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Abstract

Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multi-drug resis-

tance protein 1 (Pfmrp1) gene have previously been reported to confer resistance to Artemi-

sinin-based Combination Therapies (ACTs) in Southeast Asia. A total of 300 samples

collected from six sites between 2008 and 2019 under an ongoing malaria drug sensitivity

patterns in Kenya study were evaluated for the presence of SNPs at Pfmrp1 gene codons:

H191Y, S437A, I876V, and F1390I using the Agena MassARRAY® platform. Each isolate

was further tested against artemisinin (ART), lumefantrine (LU), amodiaquine (AQ), meflo-

quine (MQ), quinine (QN), and chloroquine (CQ) using malaria the SYBR Green I-based

method to determine their in vitro drug sensitivity. Of the samples genotyped, polymorphism

at Pfmrp1 codon I876V was the most frequent, with 59.3% (163/275) mutants, followed by

F1390I, 7.2% (20/278), H191Y, 4.0% (6/151), and S437A, 3.3% (9/274). A significant

decrease in median 50% inhibition concentrations (IC50s) and interquartile range (IQR) was

noted; AQ from 2.996 ng/ml [IQR = 2.604–4.747, n = 51] in 2008 to 1.495 ng/ml [IQR =

0.7134–3.318, n = 40] (P<0.001) in 2019, QN from 59.64 ng/ml [IQR = 29.88–80.89, n = 51]

in 2008 to 18.10 ng/ml [IQR = 11.81–26.92, n = 42] (P<0.001) in 2019, CQ from 35.19 ng/ml

[IQR = 16.99–71.20, n = 30] in 2008 to 6.699 ng/ml [IQR = 4.976–9.875, n = 37] (P<0.001)
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in 2019, and ART from 2.680 ng/ml [IQR = 1.608–4.857, n = 57] in 2008 to 2.105 ng/ml [IQR

= 1.266–3.267, n = 47] (P = 0.0012) in 2019, implying increasing parasite sensitivity to the

drugs over time. However, no significant variations were observed in LU (P = 0.2692) and

MQ (P = 0.0939) respectively, suggesting stable parasite responses over time. There was

no statistical significance between the mutation at 876 and parasite sensitivity to selected

antimalarials tested, suggesting stable sensitivity for the parasites with 876V mutations.

These findings show that Kenyan parasite strains are still sensitive to AQ, QN, CQ, ART,

LU, and MQ. Despite the presence of Pfmrp1 mutations in parasites among the population.

Introduction

Prior to the Corona Virus Disease 2019 (COVID-19) pandemic, substantial gains were made

towards malaria eradication as disease burden had significantly reduced in the past decade.

Unfortunately, the COVID-19 pandemic neutralized these gains as transmission intensity

between 2020 and 2023 exceeded that of the previous years’ [1, 2]. Furthermore, anticipations

that malaria control and elimination were achievable were based on these positive progresses

before the COVID-19 pandemic. From a baseline of 2016–2030, the Global Technical Strategy

(GTS) aims to achieve a reduction of 90% of malaria morbidity incidence and mortality rate

by 2030. Additionally, the strategy aims to eliminate malaria in at least 35 countries and pre-

vent reintroduction in all countries that have achieved elimination [3]. While the gains to date

are magnificent, the global malaria challenge remains substantial, and the rate of progress is

slowing [2].

Progress towards a malaria free world is likely hindered by several present and emerging

challenges. The introduction of artemisinin-based combination therapies (ACTs) has been

central to achieving GTS, but changes in parasite sensitivity to these drugs in Southeast Asia

(SEA) [4] and Africa [5, 6] are one of the major challenges that must be urgently and swiftly

addressed. Chemotherapy has tremendously been affected worldwide by the emergence of

drug resistance in Plasmodium falciparum (P. falciparum), while the intense distribution of

parasite strains that are resistant to chloroquine in most of the endemic areas [7] has added

more complications in the treatment of malaria. Recently described genotypic and phenotypic

markers are evidenced to be valid tools in monitoring artemisinin (ART) and piperaquine

(PQ) resistance in SEA [8, 9]. However, these genetic tools that are relevant in monitoring

altered sensitivities to ACTs in SEA might not be applicable in sub-Saharan Africa (sSA)

[4, 10].

