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Abstract: Al–Mg–Si alloys are used in aircraft, train, and car manufacturing industries due to their
advantages, which include non-corrosivity, low density, relatively low cost, high thermal and electrical
conductivity, formability, and weldability. This study investigates the bulk mechanical properties of
Al–Mg–Si alloys and the influence of the Si/Mg ratio on these properties. The Al cell was used as the
starting structure, and then nine structures were modeled with varying percentages of aluminium,
magnesium, and silicon. Elastic constant calculations were conducted using the stress–strain method
as implemented in the quantum espresso code. This study found that the optimum properties
obtained were a density of 2.762 g/cm3, a bulk modulus of 83.3 GPa, a shear modulus of 34.4 GPa, a
Vickers hardness of 2.79 GPa, a Poisson’s ratio of 0.413, a Pugh’s ratio of 5.42, and a yield strength
of 8.38 GPa. The optimum Si/Mg ratio was found to be 4.5 for most of the mechanical properties.
The study successfully established that the Si/Mg ratio is a critical factor when dealing with the
mechanical properties of the Al–Mg–Si alloys. The alloys with the optimum Si/Mg ratio can be
used for industrial applications such as plane skins and mining equipment where these properties
are required.

Keywords: aluminium; alloys; Al–Mg–Si; mechanical properties; Si/Mg ratio; aerospace; automotive
materials; density functional theory

1. Introduction

Aluminium and its alloys have numerous applications that range from cladding walls
in buildings to aircraft parts, power cables, heat exchangers, and heat shields. Most car
parts (about 60% of the weight), such as gear box housing, cylinder heads, and wheel
rims, are made of Al and/or its alloys [1,2]. The alloys are preferred due to their many
advantages, such as non-corrosivity, low density, relatively low cost, and high thermal
and electrical conductivity [3–6]. Additionally, aluminium–magnesium–silicon (Al–Mg–Si)
alloys have excellent mechanical strength due to small precipitates of Mg and Si formed in
the solid-solution phase, where maximum hardness arises from a combination of a large
number of coherent Guinier Preston 1 (GP1) zones (GP phase) and semi-coherent Guinier
Preston 2 (GP2) zones (the Mg5Si6 phase, also known as the β” phase), both existing as
needle-like structures [7]. The mechanical properties of alloys can be significantly altered
with the addition of small amounts of alloying elements and by suitable heat treatments [8].
Specifically, the mechanical strength of the alloys can be improved through cold working
and alloying. However, both processes tend to diminish their resistance to corrosion.
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Moreover, their applicability faces the limitation of a low melting point (660 ◦C). The
principal alloying elements are copper, Si, Mg, manganese, and zinc [9].

Al–Mg–Si belongs to the 6xxx series of Al alloys, which contain traces of elements
such as tin, indium, copper, iron, manganese, chromium, zinc, titanium, zirconium, and lan-
thanum that have been found to improve the mechanical properties of this
series [8,10,11]. It has always been a challenge to come up with materials that have high
resistance to cracking and spalling that result from rapid heating in the course of their
applications in airplanes, vehicles, train coaches, and other transport facilities [12]. Aircraft
materials are designed to have very low density so as to reduce the overall weight of the
aircraft parts, which would otherwise contribute to an increase in overall load. The quest
to find better materials in this and similar industries is a continuous and never-ending
venture. Alloys of aluminium are, therefore, ideal in this sector, mainly due to their light
weight [13].

