiological studies, as 

a significant proportion of asymptomatic submicroscopic malaria infections are missed 

by conventional diagnostic methods. Therefore, to better understand the dynamics and 

transmissibility of all Plasmodium species in symptomatic and asymptomatic 

infections, it is crucial to study all species. 

ii. Surveillance for genetic polymorphisms associated with antimalarial resistance at 

greater spatiotemporal scale will present an opportunity for broad characterization of 

parasite genotypes in both symptomatic and asymptomatic malaria infections. 

Molecular epidemiology of these drug resistance genes is key as ACT is used for 

treatment in Kenya specifically AL in the effort towards malaria elimination. 

iii. Given the high prevalence of gametocytes carriage , mathematical modelling may be 

key in determining the role of both symptomatic and asymptomatic parasite carriers in 

the community. Targeting both populations will have a considerably larger impact on 

preventing transmission than those interventions that target symptomatic cases only. 
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Appendix 3: Consent Form 

 

Adult Consent Form (includes parental or legal guardian consent) for MoH sites 

 

TITLE OF STUDY: Epidemiology of malaria and drug sensitivity patterns in Kenya 

 

INSTITUTIONS: Kenya Medical Research Institute, Nairobi, Kenya; Walter Reed Project 

(United States Army Medical Research Directorate – Kenya), Nairobi, Kenya; Walter Reed 

Project, Kisumu, Kenya 

 

PRINCIPAL INVESTIGATOR: Dr. Hoseah Akala, Ph.D. 

 

1 INTRODUCTION 

You (your child) are being asked to participate in this research study. Participation in this study 

is voluntary. Refusal to participate will involve no penalty or loss of benefits to which you (your 

child) are otherwise entitled. You (your child) may discontinue participation at any time without 

penalty or loss of benefits. 

This research study is supported by the United States Department of Defense. Funding for this 

study comes from the Global Emerging Infections Surveillance and Response System (GEIS), 

Armed Forces Health Surveillance Center. This study is a continuation of a study that has been 

running since 2007 that has helped describe how the malaria germs in different parts of Kenya 

respond to the drugs that are used to treat malaria. 

 

2 PURPOSE OF THE STUDY 

You are being asked to participate in this study to learn about malaria germs and what drugs best 

treat the malaria found in this part of Kenya. 

You (your child) will receive the malaria medicine prescribed by the hospital provider if it is 

necessary, and this testing will in no way affect your (your child‟s) treatment today. 

 

3 WHO CAN PARTICIPATE IN THIS STUDY 

1. Any person at least 6 months old can participate. 

2. Expectant women 18 years and older can also participate in this study. 

3. For civilian populations: If you (your child) are attending a Kenya Ministry of Health 

clinic and you (your child) live within a 25km radius of the study site and are aged 5 years and 

above, you (your child) can be included (if you are willing) in the subset of subjects who will 

have additional study visits. 

4. For military populations: If you have joined the RTS and are currently attending the 

initial health assessments. 

5. You can participate in this study several times, as long as it is not in the same year. You 

will be asked to sign a new consent each time you are enrolled. 

4 WHO CANNOT PARTICIPATE IN THIS STUDY 

You (your child) cannot participate in this study if 

1. You (your child) are unwilling to give blood. 

2. You are not capable of giving informed consent. 

3. You (your child) are currently detained by the Kenya Government Department of 

Correctional Services. 
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4. You (your child) were previously enrolled in the study this year. 

5. Your child who intends to get enrolled weighs less than 5 kg. 

 

6. You (your child), in the opinion of the study doctor, would be affected by the drawing of 

blood (e.g., if you (your child) have low blood levels). 

 

5 APPROXIMATE NUMBER OF VOLUNTEERS TAKING PART IN THIS STUDY 

Up to 100 total volunteers per week, from all of the Ministry of Health sites where we are 

enrolling from, as well as approximately 2500 annually from the Kenya Defence Forces site. 