Although ACTs remain highly efficacious [4, 11], reduced parasite sensitivities to these

drugs in sSA [5, 6] would be devastating, granted that this is where the brunt of the disease is

felt. The most commonly used ACT in Africa, artemether-lumefantrine (AL), in recent years,

studies have shown [12] selects for Single Nucleotide Polymorphisms (SNPs) in Plasmodium
falciparum chloroquine resistance transporter (Pfcrt) gene, Plasmodium falciparum multidrug
resistance gene 1 (Pfmdr1) in sSA parasites [13–17] and Plasmodium falciparum multidrug
resistance protein 1 (Pfmrp1) gene [18]. Some of these genes change in mutation frequencies

longitudinally can be used as surrogate indicators of the selective pressure that ACTs might be

exerting on the parasite population. P. falciparum parasites remain under ongoing selective

pressure from several anti-malarial drugs and also between P. falciparum genes associated with

anti-malarial resistance So far, most studies have majorly concentrated on SNPs present in

only five genes: Pfcrt, Pfmdr1, Plasmodium falciparum dihydrofolate reductase gene (Pfdhfr),
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Plasmodium falciparum dihydropteroate synthase (Pfdhps), and Plasmodium falciparum Kelch
13 (Pfk13) [19]. These are the most studied molecular markers of resistance in sSA; except the

Pfmrp1 gene [20], despite evidence of its association with susceptibility to antimalarial drugs.

Pfmrp1 gene encodes an 1822-amino acid protein situated in the plasma membrane of the

parasite, along with a member of the ATP-binding cassette (ABC) transporter superfamily

[18]. It is known to influence parasite sensitivity through the efflux of glutathione, chloroquine

(CQ), and quinine (QN) [21]. Its association with susceptibility to antimalarial drugs and posi-

tive parasite selection makes it a responsive target for tracking resistance [22]. Previous studies

in various regions have shown the potential significance of Pfmrp1 gene in anti-malarial drug

resistance [18, 21, 22]. For instance, in Iran, four years after the introduction of ACTs, the

Pfmrp1 gene polymorphisms associated with artemisinin resistance, namely; 191Y (76.5%),

437A (69.5%), 876V (64.5%), and 1390I (17%) were found in their populations [23]. Addition-

ally, a study conducted on the China-Myanmar border associated Pfmrp1 SNPs at codons;

N325S, H785N, T1007M, F1390I, I876V as well as H191Y, and S437A with reduced in vitro
susceptibilities to CQ, LU, dihydroartemisinin (DHA), and piperaquine (PQ) [24]. A greater

than 60%, 50%, and 7% frequency were evidenced in (H191Y and S437A), I876V and F1390I

polymorphisms, respectively, in the population [24]. Furthermore, in the Thai-Myanmar bor-

der Pfmrp1 F1390I SNPs were considerably linked to ART, MQ, and LU in an in vitro reduced

sensitivity test in the parasite isolates [25]. Also, in Thailand and Angolan isolates, a prevalence

of 95.3% Pfmrp1 alleles 191Y and 100% 437A was shown to be associated with reduced in vitro
drug responses to MQ, therefore confirming overexpression of the gene in other regions as

well [26]. Another in vivo study conducted in returning travellers to Sweden from East African

countries (Malawi, Uganda, Kenya, and Zanzibar) found the most prevalent non-synonymous

SNPs in Africa were I876V, and K1466R. These SNPs are largely spread in Asian, African and

Oceanian parasite populations. I876V was evidenced to be under selection after treatment

with LU [18].

Pfmrp1 gene mutations are known to cause reduced parasite sensitivity in vitro to antima-

larial drugs, including ART [23], a partner drug in the combination for treatment of uncompli-

cated malaria in sSA [12]. Elsewhere, ACTs have been implicated in selecting for Pfmrp1 gene

polymorphisms, which impair parasite responses to antimalarial drugs [23]. Since the rollout

of ACTs in Kenya, there has been limited information on the impact of this drug on the

Pfmrp1 gene. To address this gap, our study assessed temporal trends of Pfmrp1 mutations and

antimalarial sensitivity patterns of P. falciparum field isolates collected from four of the five

malaria ecological zones in Kenya between 2008 and 2019 using genomic and in vitro malaria

SYBR Green I assay. The outcome of this study highlights the temporal trends of Pfmrp1 muta-

tions and parasite sensitivity patterns to ART, LU, CQ, AQ, QN, and MQ. Further, our find-

ings underscore the effect of Pfmrp1 mutations on selected antimalarials sensitivity to the

parasites during the widespread use of AL. This will strengthen antimalarial surveillance tools

and inform malaria control policies in the region as we move into the malaria elimination

phase.

