
Copyright: © 2024 Kibande et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original source is cited.

European Journal of Applied Physics
Vol 6 | Issue 4 | July 2024
ISSN 2684-4451

RESEARCH ARTICLE

Gravitation in Flat Euclidean Spacetime
Frame: Unified Electrogravity and

Magnetogravity Forces

Wellingtone Kibande1,*, Joseph Akeyo Omolo1,
and Dismas Wamalwa Simiyu2

ABSTRACT

An effective description of physics requires an appropriate geometrical
frame. Three-dimensional Euclidean space provides the geometrical frame
for non-relativistic physics. A derivation of an imaginary temporal axis
−icq̂ the speed, q̂ the unit wave-vector of light, extends the standard
Euclidean space into a well-defined four-dimensional Euclidean spacetime
frame, which provides the natural mathematical framework for relativistic
physics. The basic elements of the Euclidean spacetime frame are fully
specified four-component complex vectors satisfying standard vector
operations and vector identities. In developing a theory of gravitation in
the Euclidean spacetime frame, we have used the Lense-Thirring spacetime
metric of linearized general relativity to derive an appropriate complex
four-component gravitational field potential vector. Taking the curl of
the field potential vector provides a unified complex gravitational field
strength composed of electric-type and magnetic-type components. Taking
the cross-product of the complex four-component velocity and the field
strength provides a unified complex gravitational force intensity composed
of gravitoelectric and gravitomagnetic components. Application to the
motion of a gyroscope in the gravitational field of the earth provides the
standard results of frame-dragging and geodetic effects as determined in
linearized general relativity theory.
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1. Introduction

So far, the four-dimensional Minkowski spacetime frame has provided the geometrical framework
for describing the more accurate relativistic dynamics. But a serious, though unnoticed, drawback of
the Minkowski spacetime frame is that it does not specify a unit vector in the temporal direction,
yet all the three associated spatial coordinate axes, namely the x-axis, y-axis and z-axis are specified
by their respective unit vectors î, ĵ and k̂. This means that in the Minkowski space-time frame, the
four-component vectors, i.e., four-vectors, can only be expressed in terms of their components in
contravariant or covariant forms, but not in the standard form for representing the three-component
vectors in the three-dimensional Euclidean space frame. Mathematical operations with four-vectors in
the Minkowski spacetime frame do not follow exactly the same procedure as the standard mathematical
operations with the three-component vectors in the corresponding three-dimensional Euclidean space.
In particular products or partial derivatives such as divergence and curl of four-vectors are conveniently
evaluated if expressed in contravariant and covariant form. Even though the dot-product and the
divergence of Minkowski four-vectors can be obtained in the standard Euclidean form if the temporal
component is defined to be pure imaginary, the cross-product and the curl of the four-vectors with
real or pure imaginary temporal components cannot be obtained in the standard Euclidean form, but
can only be evaluated in terms of their generalized components expressed in appropriate tensor form.
This leads to the inescapable conclusion that the specification of the four-dimensional Minkowski
geometrical framework with real or imaginary temporal axis as an extension of the three-dimensional
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Euclidean space is not complete. This is essentially due to the fact that the Minkowski framework does
not explicitly specify the temporal axis unit vector, even though the mathematical operations imply
that the temporal axis is orthogonal to all three spatial coordinate axes.

In recent work [1], [2], the present author derived the unit vector along the temporal axis and
identified it as the unit wave vector q̂ in the direction of propagation of light. It emerges that the
temporal axis is an imaginary axis specified by the unit wave vector of light. This has provided a fully
specified four-dimensional space-time geometrical frame with an imaginary temporal axis which can be
interpreted as a mathematically consistent extension of standard three-dimensional Euclidean space to
a four-dimensional Euclidean space-time frame. Four vectors with pure imaginary components and the
related mathematical operations in the four-dimensional Euclidean spacetime frame now take exactly
the same form as in the standard three-dimensional Euclidean space. Details of derivations, four-vector
definitions, mathematical operations and four-vector identities in the four-dimensional Euclidean
spacetime frame (complex spacetime frame) are presented in [1], [2]. We observe that an imaginary
time it (imaginary temporal coordinate ict) was first introduced in four-dimensional spacetime frame
by Minkowski [3].