 

6 PROCEDURES TO BE FOLLOWED FOR VOLUNTEERS RECRUITED FROM 

MINISTRY OF HEALTH SITES 

If you (your child) agree to participate in this study, the procedures involve answering questions, 

having a brief physical examination, and donating blood. We will also ask you (your child) to 

visit us again on day 7 so we can see if the treatment was successful. Some volunteers who are 

willing will be asked to return additional times, on days 2, 3, 14, 28 and 42. 

 

Blood samples will be taken in 2 ways. For the larger volume blood sample, which will be 5 ml 

(1 teaspoon), will be drawn from a vein in your (your child‟s) arm. For the smaller volume, 2-3 

drops, a “finger stick” will be done. 

 

If you agree, your (your child‟s) sample will also be tested for blood borne infections such as 

HIV, syphilis, West Nile Virus, Hepatitis B, Hepatitis C and Human T-Cell Lymphotropic Virus. 

This testing is optional and will not affect your participation in other study activities. The 

purpose of the testing is to select participants whose samples may be used for a special type of 

research called Controlled Human Malaria Infection (CHMI). Samples obtained from 

participants who test negative will be suitable for CHMI. Participants who test negative may be 

contacted later for confirmatory testing if needed. Those that test positive will still be used for 

malaria testing as explained above and will be referred to the hospital clinician for further 

management of the blood borne infection. 

 

Today‟s procedures: after signed informed consent, you (your child) will be asked some 

questions about your (your child‟s) age, occupation, village, residence, history of your sickness, 

symptoms, and antimalarial drug use. Then, you (your child) will undergo a brief procedure to 

provide a blood sample from the arm vein (5 ml or about 1 teaspoon) to test your (your child‟s) 

malaria germs in the laboratory and see what drugs will effectively treat your (your child‟s) 

malaria. The questions and blood drawing will take about 1 hour. 

 

Day 7 procedures: you (your child) will be asked to return to this site 7 days from now, to answer 

questions only about whether the medication given improved the malaria illness. You (your 

child) will then be asked to donate 5 ml blood sample of blood from the arm vein for malaria 

testing. You (your child) will see the hospital clinician for further treatment. This visit will take 

approximately 1 hour. 
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Days 2, 3, 14, 28 and 42 procedures: if you (your child) agree to return for the additional study 

visits, at each visit, you (your child) will be asked questions only about whether the medication 

given improved the malaria illness. At each visit, you will be asked to donate 1-2 drops of blood 

by finger-stick for a malaria test. If the malaria test is positive, you will then be asked to donate a 

5 ml blood sample from the arm vein for more laboratory testing. If the test is negative, you will 

not be asked for any more blood. Each return visit will take approximately 1 hour. 

“Finger-stick” samples will be obtained from your (your child‟s) fingertip using a lancet device 

that minimizes pain, and makes only a small line cut (about 2-3 millimeter in length) on the 

finger tip skin. The finger tip is then squeezed, allowing a few drops of blood to be obtained for 

the laboratory tests. 

 

 

All blood samples, except those used to diagnose your malaria by rapid diagnostic test, will be 

sent to a research laboratory in Kisumu, Kenya to test which drugs can kill your malaria germs. 

This is an experimental procedure, and due to the fact that the test takes a long time to run, the 

results of this test will not be immediately available to guide your treatment. The results of the 

rapid malaria test will be made known to you, while those conducted for the purposes of research 

will not be shared with you. 

 

 

 

7 POTENTIAL RISKS AND DISCOMFORTS 

The risk from participation in this study is small. There is some inconvenience associated with 

one or more clinic visits. There is the possibility of mild discomfort, bruising and very rarely 

infection at the arm or finger stick site where the blood is obtained. There is also the possibility 

of feeling dizzy or fainting during or after a blood draw. The technician will use care to cause as 

little pain as possible and minimize the chance of infection after the blood draw. If the site 

should become infected, we will treat you (your child) with medication. 