Materials and methods

Study sites and sample collection

This study retrospectively analyzed samples collected between 2008 and 2019 under the proto-

col entitled, Epidemiology of Malaria Drug Sensitivity Patterns in Kenya, which was approved

by the Ethical Review Committee of the Kenya Medical Research Institute (KEMRI, Protocols

#1330 and #3628), Nairobi, Kenya, and the Walter Reed Army Institute of Research (WRAIR,

Protocols #1384 and #2454) Institutional Review Board, Silver Spring, MD.
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The samples were obtained from individuals, averagely aged six months and older, residing

near participating field sites in county or sub-county hospitals, namely, Kisumu County refer-

ral hospital (KDH), Kericho County referral hospital (KCH), Kisii County referral hospital

(KSI), Kombewa Sub-county hospital (KOM), Malindi Sub-county hospital (MDH), and Mar-

igat Sub-county hospital (MGT). These sites were selected to represent four of the five malaria

ecological zones in Kenya. Eligible patients presenting at outpatient departments with symp-

toms of malaria and/or testing positive for uncomplicated malaria by rapid diagnostic test

(mRDT; Parascreen1 (Pan/Pf), Zephyr Biomedicals, Verna Goa, India) were recruited into

the study after providing written informed consent or assent [27, 28]. 2–3 millilitres (mls) of

whole blood samples were collected for in vitro antimalarial drug susceptibility testing, mRDT

testing, smear preparation, DNA extraction, and nucleic acid analysis, as earlier described

[27]. About 100 microliters (μls) of each sample was spotted on FTA filter paper (Whatman

Inc., Bound Brook, New Jersey, USA) as backup samples. The final diagnosis results were

based on clinical evaluation confirmed by mRDT and/or microscopy. All Plasmodium positive

cases were treated with AL in accordance with the Kenya Ministry of Health’s recommended

case management guidelines for uncomplicated malaria [29, 30]. Immediately after the blood

draw, the attending clinician administered and directly observed taking of the first dose of AL

based on the patient’s weight. Each patient was given the remainder of the full dose of AL and

advised to take the next dose after eight hours, then follow up with the remaining doses at

12-hourly intervals till completion of the dose. Further, they were encouraged to return to the

hospital should symptoms persist [28]. Data on this study was accessed between 19-June-2019

and 25-February-2023.

Genotypic analysis of Pfmrp1 gene

Parasite DNA was extracted from whole blood using the QIAamp Blood Mini kit (Qiagen,

Valencia, CA, USA) as recommended by the manufacturer [27]. The extracted DNA was

stored at -20˚ C until analyzed. Genotyping of Pfmrp1 H191Y, A437S, I876V, and F1390H

alleles was determined by a PCR-based single-base extension on the Agena MassARRAY1

platform (Agena Biosciences, San Diego, CA, USA) following manufacturer recommendations

[27]. Primers and the assay were designed using the Agena assay design suite (ADS) (Agena

Biosciences, San Diego, CA, USA). SNPs were designated as pure (which contains only either

wild-type or mutant strains) or mixed (which contained both wild type and mutant alleles)

based on the presence of two major peaks on the Matrix Assisted Laser Desorption Ionization-

Time of Flight Mass Spectrometry (MALDI-TOF MS) or spectra as described [31]. Analysis

determined the frequency of mutant alleles, where all the mixed genotypes were considered

mutants.

There are several steps in performing quality assurance on the MALDI-TOF MS. Firstly,

the iPLEX assay design ensures that no two alleles are within 15 Daltons of each other, thus

greatly reducing any allele bias. Secondly, the MALDI-TOF platform uses a 3-point calibrant

(three unique oligonucleotides of known mass) in each run that establishes an equation for the

best-fit curve [32]. Lastly, quality control reactions are included in each run. This includes

DNA that is known to perform well for other iPLEX reactions; a well subjected to PCR and

iPLEX reaction but lacks any DNA; and a well with Taq polymerase but not subjected to the

PCR stage. All these are run in duplicate and assist in evaluating background noise.

Drugs preparation

Drug concentrations ranging from highest to lowest, for example, 3,876 to 1.89 nanomolar

(nM), were made on 96-well culture plates (catalog no. 167008; Nunc, Inc., Roskilde,
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Denmark) by loading the working concentration of 3,876 nM onto the first column of wells

(1A to 1H), followed by 2-fold serial dilutions across 12 wells using the Biomek FXP automated

laboratory workstation (Beckman Coulter, Inc., Fullerton, CA, USA) as described by Desjar-

dins and co-workers [33]. For both culture-adapted and immediate ex-vivo assays, 3.12 μl of

drug aliquots were made from 96-well microculture plates and transferred to 384-well plates

(catalog no. 142761; Nnc, Inc.) [34–36].