The microstructure, mechanical, and thermal properties of Al–Mg–Si alloys have been
studied by a number of researchers [3,8,9]. However, there is scanty literature on ab initio
studies of a combination of mechanical properties of these alloys, namely, bulk modulus,
shear modulus, Young’s modulus, Poisson’s ratio, Pugh’s ratio, Vickers hardness, and
ductility. Furthermore, the silicon and aluminium percentages used in this study have not
been exhaustively explored in previous studies. Using density functional theory (DFT) [14],
we modeled various combinations of Al–Mg–Si alloys and then calculated their mechanical
properties, with the main aim of optimizing them as regards strength, hardness, and ductil-
ity, as well as examining the effects of the Si/Mg ratio on these properties. DFT remains
one of the most effective ab initio tools for quantitatively predicting and rationalizing the
mechanical response of materials. In addition, DFT reduces the number of laboratory trials
needed when manufacturing a material with desired mechanical properties [15]. The choice
of the alloys in this study was based on previous studies, which have mainly shown that
Al–Mg–Si alloys (6xxx series) are appropriate for use in the aircraft, motor vehicle, and train
manufacturing industries. It is worth noting that although the mechanical properties of the
Al–Mg–Si alloys can be greatly improved by heat treatments, the same was not undertaken
in this study since the calculations were carried out at the ground state.

2. Materials and Methods
2.1. Density Functional Theory

DFT uses a set of reasonable physical approximations to simplify the many-particle
Schrödinger equation to something that can be solved numerically [14]. Equation (1) shows
the many-particle Schrödinger equation.
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∂t
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−
N

∑
i
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∂2

∂ri
2 +

N
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where ψ(r, t) is the many-particle wave function for N particles, with each particle having
its own mass mi, charge zi, and position ri. The interaction is the coulomb interaction:
e2

r . ∑N

i
}2

2mi
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∂ri
2 is the kinetic energy of the N particles, and ∑N
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e2zizj

|ri−rj| is the total poten-

tial energy of the N particles. DFT calculations usually involve the Born–Oppenheimer
approximation with an appropriate choice of the functional part. The Kohn–Sham Equa-
tions can be used to find the ground-state energy and electronic density of a system of
interacting electrons and ions.

2.2. Modeling the Structures of the Alloys

The Al crystallographic information file (CIF) was obtained from the crystallogra-
phy.net open database. Figure 1a shows the 3-D structure of the unit cell as viewed in
Burai, a graphical user interface tool for quantum espresso. The input file was Fm3m, space
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group number 225, and lattice parameter a = 4.0478 Å [16]. The input file consisting of
4 atoms was first transformed into a 3 × 3 × 3 supercell containing 108 atoms, with lattice
parameter a = 12.1434 Å. The supercell was then alloyed by replacing some of the Al atoms
with those of Mg and Si atoms as per the concentrations given in Table 1. This was carried
out within the Burai tool.
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Figure 1. Three-dimensional structures of (a) an aluminium unit cell and (b) a supercell of the A_19
(a 3 × 3 × 3 modeled Al–Mg–Si) alloy as visualized in Burai. The grey spheres represent the
aluminium atoms; the brown spheres represent the silicon atoms; and the green spheres represent the
magnesium atoms.

The code names used in Table 1 contain the percentage silicon concentration (first
digit), followed by the percentage magnesium concentration (second digit). Figure 1b,
which shows the structure of the A_19 supercell, is representative of all the other eight
supercells. The A_00 cell (the pure Al cell) was also included in the calculation as
a reference.

Table 1. Concentrations of various Al–Mg–Si alloys (6xxx series) and the number of atoms of
each element.

Sample ID
Silicon Magnesium Aluminium Si/Mg Ratio Si/(Mg+Si)

Conc. (%) Atoms Conc. (%) Atoms Conc. (%) Atoms

A_00 0 0 0 0 100 108 - -

A_19 1 1 9 10 90 97 0.100 0.091

A_28 2 2 8 9 90 97 0.222 0.182

A_37 3 3 7 8 90 97 0.375 0.270

A_46 4 4 6 7 90 97 0.571 0.364

A_55 5 5 5 5 90 97 1.000 0.455

A_64 6 7 4 4 90 97 1.750 0.545

A_73 7 8 3 3 90 97 2.667 0.636

A_82 8 9 2 2 90 97 4.500 0.727

A_91 9 10 1 1 90 97 10.00 0.818

The number of atoms in the concentration percentages chosen was approximated to
the nearest whole number. The concentration of Al was kept constant at 90%, while that
of Si and Mg was varied to yield the nine Al–Mg–Si alloys with different concentrations.
The first alloy (A_19) had the lowest concentration of Si (1%) and the highest concentration
of Mg (9%). Si concentration was then consistently increased, while that of Mg was
consistently reduced.
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2.3. Structural Optimization