2. Euclidean Spacetime Frame

In the specification of the Euclidean spacetime frame, the temporal unit vector q̂ is taken to be of
general orientation relative to the mutually orthogonal spatial axes unit vectors î, ĵ and k̂ according to
the general orientation conditions:

î · ĵ = 0; ĵ · k̂ = 0; k̂ · î = 0; q̂ · î �= 0; q̂ · ĵ �= 0; q̂ · k̂ �= 0 (1)

The Euclidean spacetime frame is characterized by an imaginary temporal axis specified by the unit
wave vector q̂ of light propagation. We shall call a general complex four-component vector defined
within the Euclidean spacetime frame, specified by all four spacetime unit vectors q̂, î, ĵ, k̂, a Euclidean
four-vector. We call the complex four-component gradient vector defined within the Euclidean
spacetime frame the Euclidean four-gradient. We denote a Euclidean four-vector by an upper-case letter
symbol such as V while the usual three-component vector in standard three-dimensional Euclidean
space is denoted by a bold-faced letter symbol such as V or a conventional symbol with an over-
arrow, such as �O, where necessary. The Euclidean four-gradient is denoted by ∇ while the usual
three-component gradient vector in three-dimensional Euclidean space is denoted by an over-arrow in
the form �∇.

A general Euclidean four-vector U , event four-vector X , displacement four-vector dX , velocity four-
vector V and gradient four-vector ∇ are defined in the form:

U = −ic∅q̂ + �U ; X = −ictq̂ + �r; dX = −icdtq̂ + d�r; V = −icq̂ + �v; ∇ = i
c

∂

∂t
q̂ + �∇ (2)

where c is the speed of light, �r the position vector and �v the velocity defined as usual in three-
dimensional Euclidean space. With Euclidean four-vectors taking the standard vector form with all
unit vectors specified according to (2), mathematical operations within the four-dimensional Euclidean
spacetime frame follow exactly the same procedure as the well-established mathematical operations
with three-component vectors in the standard three-dimensional Euclidean space.

The basic mathematical operations such as addition and subtraction, dot and cross products,
divergence and curl of Euclidean four-vectors, and the Euclidean gradient of a scalar, are defined and
evaluated in the standard vector operation forms:

W = U ± Q = −ic
(
Uq ± Qq

)
q̂ +

( �U ± �Q
)

; U · Q = �U · �Q − c2UqQq − icq̂ ·
(

Uq �Q + �UQq

)

U × Q = �U × �Q − icq̂ ×
(

Uq �Q − �UQq

)
; ∇ × Q = �∇ × �Q − i

(
1
c

∂ �Q
∂t

+ �∇ (
cQq

)) × q̂

∇ · Q = ∂Qq

∂t
+ �∇ · �Q + iq̂ ·

(
1
c

∂ �Q
∂t

− �∇ (
cQq

))
; ∇∅ = i

c
∂∅

∂t
q̂ + �∇∅ (3)

In detailed calculations presented in [1], [2], we have proved that Euclidean four-vectors satisfy
exactly all forms of standard vector identities for three-component vectors in three-dimensional
Euclidean space. For completeness in defining the mathematical operations in the Euclidean spacetime
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frame, we present the final results of the basic Euclidean four-vector identities, which for a scalar
function ∅ and Euclidean four-vectors U , Q, W have been obtained as:

∇ × ∇∅ = 0; ∇ · (∇ × U) = 0; ∇ × (∇ × U) = ∇ (∇ · U) − ∇2U (4a)

∇ · (∅U) = ∇∅ · U + ∅∇ · U ; ∇ × (∅∇) = ∇∅ × U + ∅∇ × U ; ∇ · (U × Q)

= Q · (∇ × U) − U · (∇ × Q) (4b)

∇ (U · Q) = U × (∇ × Q) + Q × (∇ × U) + (U · ∇) Q + (Q · ∇) U (4c)

∇ × (U × Q) = U (∇ · Q) − Q (∇ · U) − (Q · ∇) U − (U · ∇) Q (4d)

W × (U × Q) = U (W · Q) − Q (W · U) ; W × (U × Q) + U × (Q × W) + Q (W × U) = 0 (4e)

U · (U × Q) = 0; U · (Q × W) = Q · (W × U) = W · (U × Q) (4f)

The basic algebraic operations presented in (4)–(10) constitute the mathematical foundation for
formulating theories of dynamics of physical systems such as atoms in Euclidean space-time frames.