Drug susceptibility testing by the malaria SYBR Green 1 assay

The susceptibility of all field isolates alongside the control strains to six selected antimalari-

als, namely; AQ, QN, CQ, ART, LU, and MQ was established using the in vitro and ex vivo
malaria SYBR Green 1 method [36]. The initial sample collection was conducted before the

participants were treated. There were no detectable levels of AL in the serum when the sam-

ple was collected, as guided by the study protocol, since AL treatment was done after sample

collection. Since no drug was present in the sample, immediate ex vivo assays were done

within six hours of sample collection, while cultured samples were tested after parasite cul-

ture adaptation in the laboratory. Archived and P. falciparum control strains mefloquine-

resistant, and chloroquine-sensitive “Indochina (3D7)”, mefloquine-sensitive, and chloro-

quine-resistant “Indochina (DD2)”, chloroquine-resistant, and mefloquine-sensitive, arte-

misinin “sensitive Indochina (W2)” were maintained in continuous culture as previously

described [27] to attain replication robustness, rising in counts to greater than 3 to 8%

infected red blood cells / total red blood cells count prior to initiation in vitro drug suscepti-

bility tests. Further, freshly collected and culture adapted parasites were subjected to imme-

diate ex vivo and in vitro assays as described [34, 36]. Parasite replication inhibition was

quantified by measuring the per-well relative fluorescence units (RFU) of SYBR Green I dye

using the Tecan Genios Plus1 (Tecan US. Inc., Durham, NC), with excitation and emission

wavelengths of 485 nanometres (nM) and 535 nM. The IC50s values for the drugs were cal-

culated using the Graph-Pad prism1 software for windows1 (Graph pad software, San

Diego, CA, USA) as previously described [34, 36].

Statistical analyses

SNP data was expressed as proportions, which were analyzed using the Chi-square or Cochran

Armitage test for trends to establish the trends and frequencies of polymorphisms at individual

codons. Drug susceptibility data was expressed as median 50% inhibition concentrations

(IC50s). Our study assessed the temporal trends of Pfmrp1 gene mutations and the sensitivity

of associated antimalarials between 2008 and 2019. The study period was categorized into

three time points, namely: 2008–2009, 2013–2014, and 2018–2019. The 2008–2009 time point

was categorized as the initiation/roll out phase since it took some time for effective implemen-

tation of ACTs in Kenya following a treatment policy change in 2006 [37]. From 2013 to 2014

was categorized as the transition phase while 2018 to 2019 was implementation phase and sta-

bilization phase. Variations in median IC50s between different study periods were examined

using the non-parametric Kruskal-Wallis H test. Post-hoc analyses were done using Dunn’s

Multiple Comparisons test. Association between Pfmrp1 genotype and IC50s data was com-

puted using the Mann-Whitney U test. All the analyses were performed using Graph pad

prism version 5.0 Software1 (GraphPad Software, San Diego, CA, USA). All statistical analy-

ses were performed at the 5% significance level and the corresponding 95% confidence interval

(CI). The critical significance level was set at P� 0.05.
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Results

Prevalence of SNPs in Pfmrp1 gene

A total of 300 archival field isolates collected from KDH, KOM, KSI, KCH, MDH, and MGT

between 2008 and 2019 were genotyped for mutations in the four amino acid positions on the

Pfmrp1 gene. Genotyping findings revealed the highest prevalence of Pfmrp1 mutations at

codon 876 at 59.3% (163/275) in the field parasites during the study period. The occurrence of

mutations at the remaining codons was as follows: F1390I 7.2% (20/278), H191Y 4.0% (6/151),

and S437A 3.3% (9/274). Particularly, the prevalence of Pfmrp1 mutation at codon 437 was the

least reported among our parasites (Table 1). Temporal trends of mutations at the four Pfmrp1
codons were not statistically significant between the three study periods: H191Y (P = 0.4661),

S437A (P = 0.1396), I876V (P = 0.9402), and F1390I (P = 0.1621). The occurrence of mutants

in different study periods is shown (Table 1).

Drug sensitivity parasites response in the field isolates

A subset of the field isolates (n = 182) was successfully analyzed for in vitro drug susceptibility

to AQ, QN, CQ, ART, LU, and MQ. Isolates showed diverse median IC50S (Table 2). The

Table 1. Frequency of SNPs in Pfmrp1 gene in field isolates during the study period.

Study period P-value Overall

Codons Genotypes 2008–2009 2013–2014 2018–2019 2008–2019 2008–2019

n (%) n (%) n (%) n (%)

H191Y Wild-type 28 (100) 71 (94.7) 46 (95.8) 145 (96.0)

Mutant 0 (0) 4 (5.3) 2 (4.2) 0.4661 6 (4.0)

S437A Wild-type 57 (100) 100 (94.3) 108 (97.3) 265 (96.7)

Mutant 0 (0) 6 (5.7) 3 (2.7) 0.1396 9 (3.3)

I876V Wild-type 24 (41.4) 43 (39.4) 45 (43.2) 112 (40.7)

Mutant 34 (58.6) 66 (60.6) 63 (56.8) 0.9402 163 (59.3)

F1390I Wild-type 55 (94.8) 104 (95.4) 99 (89.2) 258 (92.8)

Mutant 3 (5.2) 5 (4.6) 12 (10.8) 0.1621 20 (7.2)

Data is presented as frequencies [n, (%)] of Wild-type or Mutant SNPs in P. falciparum field isolates collected between the study periods 2008 and 2019. (n) represents

the number of isolates successfully genotyped at each codon. SNPs-Single Nucleotide Polymorphisms. P> 0.05 shows not statistically significant proportions of

mutations between study periods determined by Chi-square test.

https://doi.org/10.1371/journal.pone.0298585.t001

Table 2. Performance of selected drugs against field isolates during the study period.