The electron–ion interactions in this study were described by scalar-relativistic, norm-
conserving ultrasoft pseudopotentials (PPs). This is because, apart from allowing a basis
set with a significantly lower kinetic energy cut-off (ecut) to be used to describe the electron
wave functions and allowing numerical convergence with reasonable computing resources,
ultrasoft PPs also relax norm-conserving constraints to reduce the necessary basis set size
further at the expense of introducing a generalized eigenvalue problem [17]. The Perdew–
Burke–Erzernhof functional for SOLids (PBESOL) was used. Norm-conserving ultrasoft
pseudopotentials (PPs) by Adllan and Corso [18], Al.pbesol.rrkjus.UPF, Mg.pbesol.rrkjus.UPF,
and Si.pbesol.rrkjus.UPF, which have been generated with scalar-relativistic calculation,
were also employed. PBESOL PPs produce results for mechanical properties that are
comparable to those of experimental studies [19]. Moreover, ultrasoft PPs allow basis sets
with a significantly lower ecut to be used in order to describe the electron wave function,
thus allowing numerical convergence with reasonable computing resources.

The ecut, charge density cut-off (ecutrho) (ecut × 8), the k_ points, and the lattice
parameters were then optimized. Ecut was varied from 10 to 100 in steps of 10, leading
to 10 data points. The structural optimization was achieved when the difference between
two adjacent values of total energy was in the order of 10−4 Ry. K_points varied from 2
to 9 in steps of 1. To obtain the equilibrium lattice parameters of the crystal, calculations
on the total energy were carried out for a range of unit cell volumes by varying the lattice
parameters in steps of 0.2 a.u from 19.3 to 22.1, producing 15 data points. The equilibrium
lattice parameters were obtained by fitting the resulting total energies versus volumes data
into the third-order Birch–Murnaghan equation of state, given by Equation (2) [10]:

P(ν) =
3B0

2

[(v0

v

)7/3

−
(v0

v

) 5
3
][

1 +
3
4

(
B
′
0 − 4

){( x
v

) 2
3 − 1

}]
, (2)

where P is the pressure, Vo is the reference volume, V is the deformed volume, Bo is
the bulk modulus, and B

′
o is the derivative of the bulk modulus with respect to pressure.

From Equation (2), the minimum equilibrium volumes were obtained. The values of the
equilibrium volumes were then fitted into the equation for finding the volume of a simple
cubic cell, given by Equation (3):

V = a3 (3)

After optimizing the lattice parameters, the atomic coordinates were then optimized
by performing a variable cell relaxation (vc-relax) calculation using the Brodyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm, such that the components of force on each atom are
less than × 10−4 Ry/Å.

2.4. Calculation of Mechanical Properties

Solid materials exhibit resistance to the action of external forces that tend to deform
them [20]. The elastic properties of materials give the characteristics of their response
to external loads, which can be applied in different manners. The elastic properties of
materials are governed by Hooke’s law, which states that the stresses σi in a material are
directly proportional to the corresponding applied strain δi within the linear regime of
the crystal:

σi = ∑6

j=1
cijδi (4)

where cij is the elastic stiffness constant corresponding to the spring constant in Hooke’s law.
Elastic properties of materials are important, as they give vital information about the

anisotropic character of bonding, bonding characteristics between adjacent planes, and
the structural stability of a compound. Calculation of the elastic constants of materials
requires knowledge of the curvature of the energy curves as a function of strain for the
selected deformations. In this study, the stress–strain method by Ongwen et al. [19] was
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employed. Instead of the three distortion matrices (D1, D2, and D3) that are required in
the energy–strain method for the calculation of elastic constants of cubic crystals, only two
distortion matrices (D1 and D2) are required. Small strains (±0.006 in steps of 0.002, 5 data
points) were applied to the crystals, after which the stresses were obtained.