3. Physics in Euclidean Spacetime Frame

In a systematic formulation of physics in the Euclidean spacetime frame, we apply the mathematical
property that the basic elements of the Euclidean spacetime frame are Euclidean four-vectors, which
as defined above, are complex four-component vectors. The basic dynamical elements, the mechanical
elements and the electromagnetic elements, of a physical system are defined as Euclidean four-vectors.
As usual, the fundamental physical properties of matter are mass and electric charge, which generate
appropriately defined force fields. We interpret a force field, with the generating mass or electric charge
at the center (origin), as a bounded four-dimensional Euclidean spacetime frame. A mechanical (mass-
generated) or electromagnetic (electric charge-generated) force field is characterized by a Euclidean
field potential four-vector. In general, mathematical operations with the physical Euclidean four-
vectors have algebraic properties which reveal fundamental features of dynamics within a Euclidean
spacetime frame.

Consistently with standard descriptions of physics in various geometrical frames, we identify the
basic dynamical properties of physics in the Euclidean spacetime frame as mass m and electric charge q.
These basic dynamical properties are defined as the temporal components of the respective Euclidean
linear momentum and electric current density four-vectors P, J defined by

P = mV = −imcq̂ + �p; J = −icρq̂ + �J; �p = m�v; �v = d�r
dt

(5)

where �v is the velocity, �p linear momentum, ρ electric charge density and �J electric current density, all
defined as usual in three-dimensional Euclidean space. The Euclidean linear momentum four-vector
is equivalently interpreted as energy-momentum four-vector defined by introducing relativistic energy
E = mc2 in the form [4], [5].

P = −i
E
c

q̂ + �p; E = mc2 (6)

Other physical quantities such as orbital and spin angular momenta, together with the associated
orbital and spin magnetic moments, etc., can be defined as desired.

In general, physics in the Euclidean spacetime frame naturally satisfies the basic conservation laws
and invariance under Lorentz transformation. Application of the conservation laws and invariance
under the Lorentz transformation easily provide the fundamental relativistic properties of time dilation
and mass increase with speed, which have been obtained together with the corresponding spacetime
metric ds and conserved energy E in the form [1], [2].

dt = η− 1
2 γ dτ ; ds = η

1
2 γ −1cdt; m = η− 1

2 γ m0; E2 = p2c2 + η−1m0
2c4 (7)
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where τ is the proper time, m0 the rest mass, γ the usual Lorentz transformation factor and η a
Euclidean spacetime frame modification factor obtained in the form

γ = 1√
1 − v2

c2

; η =
√

1 + 4
(
q̂.�v)2

c2γ −2
(8)

In the special case where the temporal unit vector q̂ is orthogonal to all the three spatial unit vectors
î, ĵ, k̂, giving q̂.�p = 0, η = 1, the fundamental relativistic properties in (7) reduce to the standard forms
within the Minkowski spacetime frame associated with Einstein’s special theory of relativity.

In the Euclidean spacetime frame in our case the gravitational field, a force field is characterized by
a Euclidean field potential four-vector A and defined by

A = −ic∅q̂ + �A (9)

where c∅ is the scalar and �A is the vector potential. The field strength F is obtained as the curl of the
field potential four-vector A and the force intensity Fi is obtained as the cross-product of the velocity
four-vector V and the field strength in the form

F = ∇ × A; Fi = 1
c

V × F (10)

The Euclidean field potential four-vector, with the associated field strength and force intensity in (9),
(10) are defined in general form, which can be applied to any force field such as electromagnetic and
gravitational fields in a flat spacetime frame; only the dynamical properties of the field are specified
in each case. We now develop an application to gravitation in a flat Euclidean spacetime frame in the
next section.

4. The Euclidean Gravitational Field

An elegant property which has emerged is that the mathematical operations with Euclidean four-
vectors provide a natural transition from non-relativistic physics in three-dimensional Euclidean space
to relativistic physics in four-dimensional Euclidean spacetime frame. This property means that the
Euclidean spacetime frame may be considered as the natural geometrical framework for developing the
basic relativistic theory of gravitation, being a fundamental example of a general Euclidean mechanical
force field.

We now introduce the Euclidean gravitational force field. To determine the appropriate form of the
gravitational Euclidean field potential four-vector, we begin by observing that in Einstein’s general
theory of relativity, the gravitational field potential is defined by a rank-2 symmetric metric tensor in
Riemann geometry. The general form of the metric tensor characterizes gravitation in a non-inertial
spacetime frame. Noting that in a weak gravitational field, linearization of Einstein’s general theory
of relativity reduces to gravitoelectromagnetism (GEM), which governs relativistic gravitation in an
inertial flat four-dimensional Minkowski spacetime frame [6]–[12], we use the standard Lense-Thirring
spacetime metric in GEM to derive the appropriate form of the (weak) gravitational field potential
four-vector. We developed the procedure for determining the GEM field potential four-vector within
the flat Minkowski spacetime frame in [13], which we review briefly.