 

8 ANTICIPATED BENEFITS TO VOLUNTEERS 

 

If you (your child) agree to be in the study, on the return visit(s), you (your child) will be tested 

for malaria to determine response to treatment. The study team will tell you the results. The test 

will show if the medication you (your child) received worked. If it did not, you (your child) will 

see the hospital clinician for an effective alternate anti-malaria medicine. 

 

An indirect benefit to you (your child) is knowing that you (your child) have helped with a 

scientific study that may benefit other persons who become infected with malaria in the future by 

allowing us to test what drugs work best for treatment. 

 

9 ALTERNATIVE TO PARTICIPATION 

The alternative to participation in this research is to not participate. You (Your child) will still 

receive treatment for malaria and for any other illness you may have from the hospital provider 

even if you do not participate in this study. 
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10 PAYMENT FOR PARTICIPATION 

There is no charge to participate in this study. In accordance with Kenyan custom, there is no 

direct compensation to volunteers for their participation. 

 

For volunteers recruited from the MoH sites, support for public transportation to return to the 

study site for each follow up visit, and return home, will be provided to you (your child). The 

amount will be 500 Kenyan shillings per visit. Support for public transportation will also be 

provided for unplanned visits that are directly related to participation in this study. 

Volunteers from the KDF sites are not expected to use public transport, and as such there will not 

be any direct compensation for transportation. 

Other than medical care that may be provided and any other payment specifically stated in the 

consent form, there is no other compensation available for your participation in this research. 

 

11 USE OF YOUR (YOUR CHILD‟S) BLOOD SAMPLES 

Your (your child‟s) blood samples will be stored and used only for the tests associated with this 

study. However, you (your child) may grant permission for the malaria germs in your blood to be 

used for other studies in the future, some of which may be done outside the country. The 

laboratories that will be used include the Walter Reed Army Institute of Research Labs in the US 

together with its overseas labs located in Thailand and Peru, and Oxford University Sanger 

Institute labs in the United Kingdom You (your child) will be given a separate form to fill out 

which will allow you (your child) to say whether you (your child) will or will not allow your 

(your child‟s) blood samples to be used for future studies. The stored malaria germs for future 

studies will not have any items that could identify you as the original source, such as your name. 

No genetic testing will ever be done. There is no possibility that your samples could be used for 

developing a commercial product. 

 

12 DURATION OF PARTICIPATION 

Today, you (your child) will answer questions and donate blood today. This will take about 1 

hour. 

For volunteers from the MoH sites, on day 7, you (your child) will answer some questions and 

donate blood. If you agree to be in the group that returns up to 6 times, you will answer questions 

and give a blood sample on days 2, 3, 7, 14, 28 and 42 days after treatment. Each visit will last 

approximately 1 hour. For participants who accept to be tested for blood borne infections, there 

may be an additional contact to perform confirmatory testing. There will be no further clinic 

visits needed from either group. 

 

13 ASSURANCE OF CONFIDENTIALITY 

Records relating to your (your child‟s) participation in the study will remain confidential to the 

extent possible. Research records will be kept in a locked file at Walter Reed Project, Kisumu, 

Kenya. Your (your child‟s) name will not be used in any report resulting from this study. All 

computerized records and laboratory specimens will contain only a unique study number for you 

(your child), not your (your child‟s) name, or any other personal identifying information. 

Computer records will be password protected and accessed by 

 

authorized study personnel only. Research records will be kept until all data analyses are 

completed. 
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14 PARTICIPATION AND WITHDRAWAL 

Your (your child‟s) participation in this study is voluntary. You (your child) have the right to 

leave this study at any time. Refusal to participate or study discontinuation will not result in a 

penalty, a compromise of your medical care, or a loss of benefits to which you (your child) are 

otherwise entitled. For volunteers at KDF sites, refusal to participate or study discontinuation 

will not affect your training. 

 

In the event that you (your child) exit the study before its completion, regardless of the reason, 

we encourage you to participate in the scheduled blood sampling for follow up malaria testing on 

Day 7 if you were found to have malaria. 

