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ABSTRACT 

Climate variability has adversely affected agriculture and adaptation strategies are significant in enhancing resilience 

hence ensuring food security. Agrometeorological services are essential in decision-making and developing farmers’ 

specific adaptive capacities mainly when variability affect agricultural productivity. This study focuses on the composite 

effect of adaptation to climate variability, agrometeorological information, socioeconomic and institutional factors on 

agricultural productivity in Kenya. Multi-stage sampling technique was used to obtain a sample size of 384 sorghum 

farmers. The study used an endogenous switching regression model to control for the selection problem arising from 

adaptation to climate variability on agricultural productivity. Results indicate that extension contacts and education level 

were positively significant among adapters of climate variability. Additionally, the proportion of income allocated for 

farming was positively significant among non-adapters. On the other hand, access to credit, gender and age of decision 

makers were negatively significant among adapters of climate variability. Similarly, age was negatively significant among 

non-adapters of climate variability. Overall, adapters to climate variability had higher sorghum output than non-adapters. 

This study recommends that policymakers and other key stakeholders could increase the number of extension contacts 

and promote education to farmers so that they can access agrometeorological information, hence adaptation to climate 

variability. 

Keywords: adaptation strategies; agricultural productivity; Busia County; climate variability; endogenous switching 

regression 

1. Introduction 

Agriculture is the mainstay of many economies, contributing to 

food security and the employment of rural households, especially in 

sub-saharan Africa (SSA)[1]. The SSA region hosts about 950 million 

people, about 13% of the global population. The population is 

expected to increase to about 2.1 billion people in 2050[2]. Therefore, 

the demand for food keeps rising, underscoring the agricultural 

sector’s significance in contributing to food security[3]. The 

agricultural sector also directly or indirectly contributes significantly 

to many SSA economies. On average, agriculture contributes 15% of 

total gross domestic product (GDP), ranging from 1.9% in botswana 

with the highest, 57.4% in sierra leone[4]. The agricultural sector 

offers employment to more than half of the total labour force in SSA. 

Among the rural population, it is a source of livelihood for many 

small-scale producers. The small-scale farmers constitute 
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approximately 80% of all farms in SSA and employ about 175 million people[2,5]. In Kenya, agriculture 

contributes to about 33% of the GDP, accounts for 60% of employment and 65% of exports[6]. 

Climate variability and change have badly affected the agricultural sector, and the situation is expected 

to deteriorate in the 21st century[7]. The intergovernmental panel on climate change (IPCC) valuation report 

indicates that most countries will experience significant climate changes. These changes include increased 

average temperature, more frequent heat waves, more stressed water resources, desertification, the 

concentration of CO in the atmosphere and periods of heavy precipitation[8]. Climate variability and change 

have threatened food security through reduced production due to reduced rainfall, soil moisture and increased 

temperature. It also directly affects agricultural production and food security because most of the SSA 

population lives in rural areas with agriculture as a source its livelihood. This is worsened given that agriculture 

in this region is predominantly rain-fed. 

The climate of SSA is warmer than it was 100 years ago, and model-based predictions of future GHG-

induced climate change for the continent suggest that this warming will continue[9,10]. The projection of rainfall 

is less uniform. Many of the impacts of climate change will result in changes in extreme events such as droughts 

and floods. 

Changes in rainfall patterns and shifts in thermal regimes influence local seasonal and annual water 

balances and affect the distribution of periods during which temperature and moisture conditions permit 

agricultural production. Such characteristics are common in Kenya, which relies on rain-fed agriculture. Over 

the last century, Africa has warmed and the average annual temperature is likely to rise by an average of 1.5–

4 ℃ by 2099[11]. Since the early 1960s, Kenya has experienced extreme weather events with both minimum 

and maximum temperatures having risen generally by 0.7–2.0 ℃ and the maximum by 0.2–1.3 ℃, depending 

on the season and the region leading to loses with Kenya experiencing damages equivalent to 2.4% of gross 

domestic product (GDP) between 1999 and 2000 droughts[12]. Recent study on economic impacts of climate 

change in Kenya has estimated that annual cost of climate change impacts will be in the tune of USD 1 to 3 

billion by the year 2030[12]. 

Access to reliable and accurate agrometeorological information can guide operational farm-level 

information, especially when climate change and variability are a significant threat to agriculture[13]. The 

information can be obtained using conventional methods and/or indigenous knowledge. Some conventional 

techniques include agrometeorological information from researchers, which is observed data collected in 

weather stations and modelled for future predictions[14]. In contrast, indigenous knowledge includes 

agrometeorological information validated by researchers that is passed from one generation to another among 

local communities[1]. Some of the indigenous agrometeorological information include observation and 

interpretation of plants and animal/human body conditions, various sounds by birds and other animals. Using 

indigenous knowledge helps farmers predict disasters caused by climate variability, and they formulate 

adaptation strategies to avert agricultural production losses. 