The three elastic stiffness constants for the cubic crystals (c11, c12, and c44) must meet
the Borne Huang criterion for a stable structure [21,22], given by Equation (5):

c11 > 0, c44 > 0; c11 − c12 > 0; c11 − 2c12 > 0 (5)

The elastic stiffness constants cij and the corresponding elastic compliance constants
(Sij) for the cubic crystals are related by Equation (6a,b) [23,24]:

S11 =
c11 + c12

(c11 − c12)(c11 + 2c12)
(6a)

S12 =
−c12

(c11 − c12)(c11 + 2c12)
(6b)

From elastic stiffness (cij) and elastic compliance constants (Sij), the bulk modulus (B)
and the shear modulus (G) were calculated using the Voigt and Reuss approximations.
For a cubic crystal, the Voigt bulk (BV) and shear (GV) moduli are, respectively, given by
Equation (7a,b):

Bv =
1
3

c11 +
2
3

c12 (7a)

Gv =
1
5
(c11 − c12) +

3
5

c44 (7b)

s44 =
1

c44
(7c)

The Reuss bulk (BR) and shear bulk (GR) moduli are, respectively given by (8a,b):

BR =
1

3S11 + 6S12
(8a)

GR =
15

12s11 − 12s12 + 9s44
(8b)

The effective bulk and shear moduli are the arithmetic averages of the Voigt and Reuss
moduli, known as Hill’s average and given in Equation (9) [25];

B =
Bv + BR

2
and G =

Gv + GR

2
(9)

The brittle and ductile behavior of a material was determined by using Equation (10) [24]:

B
G

= n (10)

where n is a constant known as the Pugh’s modulus ratio. If n > 1.75, the material is ductile;
otherwise, the material is brittle. The Vickers hardness (Hv) was determined according to
the Chen model, given in Equation (11) [26,27]:

Hv = 2

[(
1
n

)2
·G
]0.585

− 3, (11)
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The Tian model, given by Equation (12), was also used for comparison and improvement [28].

Hv = 0.92
(

1
n

)1.137
×G0.708, (12)

where n is Pugh’s ratio and G is the shear modulus.

3. Results and Discussion
3.1. Structural Properties

Figure 2 shows the variation of the total energy per atom with ecut for samples A_00,
A_19, and all ten alloy samples combined. From the figure, the ecut was observed to
stabilize at 50 Ry. Thus, 50 Ry was picked for the subsequent calculations for all the
supercells. The energy difference between the 55 Ry and 50 Ry total energies was found to
be 2.4 × 10−3 Ry. Figure 3 presents the total energy per atom against k_points for samples
A_00, A_19, and all the alloy samples combined, which was found to stabilize at the
5 × 5 × 5 mesh. The energy difference corresponding to this mesh was found to be
3.5 × 10−4 Ry. Thus, the 5 × 5 × 5 k_point mesh was chosen for all the other supercells.
Although higher values for the ecut and k_point mesh would have been chosen so as to
improve the accuracy of the calculation, it was noted that the higher values would have
been more computationally expensive, considering the large number of atoms (108 atoms)
in each supercell that were modeled in this study. However, the 50 Ry ecut and 5 × 5 × 5
Ry k_points are sufficient to give accurate results.
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Figure 4. Graphs of total energy per atom against normalized unit cell volume (V/Vo). 

Figure 3. Graphs of total energy against K_points for (a) sample A_00, (b) sample A_19, and (c) all
10 samples combined.

From both Figures 2c and 3c, it is evident that A_91 requires the least energy to be
formed and, hence, is the most mechanically stable. There is a consistent decrease in
the total energy from A_00 to A_91, implying that the mechanical stability of the alloys
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increases consistently from A_00 to A_91 (with an increase in the number of Si atoms added
to the structures).