Drugs Median IC50s (ng/ml)

AQ 2.659 [IQR = 1.383–4.161, n = 152]

QN 36.13 [IQR = 15.35–66.18, n = 128]

CQ 10.76 [IQR = 6.094–37.80, n = 90]

ART 2.704 [IQR = 1.579–5.544, n = 152]

LU 14.61 [IQR = 5.376–26.43, n = 116]

MQ 5.967 [IQR = 3.166–10.13, n = 155]

Data presented as the median 50% inhibition concentrations (IC50s) (ng/ml), (% lower and upper interquartile

ranges) in field isolates between 2008 and 2019. (n) represents isolates successfully tested. Abbreviations: CQ-

chloroquine, MQ-mefloquine, QN-quinine, ART-artemisinin, AQ-amodiaquine, LU-lumefantrine.

https://doi.org/10.1371/journal.pone.0298585.t002
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reference strains response to the selected antimalarials under study is as shown in supplemen-

tary (S5 Table).

Drug sensitivity patterns of parasites during the study period

A significant decrease in the median IC50S of AQ, QN, CQ, and ART was observed, from 2.996

ng/ml [IQR = 2.604–4.747, n = 51] in 2008 to 1.495 ng/ml [IQR = 0.7134–3.318, n = 40]

(P<0.001) in 2019, 59.64 ng/ml [IQR = 29.88–80.89, n = 51] in 2008 to 18.10 ng/ml

[IQR = 11.81–26.92, n = 42] (P<0.001) in 2019, 35.19 ng/ml [IQR = 16.99–71.20, n = 30] in

2008 to 6.699 ng/ml [IQR = 4.976–9.875, n = 37] (P<0.001) in 2019, 2.680 ng/ml

[IQR = 1.608–4.857, n = 57] in 2008 to 2.105 ng/ml [IQR = 1.266–3.267, n = 47] (P = 0.0012)

in 2019, respectively, implying increasing parasite sensitivity to the drugs over time (Tables 3,

4 and Fig 1A–1D). LU median IC50S increased by almost two folds from 11.17 (8.273–18.740)

ng/ml in 2013–2014 time point to 19.38 (3.270–33.680) ng/ml in 2018–2019 time point,

Table 3. In vitro susceptibility responses of field isolates to antimalarials during the study period.

Study period 2008–2009 2013–2014 2018–2019

Drugs Median IC50s (IQR) n Median IC50s (IQR) n Median IC50s (IQR) n P-value

AQ 2.996 (2.604–4.747) 51 2.037 (1.387–3.936) 61 1.495 (0.7134–3.318) 40 <0.001*
QN 59.64 (29.88–80.89) 51 50.23 (32.68–78.66) 35 18.10 (11.81–26.92) 42 <0.001*
CQ 35.19 (16.99–71.20) 30 10.58 (6.105–32.63) 23 6.699 (4.976–9.875) 37 <0.001*
ART 2.680 (1.608–4.857) 57 5.114 (1.777–8.953) 48 2.105 (1.266–3.267) 47 0.0012*
LU 13.66 (8.278–18.74) 27 11.17 (2.720–26.22) 53 19.38 (3.270–33.68) 36 0.2692

MQ 7.308 (3.737–12.13) 54 6.201 (3.250–10.87) 60 4.828 (3.091–7.293) 41 0.0939

In vitro median 50% inhibition concentrations (IC50s) for selected antimalarials: AQ-Amodiaquine, QN-Quinine, CQ-Chloroquine, ART-Artemisinin,

LU-Lumefantrine, MQ-Mefloquine in Kenyan field isolates between 2008 and 2019 study periods (2008–2009, 2013–2014, 2018–2019). (n) represents isolates

successfully tested. Lower and upper interquartile ranges (IQR). *- show a statistically significant P-value < 0.05, determined by the Kruskal-Wallis H test; comparisons

done using Dunn’s Multiple Comparisons test.

https://doi.org/10.1371/journal.pone.0298585.t003

Table 4. In vitro 95% CI lower and upper mean susceptibility responses of field isolates to antimalarials.