Applying climate services in agriculture, specifically agrometeorological services, is a valuable 

innovation to assist decision-making and develop farmers’ specific adaptive capacities[15]. Agrometeorological 

information and services have been operationally applied in farming decision-making in Kenya. The outcome 

showed that regular provision of agrometeorological information could help farmers to manage better risks 

associated with increased climate variability and change. Smallholder farmers reliant on rain-fed production 

systems can enhance climate resilience and coping capacity[15,16]. Seasonal climate forecasts are critical in 

expanding the lead-time of farmer-relevant information and contributed to a rise in the interest in applying the 

information to agriculture. There is a positive perception of farmers and local stakeholders toward agricultural 

production. 
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Farming in Busia County is highly dependent on rainfall, making farmers vulnerable to climate variability 

due to the fragile nature of the environment. The county government has identified early cessation of the long 

rains as the main cause of low yields in cereal crops like sorghum and maize. Variability of rainfall patterns 

compounded with unpredictable rainfall intensity has led to soil erosion and floods thereby affecting land 

preparation and food production[17]. Historical data that’s there is a remarkable increase in drought frequency 

from every 10 years to every 2–5 years with moisture stress, increased temperature, intense rains and soil 

erosion being the most problematic[18]. This has contributed to high poverty level in Busia County which are 

higher (64.2%) than the national average of 45.9%[17]. Climate events in the county of Busia have had a 

profound effect on the agricultural sector and the people’s livelihoods. County farmers have noted increased 

droughts and floods, previously unheard of between the 1940s and 1990s. These are all occurrences that occur 

in combination with droughts, such as the one that occurred in Teso North in 2016, which resulted in crop 

failures in the county, and ultimately caused a raise in food prices that the majority of residents could not afford 

due to the county’s high poverty rate. To curb this from further escalating, development of appropriate 

adaptation strategies to climate variability are necessary. This will only be possible if farmers can access timely, 

efficient, understandable and reliable agrometeorological information. 

Past studies have investigated the possible impacts of climate change on agricultural production and ways 

of adapting to climate change[19,20]. These studies generally indicate that farmers can overcome the negative 

effects of climate change by implementing adaptation measures. A lot of these studies have concentrated on a 

range of factors affecting the adoption of such measures by small-scale farmers with household, farm 

characteristics and institutional factors being indicated as the key determinants of adoption[21–23]. However, 

information access and utilization is becoming more important if effects of climate change are to be dealt with. 

This paper therefore aims to support efficient transmission of agrometeorological information and hence 

contribute to informing policy makers and program designers on the most efficient and reliable climate 

information systems and determine whether its findings will corroborate with other studies and inform farmers 

appropriately. 

The paper is structured as follows: 

• Abstract 

• Keywords 

• Introducton 

• Literature review 

• Theoritical framework 

• Methodology 

• Results and discussions 

• Conclusions 

• References 

2. Literature review 

Climate change is one of humanity’s most critical global environmental challenges, with negative 

implications on agricultural productivity. This, in turn, affects poverty and food insecurity, posing a threat to 

achieving sustainable development goals (SDGs). Sub-saharan Africa (SSA) is highly vulnerable to negative 

impacts of climate variability due to its geographical location, climatic conditions, high dependence on 

agriculture and natural resources-driven activities and weak adaptive capacity to the threats of climate 

variability[24]. The trend is projected to worsen given the anticipated decline in production of the region’s most 

important staple crops, such as maize, millet, sorghum and cassava[25]. Similarly, in Kenya, agriculture is the 

main contributor to Kenya’s GDP and a source of raw materials for local industries. Floods, drought and 
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increased prevalence of pests and diseases are significant climate variability effects experienced in Kenya[1]. 

These extreme weather events occur more regularly, meaning that seasonal climate forecasting and early 

warning systems will continue to be vital in planning and risk mitigation in key economic sectors, including 

agriculture[26]. 

While concerns about global warming existed decades ago, scientists worked under the auspices of the 

intergovernmental panel on climate change (IPCC) following its establishment in 1988 to determine the 

certainty of global warming due to greenhouse gases[27]. Their findings confirmed the warming of the climate 

system, with a 0.74 per cent increase in the global average temperature[28]. Over the last century, Africa has 

warmed at 0.05 per cent per decade in lockstep with global warming. The annual temperature rises from about 

3 ℃ to 4 ℃, around 1.5 times the global average reaction, according to simulations in Africa’s climate model 

under various potential emission scenarios[29]. 