 

15 WITHDRAWAL OF PARTICIPATION BY THE INVESTIGATOR 

The investigator may withdraw you (your child) from participating in this research if 

circumstances arise which warrant doing so. If you (your child) become ill during the research, 

beyond what would be expected from a malaria infection, you (your child) may have to drop out, 

even if you (your child) would like to continue. The investigator will make the decision and let 

you (your child) know if it is not possible to continue. The decisions may be made either to 

protect your (your child‟s) health and safety, or because it is part of the research plan that 

volunteers who develop certain conditions may not continue to participate. 

 

You (your child) may also be removed from this study without consent if: 

a) you (your child) do not follow the study procedures 

b) in the opinion of the study physicians, it is in your (your child‟s) best interest, 

 

16 NEW FINDINGS 

You (your child) will be informed of all malaria test results (and the test results for the blood 

borne infections if you agreed to testing), as they relate to your current treatment. Results 

obtained in the research laboratory testing will not be made available to you, but will be made 

available to the Kenyan Ministry of Health and the KDF (for KDF volunteers). 

 

During the study, you (your child) will, however, be informed of any significant new findings 

(good or bad) such as changes in the risks or benefits resulting from participation in the research 

or new alternatives to participation, which might cause you (your child) to change your (your 

child‟s) mind about continuing in this study. If new information is provided to you (your child), 

consent to participate in this study will be re-obtained 

 

 

17 REVIEW OF RESEARCH RECORDS 

It should be noted that representatives of the US Army Medical Research and Materiel 

Command and KEMRI are eligible to review research records as a part of their responsibility to 

protect human subjects in research. The research records will be made 

 

available only to investigators and clinical hospital personnel who may need this information to 

treat you (your child), or to members of the Ministry of Health who require this information for 

administrative reasons. 
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18 PERSONS TO CONTACT FOR ANSWERS TO RESEARCH RELATED QUESTIONS 

If you think you (your child) have a medical problem related to this study, you may report this to 

Principal Investigator of the Study - Dr. Hoseah Akala, Malaria Drug Resistance Laboratory, 

United States Army Medical Research Directorate/KEMRI (The Walter Reed Project), Kisumu, 

Kenya, Tel: +254722329845 or +254202023858. 

 

19 PERSONS AND PLACES FOR ANSWERS REGARDING YOUR RIGHTS AS A 

RESEARCH SUBJECT 

If during the course of this study, you have questions concerning the nature of the research, you 

should contact the Principal Investigator of the Study - Dr. Hoseah Akala, at the Walter Reed 

Project, telephone +254722329845 or +254202023858. If you are not satisfied, you may also 

contact the Secretary of the Scientific and Ethics Review Unit, c/o Kenya Medical Research 

Institute, P.O. Box 54840, Nairobi, Kenya, tel. 020-272-251 or 0722205901. The Scientific and 

Ethics Review Unit of Kenya Medical Research Institute is a body that is independent of the 

study team. 

 

20 RIGHTS OF RESEARCH SUBJECTS 

You (your child) may withdraw consent at any time and discontinue participation without 

penalty. You (your child) are not waiving any legal claims or rights because of your participation 

in this research study. If you have questions regarding your rights as a research subject, you may 

contact: The Director, Regulatory Affairs Office, Walter Reed Project, 

P.O. Box 54, Kisumu, Kenya or telephone +254202023858 and/or the Secretary of the Scientific 

and Ethics Review Unit, c/o Kenya Medical Research Institute, P.O. Box 54840, Nairobi, Kenya, 

tel. 020-272-251 or 0722205901. 

 

CONSENT: By signing this form, you agree that you have read the information provided above, 

or that it has been explained to you. You have talked to a member of the study team about the 

study. You have also been given an opportunity to ask questions and these have been answered 

to your satisfaction. You agree that we have talked to you about the risks and benefits of the 

study, and about other choices. You (your child) may drop out of the study at any time, and 

nothing will change about your (your child‟s) medical care. A copy of this form will be given to 

you (your child). 