95% CI of mean 2008–2009 2013–2014 2018–2019

AQ Lower 3.272 2.339 1.741

Upper 5.113 5.124 4.573

QN Lower 50.36 43.17 15.69

Upper 90.33 102.8 32.34

CQ Lower 32.81 10.09 6.87

Upper 89.48 25.06 24.93

ART Lower 3.092 5.215 2.018

Upper 5.474 10.79 2.826

LU Lower 11.62 11.52 14.94

Upper 17.63 19.09 25.63

MQ Lower 7.861 6.424 4.607

Upper 19.03 13.19 7.95

In vitro 95% CI (Percent Confidence Interval) lower and upper mean susceptibility. In vitro median 50% inhibition

concentrations (IC50s) for selected antimalarials: AQ-Amodiaquine, QN-Quinine, CQ-Chloroquine,

ART-Artemisinin, LU-Lumefantrine, MQ-Mefloquine in Kenyan field isolates between 2008 and 2019 study periods

(2008–2009, 2013–2014, 2018–2019).

https://doi.org/10.1371/journal.pone.0298585.t004
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although this was not statistically significant (P = 0.2692). On the contrary, no significant vari-

ations were observed in LU (P = 0.2692) and MQ (P = 0.0939) susceptibility, respectively, sug-

gesting stable parasite responses over time (Table 3 and Fig 1E and 1F).

Association between Pfmrp1 polymorphisms and in vitro antimalarial drug

susceptibility at codon 876

Analysis of the association between Pfmrp1 polymorphisms and in vitro antimalarial drug sen-

sitivity as determined by the Mann-Whitney U test revealed no significant relationships

between the Pfmrp1 I876V and the selected antimalarials tested (Fig 2A and 2B). The mutant

genotype (876V) at this codon had no effect on the IC50s of the drugs under study, suggesting

stable sensitivity of the parasites (P>0.05) (Fig 2A and 2B).

Discussion

This study established three key findings: Firstly, genotyping findings revealed the presence of

Pfmrp1 I876V, F1390I, H191Y, and S437A mutations in field isolates at different frequencies.

Secondly, a significant decrease in the median IC50S of AQ, QN, CQ, and ART was noted,

implying increasing parasite sensitivity to the drugs over time while sensitivity to LU and MQ

Fig 1. Performance of selected antimalarials against field isolates during the study period. A-F Scatter plots showing temporal variation in selected

antimalarial drugs performance against the parasites between 2008–2009, 2013–2014, and 2018–2019 study periods. Horizontal bars and whiskers represent

median 50% inhibition concentrations (IC50s) and interquartile range [IQR] (ng/ml). *- show statistically significant P-value< 0.05 determined by the

Kruskal-Wallis H test; comparisons done using Dunn’s Multiple comparisons test.

https://doi.org/10.1371/journal.pone.0298585.g001
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remained stable during the six-year observation period. Thirdly, association studies between

Pfmrp1 mutations and in vitro antimalarial drug sensitivity revealed no significant change in

IC50s in parasites carrying Pfmrp1 876V mutation, suggesting stable sensitivity of these para-

sites to the antimalarials. Monitoring the frequency of mutations associated with antimalarial

resistance over a prolonged period can unveil patterns in allele selection in a population with

time and can expand the remedial life of the present and upcoming cures [38]. The emergence

of drug resistance can either be identified in time by in vitro susceptibility testing, changing

temporal and spatial patterns of parasite drug sensitivity, or changes in the responses of indi-

vidual drugs currently used as well [38]. It is on that account, that we tracked resistance by esti-

mating the frequency of resistance-linked mutations in the Pfmrp1 gene and in vitro
susceptibility testing in Kenyan isolates for better surveillance of ACTs resistance in the popu-

lation over time.

Important tools for conserving ACT efficacy are to keep track of selection and respond to

emerging indicators of drug resistance [39]. The Pfmrp1 SNPs are already established and well

documented in the Greater Mekong Sub-region (GMS) and are associated with in vivo and in
vitro responses to ACTs [18, 25]. Analysis of a sample from a traveller returning to Sweden

from Kenya in 2009, only detected 876V mutation in the Pfmrp1 gene [18]. Our assessment of

temporal trends in the frequency of SNPs in the Pfmrp1 gene between 2008 and 2019 in Kenya

during the ACTs rollout phase, showed the highest frequency of Pfmrp1 gene mutations at

codon I876V, followed by F1390I, H191Y, and S437A (Table 1). However, 191Y, 437A, 876V,

and 1390I mutations occurred in Kenyan isolates at lower frequencies, which were not signifi-

cantly varying between study periods as compared to what was earlier reported in Iran, Thai-

Myanmar border, and Myanmar townships and areas [23, 25, 39, 40], revealing the diversity in

parasite evolution across regions. Based on earlier findings, AL has been shown to select for

CQ-sensitive parasites [13]. High frequency of 876V mutations noted correspondingly in Iran,

Thai-Myanmar border, Myanmar populations [17, 22, 41] might be due to the use of the cur-

rent treatment regimen AL against CQ-sensitive parasites. African parasites have harboured

low frequencies of Pfmrp1 SNPs previously in the four loci compared to Asia and Oceania

Fig 2. Association of polymorphic IC50s versus wild-type at codon 876 in selected drugs tested. A-B Scatter plots showing association between drugs

median 50% inhibition concentrations (IC50s) and parasite genotypes determined by Mann-Whitney U test. *- show statistically significant P-value< 0.05.