It is therefore, imperative for stakeholders to strengthen adaptation efforts in a bid to reduce the effects 

of climate variability. Adapting to climate variability entails adjustments to enhance preparedness and response 

to current and future climate variability adversities by enriching farmers’ knowledge about the risks and 

consequences of climate variability to better assist them in improving their adaptive capacity. This is done 

through availing agrometeorological information, a key prerequisite service towards adopting climate-smart 

agricultural practices that reduce vulnerability to climate change. Agrometeorological information services 

generally try to enhance smallholder farmers’ ability to manage the risks of climate variability[30]. 

Agrometeorological information services have been growing worldwide by focusing on supporting, funding 

and developing capabilities for agrometeorological information by the developed nations[31]. The world 

meteorological organisation (WMO) has also been instrumental in driving this growth and development. 

Adaptation strategies to climate variability and change are important to enhancing resilience, protecting 

farmer’s livelihoods and ensuring food security. They are considered very effective in building resilience, 

especially on resource-constrained farmers. In western Kenya, climate variability and change impacts on 

agricultural production are evident as farmers rely on rain-fed agriculture. Some adaptation strategies that 

western Kenya farmers have embraced include crop diversification, change of planting dates, planting of 

drought-tolerant crops, planting of early maturing varieties, high-yielding varieties and agroforestry[1]. 

Despite adaptation strategies promising resilience to climate variability and change, there are several 

challenges to effective adaptation, such as poor dissemination and access to climate adaptation information, 

inadequate institutional measures and vague public policies on adaptation policies[32]. Effective uptake of these 

adaptation strategies necessitates explicit knowledge among the farmers about future climatic knowledge is 

likely to be. Adequate agrometeorological information is a key ingredient to the improvement of agricultural 

systems in all areas[32,33]. 

A study by Tarchiani et al.[34], show that agrometeorological information services can increase crop 

productivity and decrease cropping costs in inputs and working time. The study further indicates that in 

Mauritania’s growing seasons of 2015 and 2016, sorghum yields increased by 64%, courtesy of agricultural 

information services. The yield increase was attributed to the choice of variety (2015–2016 seasons were 

shorter than average) and the sowing date, where the latter avoids failures and loss of seeds. The choice of a 

shorter cycle variety allowed minimizing the negative effects of an earlier normal rains cessation and avoiding 

pests attack at the end of the season. Saving on costs was also observed since there were minimal losses in 

terms of opportunity costs due to additional weedings observed among farmers who planted offseason[15,34]. 
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3. Theoritical framework 

Protection motivation theory 

Rogers[35] developed protection motivation theory (PMT) as an extension of the health belief mode. 

According to the theory, defence motivations, like whether people take protective steps in response to 

perceived threats, are formed because of a detailed evaluation of threats and coping mechanisms. Assessing a 

person’s danger involves assessing the threat’s degree, which includes vulnerability and perceived severity. 

Perceived severity refers to the perceived seriousness of the event, whereas vulnerability refers to the perceived 

individual’s sensitivity to the established threat[36]. In this case, perceived severity refers to the adverse effect 

of climate variability on smallholder sorghum farmers. 

In contrast, perceived vulnerability refers to the susceptibility of smallholder farmers to adverse effects 

of climate variability on sorghum production. The three components of coping evaluation are self-efficacy, 

response efficacy and response cost. The phrase “response efficacy” refers to an individual’s belief in a 

prescribed response’s effectiveness in averting a threat. Self-efficacy is a term that refers to an individual’s 

expected capacity to engage in a recommended coping action[37]. The phrase “response cost” refers to all 

perceived costs associated with preventive measures, events, or adaptation measures, including both monetary 

and non-monetary costs, which include effort, time and inconvenience[36]. 

According to Westcott et al.[38], PMT applies to “any danger for which an individual may carry out an 

effective recommended response.” Additionally, PMT has been successfully applied to analysing smallholder 

farmers’ pro-environmental behaviour (PEBs)[39]. Thus, the theory is relevant for this study because it 

considers the precautions (adaptation measures) taken by smallholder farmers in the face of potential threats 

posed by climate variability. Wang et al.[40] discovered that farmers’ environmental conduct was highly cost-

sensitive because they often lacked necessary materials and had little financial capital. As a result, response 

cost harmed intention. Increased risk appeals result in an increase in severity and vulnerability. Farmers who 

perceive climate variability as a major challenge to agricultural production and quality of life are more 

receptive to adaptation measures such as agroforestry, crop rotation, rainwater harvesting, cover crop planting, 

mulching, using organic manure, and planting drought-resistant crops such as sorghum. 