 

If Subject is a minor Name of Subject:     Printed name of participant/parent/guardian:  

  

Signature of participant/parent/guardian:    

 

Date:    

 

WITNESS: I have witnessed the explanation of the research study to the 

participant/parent/guardian. The participant was given an opportunity 

to ask questions, and the participant‟s questions, if any, were answered. Printed name of witness:  

  

Signature of witness:    
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Date:    

 

INDIVIDUAL OBTAINING CONSENT: I certify that I have explained 

to the above participant/parent/guardian the nature and purpose of this study, potential benefits, 

and possible risks associated with participation in this study. I have answered any questions that 

have been raised. 

 

Printed name of individual obtaining consent:    

 

Title:    

 

Signature: Date:    

 

 

Printed name:     

 

Signature: Date:    

 

Consent for Testing for Blood Borne Infections, Future Research Use and Long-Term Blood 

Sample Storage 

Adult Consent Form (includes parental or legal guardian consent) 

 

TITLE OF STUDY: Epidemiology of malaria and drug sensitivity patterns in Kenya 

 

INSTITUTIONS: Kenya Medical Research Institute, Nairobi, Kenya; Walter Reed Project 

(United States Army Medical Research Directorate – Kenya), Nairobi, Kenya; Walter Reed 

Project, Kisumu, Kenya 

 

PRINCIPAL INVESTIGATOR: Dr. Hoseah Akala, 

You (your child) agree that the investigators may store your (your child‟s) blood samples that 

contain malaria germs indefinitely for possible use in other research studies. No human genetic 

studies will be undertaken with these samples. Your (your child‟s) decision to allow storage of 

blood samples is optional. Your (your child‟s) samples, if stored, may be shipped to laboratories 

located outside the country for further analyses. If you agree, your (your child‟s) samples will 

also be tested for blood borne pathogens as explained in the main consent form. 

 

CONSENT FOR STORAGE OF BLOOD SAMPLES: By signing this form, you AGREE that 

you have read the information provided above, or that it has been explained to you. You have 

also been given an opportunity to ask questions and these have been answered to your 

satisfaction. A copy of this form will be given to you (your child). 

Sign YES if you agree and NO if do not agree to allow storage of blood samples for future 

research. 

 

-   YES. I will allow my (my child‟s) samples to be stored for future use 
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-   NO. I do not want my (my child‟s) samples to be stored for future use If Subject 

is a minor Name of Subject:     Printed name of participant/parent/guardian:    

Signature of participant/parent/guardian:    

 

Date:    

 

WITNESS: I have witnessed the explanation regarding long term storage of blood to the 

participant/parent/guardian. The participant was given an opportunity to ask questions, and the 

participant‟s questions, if any, were answered. 

 

Printed name of witness:    

 

Signature of witness: Date:   

 

Printed name of individual obtaining consent for long term storage: 

 

 

Title:    

 

Signature: Date:    

 

CONSENT FOR TESTING FOR BLOOD BORNE INFECTIONS: 

By signing this form, you AGREE that you have read the information provided above, or that it 

has been explained to you. You have also been given an opportunity to ask questions and these 

have been answered to your satisfaction. A copy of this form will be given to you (your child). 

Sign YES if you agree and NO if do not agree to allow testing for blood borne infections. 

 

-  YES. I will allow my (my child‟s) samples to be tested for blood borne infections 

 

-  NO. I do not want my (my child‟s) samples to be tested for blood borne infections 

If Subject is a minor Name of Subject:    

Printed name of participant/parent/guardian:    

 

Signature of participant/parent/guardian:    

 

Date:    

 

WITNESS: I have witnessed the explanation regarding testing for blood borne infections to the 

participant/parent/guardian. The participant was given an opportunity to ask questions, and the 

participant‟s questions, if any, were answered. 

 

Printed name of witness:    

 

Signature of witness: Date:    

 

Printed name of individual obtaining consent for blood borne infections testing: 
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Title:    

 

Signature: Date:    

 

 

Printed name:    

 

Signature: Date:    
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Appendix 4: Assent form 
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