Horizontal bars and whiskers represent median IC50s and interquartile range (IQR). MQ-Mefloquine, CQ-Chloroquine, QN-Quinine, ART-Artemisinin,

AQ-Amodiaquine, LU-Lumefantrine. SNPs-Single nucleotide polymorphisms.

https://doi.org/10.1371/journal.pone.0298585.g002
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parasites [18, 23]. This could be attributed to the high transmission intensities in Africa com-

pared to Oceania and Asia [18], since low transmission intensities favour the spread of drug

resistance and high levels of clinical immunity create a natural ecological refuge for drug-sensi-

tive parasites [42].

Drug susceptibility assays during the same study period showed a significant decrease in

the median IC50s of CQ, AQ, QN, and ART over the 2008 and 2019 study periods. Concur-

rently, our reports on increasing CQ sensitivity in the Kenyan parasite strains were in line with

what was observed in our recent and earlier studies [27, 34, 43] and in the French Guyana

study between 2008 and 2012 [44]. This observation in our parasite population is due to the

withdrawal of CQ drug pressure from the parasites at the onset of sulfadoxine-pyrimethamine

(SP) use in Kenya [45] and later (in 2008), the introduction of AL as the first-line treatment for

malaria [5, 45, 46]. Increasing QN sensitivity corroborates findings from GMS [46]. Results in

both populations on QN may be attributed to 1390I polymorphisms in Pfmrp1 gene, which are

associated with QN improved sensitivity [22]. Furthermore, the observation of a correspond-

ing increase in CQ and QN sensitivity in this study is contrary to the findings reported earlier

in the Northeast Myanmar and China-Myanmar border region where declining cases of in
vitro CQ sensitivity was marked by increasing QN sensitivity [22, 47]. The reason for the per-

sistent evolution of CQ resistance in GMS could be as a result of continued selection pressure

due to its use for treating sympatric Plasmodium vivax malaria [48]. AQ has been used both as

monotherapy and combined therapy with SP for the treatment of uncomplicated malaria in

Africa [49, 50]. Our in vitro analysis of Kenyan parasite strains response to AQ is suggestive of

increasing sensitivity to this drug. This concurs with a study in Senegal between 2013 and

2015, where increasing activity of CQ and monodesethylamodiaquine, the active metabolite of

AQ, was noted [51]. Conversely, a significant increase in CQ and AQ was reported in Kenyan

isolates between 2005 and 2013 [43, 52]. This is suggestive of a reciprocate reduction in the use

of AQ and withdrawal of CQ for malaria treatment during the study period and reduced drug

pressure that selects for Pfcrt gene, the notable marker for AQ and CQ drug resistance [43].

Our ART findings contradicted those of an earlier study conducted in the same population

[52]. In addition to previous studies in SEA and East Africa (Rwanda and Uganda) that

reported declining sensitivity of ART after adoption of ACTs [4, 6, 40, 53–56]. Moreover, a

four-year assessment of the sensitivity of Nigerian isolates to ART ten years following the

deployment of ACTs depicted decreasing susceptibility to ART [57]. ART declining sensitivity

in SEA and the mentioned East African regions is linked to Kelch13 polymorphisms in the par-

asites causing partial artemisinin resistance in those populations [4, 6, 40, 53–56]. Despite our

contrary findings of increased ART sensitivity, continued surveillance for early detection of

resistance in Kenya, where it forms part of the current treatment regimen, is still encouraged

[52].

In our study, LU and MQ displayed a stable sensitivity against the parasites between 2008

and 2019 study period.

LU is a partner drug to artemether, which forms the first-line regimen in most countries in

sSA [43], although previous studies in Kenya and Africa show declining LU sensitivity as a

result of continued use of AL [27, 58, 59]. Our study findings show a stable response of the

Kenyan parasite strains to LU despite a declining parasite sensitivity to this drug being

depicted between 2013–2014 and 2018–2019 study periods. Our previous study by Wakoli and

colleagues assessing the impact of parasite genomic dynamics on the sensitivity of P. falcipa-
rum to PQ and other antimalarial drugs between 2008 and 2021 showed declining sensitivity

to LU [27]. Our study outcome is different from the earlier finding because this study analyzed

samples from a short study period (2008–2019), hence the small sample size; thus, further

investigation using a large sample size should be conducted to elucidate this. MQ was
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previously used as a monotherapy for the treatment of uncomplicated malaria in Thailand, but

after four years of use, resistant parasites emerged, rendering it ineffective [41]. However, cases

of resistance against MQ have continued to be reported on the Thai-Myanmar border [41].