4. Methodology 

4.1. Description of the study area 

The study was conducted in Busia County. Busia County lies between latitude 0° and 0° 45 north and 

longitude 34° 25 east. It covers about 1695 km2 KNBS[41]. It is located in the western region of Kenya. It 

borders siaya to the south-west, Bungoma to the north, kakamega to the east, lake victoria to the south-east 

and uganda to the west. The mean temperature in the county is about 21–27 ℃ whereas the annual rainfall is 

about 750–2000 mm. The mean temperatures vary across the county, with areas near lake victoria receiving 

the least rainfall of about 760–1015 mm and butula and nambale receiving the highest rainfall of up to 2000 

mm. The rainfall is bimodal; the long rains usually come between March and May, and the short rains are 

between August and October. The altitudes vary from 1140 m to 1500 m above sea level, suitable for crop 

farming. The major agricultural activities practised in Busia county include crop production (mainly cassava, 

sorghum, maize, groundnuts, sugar cane and some horticultural crops such as local vegetables and mangoes), 

livestock and fish farming[42]. Despite being a high agricultural potential area, the county is documented to be 

highly affected by climate change. 

Busia is one of the top producers of sorghum in Kenya, where it is produced in smallholder farms 

measuring 1–2 acres throughout the county. Sorghum is high-yielding drought tolerant, which can also grow 

in cold semi-arid regions, moist mid-altitude areas, has high brewing quality and is resistant to smut disease. 
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The area under production in Busia County increased by 71%, to 13,109 ha, between 2012 and 2014[43]. This 

increase was driven by the high demand generated by the east African breweries limited (EABL), located in 

kisumu, in a program launched in 2012 to procure all of its sorghum requirements within the country. The 

county has sub counties namely: Teso North, Teso South, Butula, Nambale, Matayos, Samia and Budalangi. 

The main sorghum production areas include Teso South, Teso North, Matayos and Samia. Hence, the study 

was carried out in Teso South, Teso North, Matayos and Samia sub-counties. 

4.2. Sampling procedure and method of data collection 

The study used a multi-stage sampling technique. First, Busia County was selected purposively because 

of its vulnerability to climate variability and being a sorghum-growing region. Secondly, four sub-counties, 

Teso South, Teso North, Matayos and Samia, were selected from the seven sub-counties because they are the 

main sorghum production areas in the county. Finally, sorghum farming households were selected using a 

systematic sampling procedure in each sub-county. Households were then selected from a list of farmers 

generated during a pre-visit where all sorghum farmers were prequalified against the criteria of land size and 

period of sorghum farming. 

The exact population of smallholder sorghum farmers was unknown; therefore, to determine the desired 

sample size, the formula specified by Cochran[44] was used as shown in Equation (1): 

𝑛 =
𝑝𝑞𝑧2

𝜀2
 (1) 

where, 𝑛 = sample size; 𝑧 = confidence level (α = 0.05); 𝑝 = proportion of the population containing the major 

interest; while 𝑞 = 1 − 𝑝; and 𝜀 = allowable error. Since the proportion of the population is not known, 𝑝 = 

0.5, 𝑞 = 1 − 0.5 = 0.5, 𝑍 = 1.96 and 𝜀 (allowable error) = 0.05 because the study allows a 95% confidence level. 

𝑛 =
0.5 × 0.5 × 1.962

0.052
= 384 (2) 

The sample size in Equation (2) was adjusted upwards by 10%; therefore, the total sample size was 423 

sorghum farming households. A higher sample size ensured that the minimum required sample size was 

retained even after dropping uncooperative respondents or any “inconsistent” responses in the collected data 

at the data cleaning stage. The sample size distribution per sub-county was done proportionately to the 

population size using the list of farmers from the sub-county agricultural offices as shown in Table 1. 

Table 1. Sampling size distribution per sub-county. 

Sub-counties Number of households Proportion Adopters to climate variability Non-adopters to climate variability 

Teso North 90 0.21 74 16 

Teso South 140 0.33 109 31 

Matayos 85 0.20 58 27 

Samia 108 0.26 54 54 

Total 423 1 295 128 

This study used a semi-structured questionnaire to collect primary data from smallholder sorghum farmers. 

A pilot study was conducted to test the validity of the questionnaire. According to Connelly[45], existing 

literature proposes that a pilot study sample should be 10% of the sample estimated for the main study. Hence, 

42 smallholder sorghum farmers were selected for the pilot study to estimate the validity of the instrument and 

the time taken to complete one questionnaire. Trained enumerators experienced in agricultural and household 

data collection administered the questionnaires, containing open and close-ended questions. The study used a 

digitized questionnaire using the open data kit (ODK) application and administered through face-to-face 

interviews with the decision-maker in the household. Data collected included farm and farmer characteristics, 
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institutional, production, climate and market-related factors (Table 2). The primary data were then entered 

into STATA software (version 16) for analysis. 

Table 2. Table of variables used in the model. 