The equilibrium volumes (Vo) of the alloys were obtained with the help of Equation (2).
By applying the formula for finding the volume of a cube (Equation (3)), the volumes of the
cells were calculated. The normalized volumes (v/vo) were also obtained and the graphs
of total energy versus normalized plotted in order to optimize the equilibrium volumes as
shown in Figure 4. It is evident from Table 2 that the optimum lattice parameters of the
supercells decrease from A_19 to A_91. Since the trend from A_19 to A_91 is accompanied
by an increase in the Si/Mg ratio, it implies that as the ratio increases, the lattice parameters
of the alloys decrease (Table 2). This shows that the unit cells shrink with an increase in the
Si/Mg ratio and is in agreement with the corresponding consistent increase in the densities
of the alloy samples.
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Figure 4. Graphs of total energy per atom against normalized unit cell volume (V/Vo). Figure 4. Graphs of total energy per atom against normalized unit cell volume (V/Vo).

The lattice parameter of the pure Al sample (sample A_00) obtained in this study
compares favorably with those obtained for β”, U1, and U2 precipitates by Froseth’s
group [19], which represents a 0.7463% deviation. The computational lattice parameter
by Nakashima [20] also compares favorably with the result of this study, representing a
0.2488% deviation. The known trend of overestimation of the lattice parameters by general
gradient approximation (GGA) was not witnessed in this work. However, this can be
attributed to the improvement of the GGA over time [27].

The density of the 6060 T66 alloy that is available in the literature is 2.074% higher [3]
than that of the A_00 sample obtained in this study, which is quite close. The A_00 alloy
was found to have the lowest density. Density is a very important property of a material
since it is related to the arrangement of atoms in the crystal as well as the corresponding
electron density [22]. The density of the alloys in this study was observed to increase
consistently with the addition of Si to the structures. A_00 was found to be the least dense,
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while A_91 was found to be the most dense. Thus, the highest density of A_91 shows the
closeness of atoms in its crystal as well as the high electron density in its structure.

Table 2. Computed unit cell volumes and densities of the nine alloy samples.

Alloy Sample a (Å) ρ (g/cm3)

A_00 4.020 (4.050 a) (4.032 b) 2.756 (2.700 c) (2.700 d)

A_19 4.005 2.762

A_28 4.003 2.770

A_37 4.002 2.779

A_46 4.000 2.783

A_55 3.999 2.790

A_64 3.997 2.801

A_73 3.995 2.808

A_82 3.994 2.815

A_91 3.993 2.821
a Experimental data from [29]. b Computational data from [30]. c Data from [3]. d Data from [31].

Figure 5 shows the plot of the equilibrium lattice parameter against the Si/Mg ratio,
which shows that the reduction of the equilibrium unit cell parameter is not linear but
exponential. The densities of the alloy samples, on the other hand, increase non-linearly
with the Si/Mg ratio. This was expected since density and lattice parameters are inversely
related. The modulus of a lattice parameter is the length of a unit cell, which determines
its volume (V = a3) and the volume of the whole crystal, and, hence, its density, since
density is affected by volume. At lower Si/Mg ratios, there is a sharp decrease in the unit
cell parameters with a corresponding increase in the densities of the alloy samples. At
higher values of the Si/Mg ratios, however, both curves tend to be constant. This shows
that as the Si/Mg ratio increases, the distance between atoms is becoming smaller, which
implies that as you move from A_19 towards A_91, the interatomic distances decrease.
A_19, therefore, having the lowest density, will be the lightest and more appropriate for
use in making aircraft parts. It is also worth noting that the difference between the highest
(2.821 g/cm3) and the lowest (2.762 g/cm3) density is very small and hence insignificant,
since the difference between the masses of 1 cm3 of A_19 and A_91 is just 0.059 g.
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3.2. Mechanical Properties