Our observation of sustained MQ sensitivity against Kenyan parasite strains during the study

period is because it has been infrequently used for the treatment of uncomplicated malaria due

to a perceived poor tolerance, and this shows its potential to be used as a frontline antimalarial

in the country [60].

Studies in Africa and Thai-Myanmar border areas have shown that SNPs in Pfmrp1 gene at

codons 876 and 1390 are strongly associated with reduced MQ, ART, QN, and LU susceptibil-

ity [18, 22, 25]. Even though the other two mutations at codons 191 and 437 have been associ-

ated with reduced CQ and QN sensitivity [18, 22]. In our association study between these

mutations and the in vitro activity of the drugs under investigation, there was no significant

association between the median IC50s of the studied antimalarials and the 876V mutation.

This contradicts earlier findings of significant associated reductions in sensitivity to the anti-

malarials studied [18, 22, 25]. However, this association was contrary to other studies con-

ducted on parasite isolates from the same region [41]. Additionally, studies in the North-East

and China-Myanmar border associated 876V mutations with reduced in vitro susceptibility to

CQ and AL in African isolates [22, 24, 55]. Hence, further investigations are warranted with

larger sample sizes for proper conclusions in Kenya, where this mutation is also prevalent.

Uniquely, when three samples per drug with the least and highest IC50s were sampled, 876V

mutations were exhibited in nearly all the samples with both high and low sensitivities. This

may be attributed to selection pressure spreading these mutations in the parasites on the popu-

lation, and it thus needs to be further investigated if it is a negative or positive selection associ-

ated with the hitchhiking effect.

This study had some limitations: Firstly, the sample size from some study sites was small,

and three study sites (KOM, MGT, and MDH) were not opened during the 2008 and 2009

base years. Secondly, we were unable to culture-adapt samples, especially from some field sites,

mostly due to logical challenges, and therefore only a subset of 182 out of 300 samples were

successfully tested and analyzed. Lastly, apart from codon 876, we did not gather enough data

from the other three codons (191, 437, and 1390) to generate discernible relationships with

IC50s, probably due to low frequencies.

Conclusion

Our study findings denote that Kenyan P. falciparum parasite strains are sensitive to AQ, QN,

CQ, ART, LU, and MQ despite the detection of Pfmrp1 mutations in the parasite population.

Supporting information

S1 Table. Primers used for analysis of four SNPs in one gene. The primers in (S1 Table)

were generated by the design software, guided by Agena MassARRAY1 system. 4 SNPs were

designed into 3 pools. The primary polymerase chain reaction (PCR) that is locus-specific

PCR was amplified with pools of 1st PCRP and 2nd PCRP for specific SNP loci. This secondary

PCR uses mass-modified dideoxy nucleotide terminator of an oligonucleotide primer (UEP_-

SEQ). Primer anneals immediately upstream of the polymorphic site of interest. The SNPs

were added in a multiplexed single base pair extension (SBE) with dideoxy nucleotides that are

mass modified depending on the allele and design of the assay. The extended primers were

then detected by MALDI-TOF MS in the analyzer.

(XLSX)
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S2 Table. Number of samples per site during the study period. Summary of the number of

samples analyzed from each study site per study period.
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S3 Table. Drugs IC50s data during the study period. Outliers in blue font excluded during

Kruskal-Wallis analysis. Scatter plots were graphed and outliers excluded from the ones out-

side the correct ranges. Correct ranges are values in between the first third wells and the last

third wells after serial dilutions as per drug starting concentration. Starting concentrations in

(ng/mls); ART-200, QN-4000, CQ-2000, LU-200, MQ-500, AQ-200.

(XLSX)

S4 Table. SNPs IC50s data at codon 876 during the study period. Outliers in blue font

excluded during Mann-Whitney analysis. Scatter plots were graphed and outliers excluded

from the ones outside the correct ranges. Correct ranges are values in between the First third

wells and the last third wells after serial dilutions as per drug starting concentration. Starting

concentrations in (ng/mls); ART-200, QN-4000, CQ-2000, LU-200, MQ-500, AQ-200.

(XLSX)

S5 Table. IC50s data of antimalarials against controls. The sensitivity data of control strains

to the selected antimalarial drugs under study are shown (XLSX). Susceptibility of W2, DD2

and 3D7 control strains to AQ, ART, QN, LU, MQ and CQ.

(XLSX)

S6 Table. Pfmrp1 gene SNPs data during the study period. Wild-type genotype versus

mutant mentioned per codon. Mixed genotypes were categorized as mutants as well in fre-
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