Variables Measurement Expected sign 

Dependent variables 

Sorghum yield produced per acre per year Quantity of sorghum produced per acre per year - 

Independent variables 

Group membership 1 for yes, 0 otherwise ± 

Frequency of extension visits Number ± 

Access to credit facilities 1 for yes, 0 otherwise ± 

Distance to the market for crop produce Kilometres ± 

Gender of the key decision-maker 1 for male, 0 otherwise ± 

Age of the key decision-maker Years ± 

Education level Years ± 

Owning farming land 1 for yes, 0 otherwise ± 

Proportion of income allocated to farming Kenya shillings ± 

Adaptation to climate variability 1 for yes, 0 otherwise ± 

Number of agrometeorological information Quantity of agrometeorological information obtained ± 

Trust in agrometeorological information 1 for yes, 0 otherwise ± 

4.3. Analytical framework 

The study used an endogenous switching regression (ESR) model to examine the impact of adaptation to 

climate variability on agricultural productivity. Lee[46], as an extension of Heckman’s selection correction 

approach, coined the ESR model to correct for selection bias that can arise due to unobserved heterogeneity. 

Selection bias can arise due to unobserved factors affecting adaptation to climate variability among smallholder 

farmers who practice sorghum production in Busia County. 

An ESR model is a two-stage model. Standard limited dependent variables methods model the adoption 

decision. The first stage comprises a probit model that identifies the socioeconomic factors that determine the 

adaptation of climate variability in agricultural productivity[47]. The estimated selection model is as follows: 

𝑍𝑖
∗ = 𝑎 + 𝛾𝑄𝑖 + 𝜀𝑖 (3) 

where, 𝑍𝑖
∗ was a binary take the value 1, if the smallholder farmer adapted to climate variability and 0 otherwise; 

𝑎 was an intercept; 𝑄𝑖 was a vector of explanatory variables influencing adaptation to climate variability; 𝛾 

was a vector of coefficient, and 𝜀𝑖 was the disturbance term with constant variance and zero mean. The error 

term comprises measurement error and factors not observed by the researcher but known to the farmer. 

In the second stage of the ESR model, a full information maximum likelihood (FIML) model was used to 

account for potential selection bias. Separate regression equations are used to model sorghum productivity 

conditional on specified criterion functions[48]. The binary outcomes (increased sorghum productivity) 

conditional on adapting to climate variability were represented as switching regimes as follows: 

Regime 1: if 𝐴𝑖 = 1 for adapters to climate variability 

𝑌1𝑖 = 𝑋1𝑖𝛽1 + 𝜎1𝜀𝜆1𝑖 + 𝑢1𝑖  (4) 

Regime 2: if 𝐴𝑖 = 0 for non-adopters to climate variability 

𝑌2𝑖 = 𝑋2𝑖𝛽2 + 𝜎2𝜀𝜆2𝑖 + 𝑢2𝑖  (5) 

where, 𝑌𝑖 represented the outcome variable (sorghum productivity) for a farmer 𝑖 for each regime (1 = adopter 

to climate variability and 0 = non-adopter); 𝑋𝑖 was a vector of explanatory variables that affect agricultural 



8 

productivity. The variables in vectors 𝑋 in Equations (4) and (5) may overlap with 𝑄 in Equation (3). However, 

the approach requires that at least one variable in 𝑄 that does not appear in 𝑋, 𝛽 and 𝜎 were parameters to be 

estimated, 𝑢1𝑖  and 𝑢2𝑖  were independently and identically distributed error terms of the agricultural 

productivity estimation equation. This indicates that the ordinary least squares (OLS) estimates of 𝛽1 and 𝛽2 

will suffer from the sample selection criterion have non-zero expected values[49]. The non-zero covariance 

between the error terms of the selection equation and the outcome equation showed the existence of selection 

bias, and the null hypothesis of the selection bias would be rejected. The inverse mills ratio (IMR) of adaptation 

computed from the selection Equation (1) by included in Equations (4) and (5) as a remedy for selection bias 

in the two-step estimation procedure (i.e., endogenous switching regression) as 

𝜆1𝑖 =
𝛷(𝑍𝑖𝛼)

𝛷(𝑍𝑖𝛼)
𝑎𝑛𝑑𝜆2𝑖 =

𝛷(𝑍𝑖𝛼)

1 − 𝛷(𝑍𝑖𝛼)
 (6) 