In GEM, the standard Lense-Thirring spacetime metric is obtained in the form [6]–[11], [13].

ds2 = (1 + 2∅) dτ 2 + 2�h · d�rdτ − (1 − 2∅) d�r2 (11a)

which we reorganize to bring the terms involving dτ together as

ds2 =
{
(1 + 2∅) + 2�h · �v

}
dτ 2 − (1 − 2∅) d�r2; �v = d�r

dτ
(11b)

where τ is the proper time and �v is the velocity of a moving mass, such as a gyroscope in the GEM field.
Introducing the speed of light c as appropriate in the temporal component of (11b) gives the form

ds2 =
{

1
c

(1 + 2∅) c + 2�h · �v
}

dτ 2 − (1 − 2∅) d�r2 (11c)

where we now recognize the GEM field scalar and vector components 1
c (1 + 2∅) , 2�h together with

the corresponding velocity four-vector components c, �v. This allows us to express the coefficient of
the temporal component in (11c) in standard spacetime covariant form

ds2 = Aμ
g Vμdτ 2 − (1 − 2∅) d�r2; μ = 0, 1, 2, 3 (11d)
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where we identify Aμ
g as the GEM field potential four-vector and Vμ as the velocity four-vector of the

moving mass obtained in respective forms

Aμ
g =

(
∅g, �Ag

)
; ∅g = 1

c
(1 + 2∅) ; Ag = 2�h; Vμ = (

c, −�v) (11e)

We have thus used the Lense-Thirring spacetime metric to determine the appropriate form of the
GEM field potential four-vector Aμ

g and the corresponding form of the velocity four-vector Vμ of a
mass moving in the GEM field.

The GEM field potential four-vector Aμ
g =

(
∅g, �Ag

)
determined from the Lense-Thirring spacetime

metric of linearised general relativity characterizes a weak gravitational force field in a flat four-
dimensional Minkowski spacetime frame. In the completely defined Euclidean spacetime frame where
the imaginary temporal axis is specified by a unit vector, the GEM field potential Aμ

g is now defined
as the Euclidean gravitational field potential four-vector Ag in the form

Ag = −ic∅gq̂ + �Ag; ∅g = 1
c

(1 + 2∅); �Ag = 2�h (12)

With the Euclidean gravitational field potential four-vector determined as in (12), the Euclidean
gravitational field strength, force and related dynamical quantities in relativistic gravitation can now
be obtained.

The gravitational field strength F is obtained as the curl of the gravitational field potential four-
vector Ag according to (10), which on applying the general form of the curl in (3), takes the form

F = �Bg + i �Eg × q̂; �Bg = �∇ × �Ag; �Eg = −�∇ (
c∅g

) − 1
c

∂ �Ag

∂t
(13)

where, by definition, the field strength component �Bg generates deflection, while �Eg generates trans-
lational motion in the Euclidean gravitational force field. Comparison with standard electromagnetic
field strength leads to the interpretation that the component �Bg generates magnetic-type effects,
while the component �Eg generates electric-type effects in the gravitational force field. Consequently,
we identify the component �Eg as the gravitomagnetic field strength and the component �Eg as the
gravitoelectric field strength. In the non-relativistic limit, the gravitoelectric field strength �Eg reduces to
the familiar Newton’s gravity field strength or gravitational acceleration �g. The important dynamical
property emerging in (13) is that the Euclidean gravitation field strength F is a unified electromagnetic-
type field strength, which is generally called gravitoelectromagnetic (GEM) field strength in linearized
general relativity theory [6]–[12].

The gravitational force intensity Fi in the Euclidean gravitational force field is obtained as the cross-
product of the Euclidean density four-vector V and the field strength F according to (10). Substituting
V from (2) and F from (13) into the definition of Fi in (10), then applying the general form of the
cross-product from (3) provides the final form:

Fi = FL + iFO; FL = �Eg + �v
c

× �Bg −
(

q̂.�Eg

)
q̂; FO = �Bg × q̂ + �v

c
×

(�Eg × q̂
)

(14)

We identify FL as a Lorentz-type (electric-type) force intensity and FO as an orbital magnetic-type
force intensity. The gravitational force intensity Fi is therefore a unified force composed of a Lorentz
electric-type component FL which we define as a gravitoelectric force intensity and an orbital magnetic-
type component FO which we define as a gravitomagnetic force intensity.