Figure 6 shows the stress–strain curves for obtaining the elastic stiffness constants:
c11 (Figure 6a), c12 (Figure 6b), and c44 (Figure 6c) for the A_00 and A_19 alloy samples.
By performing a linear fit on the curves, the values of the elastic stiffness constants were
obtained from the slopes for all the alloy samples. The fitted values are presented in
Table 3. The calculated values of all the elastic stiffness constants obtained in this study
are all positive, and, hence, they meet the Borne Huang criterion [21,22]. This indicates
that all nine alloys are mechanically stable under ambient conditions. The elastic stiffness
constant c11 is related to the elasticity of the length along the a direction (linear resistance to
compression along the direction of the a axis), while c12 and c44 are related to the shape of
the crystal. The value of c11 > c12 > c44 is an indication that the crystal is more susceptible
to changes in shape than it is to changes in length since c11 is greater than both c12 and c44.
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Table 3. Calculated elastic stiffness constants (c11, c12 and c44) of the alloy samples.

Alloy Sample Si/Mg Ratio c11 (GPa) c12 (GPa) c44 (GPa)

A_00 - 100.5 62.5 34.6

A_19 0.100 90.5 68.0 33.2

A_28 0.222 87.8 69.5 29.5

A_37 0.375 87.0 69.9 29.5

A_46 0.571 82.5 71.0 24.5

A_55 1.000 88.6 71.5 29.6

A_64 1.750 114.3 61.8 34.4

A_73 2.667 118.2 59.9 34.2

A_82 4.500 126.3 58.7 34.8

A_91 10.00 123.3 63.3 33.2

The values of c11 and c44 in Table 3 drop from A_19 to A_46, then rise from A_55 up to
A_82, and finally reduce for A_91. This means that for a lower Si/Mg ratio, the values are
higher, but they start to reduce as the Si/Mg ratio increases up 0.571, then rise up to the
point where the Si/Mg ratio is 4.5. Finally, for a Si/Mg ratio of 10, the values drop. Thus,
the values of c11 and c44 peak at a Si/Mg ratio of 4.5. The value of c12 increases from A_19
to A_55, then starts to drop from A_64 up to A_82, and finally rises for A_91. The peak
value of c12 occurs when the Si/Mg ratio is 1 (at A_55).

Elastic constants control how materials react to external pressure. The crystalline
elastic constants that can be described in the form of bulk modulus, shear modulus, Young’s
modulus, and Poisson’s ratio are used to characterize engineering materials and are useful
parameters in engineering design. Using the elastic stiffness constants (cij), the elastic
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constants and mechanical properties were calculated. The results are presented in Table 4,
from which the curves presented in Figure 7 were obtained.

Table 4. Calculated elastic constants (bulk modulus (B), shear modulus (G), Young’s modulus (E),
Poisson’s ratio (µ), Pugh’s ratio (n), and Vickers hardness (Hv) of the alloy samples. µ and n do not
have units.