The three error terms 𝜀𝑖, 𝑢1𝑖 and 𝑢2𝑖 are assumed to follow a tri-variate normal distribution with zero 

mean factor and non-singular covariance matrix as shown in the equation 

𝐶𝑜𝑣(𝜀𝑖, 𝑢1𝑖, 𝑢2𝑖) = (

𝜎1
2 𝜎1𝜎2 𝜌1𝑒𝜎1

𝜎1𝜎2 𝜎2
2 𝜌2𝑒𝜎1

𝜌1𝑒𝜎1 𝜌2𝑒𝜎2 𝜎𝜀
2

) (7) 

where, 𝜌1𝑒 and 𝜌2𝑒 were correlation coefficients between 𝑢1𝑖 and 𝜀𝑖, and between 𝑢2𝑖 and 𝜀𝑖, respectively. If 

either 𝜌1𝑒 and 𝜌2𝑒 was significantly different from zero, the presence of selection bias would be confirmed. If 

𝜌 > 0, then there was negative selection bias, signifying that farmers with below-average sorghum productivity 

were more likely to adapt climate variability. If 𝜌 < 0, a positive selection bias would indicate that farmers 

above average sorghum productivity would be more likely to adapt to climate variability. 

The number of agrometeorological information and trust in this information were used as instrumental 

variables in the selection model to address the endogeneity problem. These variables influenced sorghum 

farmers’ adaptation to climate variability but did not directly affect sorghum productivity. We selected the 

number of agrometeorological information because there were many information sources at the farmer’s 

disposal depending on their level of access. Trust in agrometeorological information may have affected the 

sorghum farmers to adapt to climate variability if the information were reliable and consistent. 

The study’s main aim was to estimate the average treatment effects, the change in outcomes (increased 

sorghum productivity) due to adaptation to climate variability estimated as the difference between adopters 

and non-adopters. The average treatment effect was represented by 𝑌1 (sorghum productivity) as shown in the 

equations. The equation for the expected conditional and average treatment effects for the adopters and non-

adopters to climate variability groups were given as: 

The equation for the farmers practicing sorghum production in Busia County. 

𝐸[𝑌1𝑖/𝑋′𝐴𝑖 = 1] = 𝛼1 + 𝑋1𝑖𝛽1 + 𝜌1𝑖𝜎1𝜀𝜆1𝑖 (8) 

The equation for adapters, they decided not to adapt to climate variability: 

𝐸[𝑌2𝑖/𝑋′𝐴𝑖 = 1] = 𝛼2 + 𝑋2𝑖𝛽2 + 𝜌2𝑖𝜎2𝜀𝜆2𝑖 (9) 

The equation for non-adopters, they decided to practice sorghum production: 

𝐸[𝑌1𝑖/𝑋′𝐴𝑖 = 0] = 𝛼1 + 𝑋1𝑖𝛽1 + 𝜌1𝑖𝜎1𝜀𝜆1𝑖 (10) 

The equation for the non-adopters, which did not adapt to climate variability: 

𝐸[𝑌2𝑖/𝑋′𝐴𝑖 = 0] = 𝛼2 + 𝑋2𝑖𝛽2 + 𝜌2𝑖𝜎2𝜀𝜆2𝑖 (11) 

The heterogeneity effects using the expected outcomes are calculated as described in Equations (8)–(11). 

The base heterogeneity for adopters to climate variability was calculated as the difference between Equations 

(8)–(10). In contrast, the base heterogeneity of the non-adopters was calculated as the difference between 

Equations (9) and (11). Finally, we estimated the transitional heterogeneity (ATT − ATU) to understand whether 

the impact of sorghum productivity was larger or smaller for farmers adapted to climate variability. Thus, the 
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estimated change in the level of sorghum productivity for farmers who adapted to climate variability (the 

average treatment effect of the treated households or ATT was given as 

𝐴𝑇𝑇 = (𝑎) − (𝑏) = 𝐸[𝑌1𝑖/𝑋′𝐴𝑖 = 1] − 𝐸[𝑌2𝑖/𝑋′𝐴𝑖 = 1] = 𝑋1𝑖(𝛽1 − 𝛽2) + 𝜆1𝑖(𝜎1𝜀 − 𝜎2𝜀) (12) 

The conditional expectations, treatment and heterogeneous effects are shown in Table 3. 

Table 3. Conditional expectations, treatment, and heterogeneous effect. 

Sub-samples Decision stage Treatment effects 

To adopt Not to adopt 

Adopters (a) 𝐸[𝑌1𝑖/𝑋′𝐴𝑖 = 1] (b) 𝐸[𝑌2𝑖/𝑋′𝐴𝑖 = 1] ATT 

Non-adopters (c) 𝐸[𝑌1𝑖/𝑋′𝐴𝑖 = 0] (d) 𝐸[𝑌2𝑖/𝑋′𝐴𝑖 = 0] ATU 

Heterogeneous effects 𝐵𝐻1 𝐵𝐻2 TH 

NB: (𝑎) and (𝑑) are observed outcomes, while (𝑏) and (𝑐) are the hypothetical unobserved outcomes 

(expected situations). 𝐴𝑖 = 1 if farmers adopted to climate variability; 𝐴𝑖 = 0 if farmers did not adapt to 

climate variability. ATT and ATU denotes average treatment effect on the treated and untreated. 𝐵𝐻1 is the 

effect of base heterogeneity for farmers who adapted to climate variability (𝐴 = 1) and did not adopt (𝐴 = 0). 