Noting that �Bg × q̂ is normal to the plane between �Bg and q̂, and that �Eg × q̂ is normal to the plane
between �Eg and q̂, we redefine the gravitomagnetic force intensity FO in the familiar form:

FO = �Bg ↑ + �v
c

× �Eg ↑; �Bg ↑= �Bg × q̂; �Eg ↑= �Eg × q̂ (15)

We observe that, apart from a missing factor 3
2 in the second component, the gravitomagnetic force

intensity obtained here in (18) or (19) agrees with the form obtained in the calculations of frame-
dragging and geodetic effects using the geodesic equation for the spin four-vector of a gyroscope in
linearized general relativity theory [7], [8]. We also notice that the Lorentz-type force has a component
that is induced by the motion and another term directed in the temporal axis as additional terms. Force
is the rate of change of momentum, so we can write

d �P
dt

= m�Eg + �v
c

× m�Bg − m
(

q̂.�Eg

)
q̂ (16)
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The other component can be interpreted as the rate of change of spin

dm�S
dt

= m�Bg × q̂ + �v
c

×
(

m�Eg × q̂
)

(17)

It is the magnetic-type forces that cause a change in the spin of a gyroscope moving in the
gravitational field of the earth. Relativistic effects are therefore obtained by taking the cross-product
of the spin-vector and the magnetic-type forces.

gm′

2mc
�S ×

(
�Bg × q̂ + �v

c
×

(�Eg × q̂
))

; g = 2; m′ = m (18)

Finally, we have the frame-dragging and geodetic effects

��FD = −3
2

m�Bg ↑ × �S; ��GE = −3
2

�v
c

× m�Eg ↑ × �S (19)

5. Applications

From Astronomical point of view, reference frames serve as the observational perspectives from
which we perceive the motion of objects in spacetime. When a massive object, such as a rotating
black hole, drags spacetime along with its rotation, the effect is observable from different reference
frames. From the perspective of an observer on the site to the rotating mass, the dragging of spacetime
appears minimal or non-existent. However, for an observer distant from the rotating mass, the frame-
dragging effect becomes more pronounced, influencing the motion of nearby objects and altering their
trajectories. Therefore, reference frames provide the framework for understanding relativistic effects
that depend on the observer’s motion relative to the rotating mass [14].

Similarly, geodetic effects are intimately connected to reference frames in general relativity. These
effects demonstrate the idea of curvature of spacetime caused by massive objects. It is the point
to consider when explaining the fact that objects follow geodesic paths. The choice of reference
frame affects how these geodesic paths are perceived. In a freely falling reference frame, where an
observer experiences no gravitational forces, objects follow geodesic paths dictated by the curvature
of spacetime. However, in a non-inertial reference frame, such as one attached to a massive body like
the Earth, the apparent motion of objects is influenced by additional forces, such as gravitational
acceleration, which can obscure the underlying geodetic effects. Therefore, reference frames are
essential for disentangling the effects of curvature from other forces and understanding the true nature
of geodetic motion in curved spacetime. By studying these effects, we can validate and refine our
understanding of general relativity, which serves as the cornerstone of modern theoretical physics [15].

In astrophysics, frame dragging influences the behaviour of massive rotating objects such as
black holes and neutron stars. This effect affects the orbits of nearby objects and the emission of
gravitational waves, providing valuable insights into the dynamics of these systems [16]. Observations
of frame-dragging contribute to our understanding of astrophysical phenomena and help confirm the
predictions of general relativity in extreme gravitational environments. For example, the detection of
gravitational waves from merging black holes provides direct evidence of frame dragging effects and
offers insights into the properties of these enigmatic objects [17].

Understanding relativistic effects is essential for precise navigation systems, particularly in space
missions where accurate positioning is critical. Corrections based on general relativity, including
geodetic effects, are necessary for achieving the high levels of accuracy required for GPS applications
on Earth and in space. For instance, the Global Positioning System relies on corrections derived from
general relativity to ensure accurate positioning and timing information for navigation purposes.

6. Conclusion

As it is, we have demonstrated that it is possible to handle gravitoelectromagnetism using vector
mathematics. It is quite clear now that the motion of a body in the gravitational field induces an
additional component to the component that was identified by Newton. The practical implications
of relativistic effects extend beyond theoretical physics, influencing our understanding of celestial
mechanics, the behaviour of compact astrophysical objects, and even the design of space missions. As
we continue to push the boundaries of our understanding, these phenomena will undoubtedly remain
at the forefront of gravitational research, guiding us toward new frontiers in both theoretical and
observational exploration.
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