Alloy Sample Si/Mg Ratio B (GPa) G (GPa) E (GPa) µ n Hv (GPa)
Chen

Hv (GPa)
Tian

A_00 - 74.0 27.6 73.1 0.335 2.70 1.35 3.14

A_19 0.100 75.5 21.5 59.0 0.370 3.51 −0.22 1.94

A_28 0.222 75.6 18.5 51.3 0.387 4.09 −0.88 1.46

A_37 0.375 75.6 18.0 50.1 0.390 4.20 −0.97 1.39

A_46 0.571 74.8 13.8 39.0 0.413 5.42 −1.71 0.86

A_55 1.000 77.2 18.0 50.2 0.392 4.28 −1.02 1.37

A_64 1.750 79.3 30.9 82.0 0.328 2.57 1.93 3.57

A_73 2.667 79.3 32.1 84.6 0.322 2.48 2.27 3.82

A_82 4.500 81.2 34.4 90.4 0.315 2.36 2.79 4.24

A_91 10.00 83.3 31.9 84.8 0.330 2.61 1.93 3.58
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Figure 7a shows a slight decline in the bulk modulus for lower Si/Mg ratios and an
increase for higher Si/Mg ratios. The bulk modulus is at its highest when the Si/Mg ratio is
10. This shows that higher values of bulk modulus are achieved with higher Si/Mg ratios.
The bulk moduli obtained in this study, which range from 74.0–83.3 GPa (Table 4), compare
favorably with the bulk modulus of 70 GPa obtained for the 6060 T66 alloy by Ambroziak
and Solarczyk [3]. It also compares with those obtained by Froseth’s group [29], which
range from 65 to 71 GPa for the various precipitates of Al–Mg–Si alloys. There is an initial
sharp decline in the shear moduli at lower Si/Mg ratios. As the Si/Mg ratio increases, the
shear modulus also increases and peaks when the ratio is 4.5, after which it decreases as the
ratio increases further (Figure 7b). This means that to design an alloy that can withstand
high shearing forces, the ratio of Si to Mg should be approximately 4.5. All the samples
in this study have bulk moduli that are significantly greater than the shear moduli, which
suggests that the alloys are more resistant to volume change than to shape change. This
makes all the alloy samples in this study appropriate for building automobile parts, such
as rail coaches and motor vehicle parts, since their shapes cannot be easily changed.

A material’s resistance to longitudinal tension is gauged by its Young’s modulus. A
high Young’s modulus indicates high stiffness [32]. Additionally, Young’s modulus affects
the ability of a material to withstand thermal shock since it is inversely correlated to the
critical thermal shock coefficient, which is crucial in gauging the flammability of a material.
It is evident from Figure 7c that the Young’s modulus follows the same trend as the shear
modulus for these alloys. There is a slight drop in the Young’s modulus for low values
of Si/Mg ratio and a steady increase in the modulus until a peak is reached at a Si/Mg
ratio value of 4.5 (corresponding to alloy A_82). A_82 is, therefore, appropriate for parts
that require high stiffness, such as gear boxes in cars. A further increase in the Si/Mg ratio
leads to a drop in the Young’s modulus value.

Poisson’s ratio can be used to assess many physical properties of solids, including
the prediction of stability against shear [33]. The value of Poisson’s ratio obtained in this
study (Figure 7d) is closer to that obtained by Ambroziak and Solarczyk [3] for 6060 T66
alloy, which was 0.3. A lower value of Poisson’s ratio leads to the stability of a material
against shear. Generally, for all the alloys in this study, the Poisson’s ratio is greater than
0.3, meaning that they are easily deformed, with A_82 being the least easily deformed and
A_28 being the most easily deformed.

The Poisson’s ratio as well as the Pugh’s ratio can be used to determine the ductile
or brittle nature of materials. Materials that fracture when subjected to stress but have
little tendency to deform before rupture are said to be brittle, while those that can easily
be distorted are said to be ductile. The values of Poisson’s ratio in this study show that all
these alloys are ductile. This is because a material is brittle if the value of Poisson’s ratio
is less than 0.27 [23,34]. The higher the value, the more ductile the material is. This study
confirms that all the values of Poisson’s ratios are greater than 0.27 and, hence, the alloys
are ductile. Poisson’s ratio rises at a low Si/Mg ratio, then falls, approaching almost a low
asymptotic value before rising steadily with a further increase in the Si/Mg ratio.

A material is ductile if the Pugh’s ratio is greater than 1.75 [35]. The Pugh’s ratios
obtained in this study are greater than 1.75 for all nine alloy samples (Figure 7e), also
confirming that they are all ductile. This means that the materials are flexible and can be
formed into thin sheets, which is a crucial property of materials for technical and industrial
applications. The values of Pugh’s ratio obtained in this study at 2.57–5.42 show that all the
alloys in this study are highly ductile materials, with A_46 being the most ductile and A_82
being the least ductile. Although the alloys in this study are ductile based on Pugh’s and
Poisson’s ratios, this criterion alone is not sufficient to suggest specific applications of these
alloys in the industry since it leads to elongation to fracture in a tensile test, which is only in
the regime of a few percent (less than the recommended 10% ELF) of plastic deformation.