TH: transitional heterogeneity = ATT − ATU. 

Similarly, we estimated the expected change on non-adopters farmers as the average treatment effect on 

the untreated farmers (ATU) given as: 

𝐴𝑇𝑇 = (𝑐) − (𝑑) = 𝐸[𝑌1𝑖/𝑋′𝐴𝑖 = 0] − 𝐸[𝑌2𝑖/𝑋′𝐴𝑖 = 0] = 𝑋2𝑖(𝛽1 − 𝛽2) + 𝜆2𝑖(𝜎1𝜀 − 𝜎2𝜀) (13) 

5. Results and discussion 

The composite effect of ago-meteorological information, socioeconomic and institutional factors on 

adopting climate variability were analysed using the endogenous switching regression model. The results were 

presented in Table 4. ESR model is a two-step procedure in which the probit model is used as the first step, 

and a joint selection and outcome equation is estimated using the maximum likelihood method. A log-

likelihood of −662.93418 implies that the model converges quickly. The wald chi-square statistic (Wald chi2(9) 

= 42.48, Prob > chi2 = 0.0000) indicates that the model perfectly fits the data with strong explanatory power. 

The results indicate that the coefficients of variables, number of extension contacts, credit access, gender, age 

and education level were significant for farmers adapting to climate variability. On the other hand, age and 

proportion of income under farming significantly related to non-adapters to climate variability. 

The number of extension contacts had a positive and significant relationship with the adoption to climate 

variability at 1 percent. The results explain that an increase in the number of extension contacts by one unit 

increases farmers’ likelihood to adapt to climate variability by 11.86 percent. This is probably because 

extension services help disseminate innovations on the best practices of climate smart agricultural practices 

and build resilience capacities of the vulnerable farmers in managing the impacts of climate change. Moreover, 

increased extension contact is expected to lead to increased information on climate change and variability. The 

findings are similar to Legesse et al.[50] and Ozor and Nnaji[51], which established that access to extension 

services was strongly significant in adaptation to climate variability. Further, the demand for extension services 

builds up the need to retrain the personnel to acquire the capabilities to manage the risks associated with climate 

change. Ojo et al.[52] also found out that farmers’ access to extension services was positive and significantly 

associated with the early maturing crop, reduce livestock number and irrigation adaptation strategies and 

attributed it to the importance of access to relevant information and other resources provided to farmers through 

extension service. 
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Table 4. Maximum likelihood estimates of endogenous switching regression model. 

Variables Selection model Adapters to climate variability Non-adapters to climate variability 
 

Coef. P > /Z/ Coef. P > /Z/ Coef. P > /Z/ 

Group membership −0.42** 0.02 −0.13 0.30 0.15 0.31 

Extension contacts 0.13*** 0.00 0.12*** 0.00 −0.02 0.54 

Credit access 1.48*** 0.00 −0.30*** 0.07  0.36 0.11 

Market distance 0.09* 0.08 −0.00 0.96 −0.02 0.64 

Gender 0.24 0.15 −0.20* 0.09 0.41 0.00 

Age 0.00 0.64 −0.00*** 0.86 −0.00** 0.59 

Education level −0.05** 0.03 0.04*** 0.01 0.02 0.22 

Income activities 0.34 0.13 −0.33 0.09 0.07 0.76 

Income propo under farming 1.25* 0.09 −0.01 0.98 1.01* 0.08 

Number of trainings 0.25*** 0.00 0.06 0.03 −0.01 0.81 

Own_farm land 0.26 0.47 −0.06 0.82 0.15 0.53 

Number of agro-met  −0.27** 0.03     

Trust in agro-met infor 0.86 0.00     

_cons −1.78*** 0.00 6.68*** 0.00 4.92*** 0.00 

Number of observations 423      

Wald chi2(9) 42.48      

Log likelihood −662.93      

Prob > chi2 0.00      

*, **, *** represents 10%, 5% and 1% significance level, respectively. 