Another significant property that affects many industrial applications of materials is
hardness. Generally, hardness is the resistance that a material offers to external mechanical
actions that tend to scratch, abrade, indent, or in other ways permanently affect its surface.
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Hard materials, such as diamond, have low compressibility and high wear resistance, a
property that is highly desired in making parts of automobiles that do not wear out easily,
such as plane skins. Materials with a Vickers hardness of more than 40 GPa are referred to
as super hard materials [36]. The alloys in this study are generally softer materials, since the
highest hardness value obtained from the Tian model is 4.24 GPa (alloy A_82) and 2.79 GPa
(alloy A_82) from the Chen model. These hardness values are still quite high for Al–Mg–Si
alloys. This can be attributed to the fact that the Chen and Tian models used in this study
(and generally all macroscopic models) are known to overestimate hardness values for soft
materials [28]. The negative values realized in the Chen model are due to the fact that there
is a negative term (−3) in Equation (11). If the first term of the equation yields a value less
than 3, then we end up getting a negative hardness value. The Chen model has been known
to accurately predict the hardness of super-hard materials but yields negative values for
softer materials (hardness less than 5 GPa) [28]. The increase in hardness of the alloys in
this study can be attributed to the extensive alloying [9]. A_82 is, therefore, recommended
for use in plane skins since it has the highest hardness of all the alloys.

The Vickers hardness falls first as the Si/Mg ratio is increased from zero, before rising
to a maximum value, and then falling again slightly (Figure 7f). Precipitation is delayed
in Mg-rich alloys (lower Si/Mg ratios), hence the low hardness values at low ratios [9].
The increase in hardness is due to more β′′ precipitates, which are responsible for coarser
structures in the 6xxx series and, hence, higher hardness. It is, however, worth noting
that the increase in Vickers hardness with the Si/Mg ratio has a limit; it peaks when the
Si/Mg ratio is 4.5 (alloy A_82), after which it generally drops. The Si/Mg ratio obtained
here is different from that obtained in experimental studies. Since no heat treatments were
performed in this study (only alloying was carried out), precipitation hardening, which
involves the loss of the original elements and the formation of extremely small, uniformly
dispersed particles (precipitates) of a second phase within the original phase matrix, was
not realized. Precipitates are known to enhance the strength and hardness of Al–Mg–Si
alloys. The Vickers hardness for pure aluminium (A_00) is 1.35 GPa. The values of Vickers
hardness for Si/Mg ratios of 1 and below are negative, whereas for Si/Mg ratios above 1,
the Vickers hardness is higher than that of pure Al. This implies that, to achieve a higher
Vickers hardness, the amount of Si used in the alloy should be higher than the amount of
Mg, with the peak being when the amount of Si is 4.5 times the amount of Mg.

4. Conclusions

The mechanical properties of Al–Mg–Si alloys at different concentrations of Al, Mg,
and Si using first-principles calculations based on DFT have been investigated. The sig-
nificance of the Si/Mg ratio in influencing the mechanical properties of Al–Mg–Si alloys
has been confirmed. The results of the elastic stiffness constants reveal that all the alloys
are mechanically stable under ambient conditions. Most of the properties in this study
are at their optimum when the Si/Mg ratio is 4.5. Vickers hardness increases with an
increase in the Si/Mg ratio, peaking when the value of the Si/Mg ratio is 4.5. The alloys
can be used in the manufacture of parts for airplanes owing to their low densities and
high hardness, especially in plane skins. All the alloy samples in this study were found
to be ductile. However, the ductility criteria used in this study are not sufficient to make
recommendations for applications where ductility is considered. Further investigations
on these alloys, including, but not limited to, fabrication, heat treatments, cold work, and
strain hardening, are recommended for improved mechanical properties.
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