Credit access had a negative and significant relationship on the adaptation to climate variability at 1 

percent level. This suggests that farmers with access to credit were less likely to adapt to climate variability by 

11.86 percent. The probability of credit received indicate that credit-constrained farmers were choosing 

adaptation strategy decreased as the amount of credit increased. This is attributed to the fact that adoption of 

these strategies is capital intensive with some demanding investments in the new planting materials and other 

technologies. Thus, farmers will find it difficult to adopt any adaptation strategy in case of inadequate credit 

since they might find it difficult to buy enough inputs. This confirms with Ojo and Baiyegunhi[53] that credit 

constraints negatively impact climate change adaptation strategies. Similarly, the financial resource is one of 

the key strategies used in expanding and strengthening mitigating risk strategies in the presence of threats to 

climate change. 

Gender of the farmers was found to be negatively significant in adaptation to climate variability at 10 

percent level. Female farmers were more likely to adapt to climate variability by 19.89%. This s attributed to 

the fact that women were more keen to implement some strategies that reduce the workload in the homestead. 

Thus, their willingness to implement adaptation strategies is an opportunity for introducing appropriate 

strategies. This is in line with the findings of Ochieng et al.[54], who note that female-headed households were 

more inclined to per-ceive a decrease in temperature and therefore respond faster than male-headed house-

holds. Findings by Gbetibouo[21] also corroborate that the probability to adapt of the male headed households 

was lower than that of the female headed households in kyuso district. However, this finding is different from 

Kakota et al.[55] that hold that women are more vulnerable to household food insecurity than men since they 

have few alternative ways to adapt. 

The age of the farmer was negatively significant on adaptation to climate variability at a 1 percent level. 

The negative coefficient indicated that adapting to climate variability increases with a decrease in the farmer’s 
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age. Hence, older farmers were less likely to adapt to climate variability by 0.07 percent. The older people’s 

physical strength, mobility and stamina are reduced due to their age, making it difficult to adapt to climate 

variability. Age is a significant factor in making an individual less or more accepting of climate variability and 

their willingness to adapt. Thus, it is negatively significant for both adapters and non-adapters to climate 

variability. In addition, as people grow older, they are reluctant to adopt new techniques; at the same time, they 

are unable to let go of the traditional way of doing things. The results are in line with the findings of Ndamani 

and Watanabe[56] who found out that the likelihood of adaptation to climate change and variability decreases 

in older farmers as they generally lack interest and incentive to adapt. 

Education level was positively significant for the farmers adapting to climate variability at a 1 percent 

level. This implies that an increase in the level of education by farmers increases farmers’ chances of adapting 

to climate variability by 3.88 percent. Education can directly improve knowledge, that is, an individual’s ability 

to understand and process information and risk perceptions. In addition, more education has the capabilities to 

enhance the socioeconomic status and social capital. These are some of the important qualities and skills that 

are useful for coping and surviving disasters. Similar results by Ojo and Baiyegunhi[53] establish that education 

level increases farmers’ capability to adapt to climate variability. The findings of Mutunga et al.[57] indicated 

that farmers with high education level were more likely to adapt as compared to farmers with low education 

levels since education increases the ability to receive, decode, and understand information relevant to making 

innovative decisions. 

The proportion of income allocated for farming was found to be positively significant among non-adapters 

of climate variability at a 10 percent significant level. The results indicate that an increase in the proportion of 

income allocated for farming increases farmers’ chances of becoming non-adapters of climate variability by 

101.07 percent. Farmers who engage in conventional agriculture and realise high income from their farming 

activities do not need to adapt to new technologies since they are more comfortable with the amount of money 

they are receiving from farming. The farmers with higher farm incomes have less incentive to adapt than their 

counterparts since their farming practices might already be optimum. This is in line with the findings of 

Mutunga et al.[57] who found a positive relationship between farmers’ off-income and their adoption of 

adaptation strategies to climate change and variability. However this is contrary to the findings by Fosu-

Mensah et al.[58] that farm income positively influenced the decision by the farmer to adapt to climate 

variability other than non-adapters. 

The treatments effects on sorghum yield 

The results in Table 5 show the effect of adaptation to climate variability on sorghum yield. The first step 

involved testing for the presence of endogeneity to ascertain whether adaptation to climate variability was 

endogenous or not. In order to achieve this, Durbin and Wu-Hausman were carried out and the results were as 

follows; Durbin (score) chi2(1) = 8.49397 (P = 0.0036) and Wu-Hausman F(1409) = 8.38114 (P = 0.0040). 

Considering the P value of less than 0.05, the tests were significant; therefore, the null hypothesis that 

adaptation to climate variability was exogenous in the model was rejected. This shows that adaptation to 

climate variability was endogenous in the model. Further, the Sargan and Basman tests were conducted in 

testing for over-identifying restrictions, and the P values were 0.2656 and 0.2729, respectively. The P values 

were greater than 0.05, implying a failure to reject the null hypothesis (no over-identifying restrictions). The 

coefficients of the two estimated instrumental variables (number of agro-meteorological information and trust 

in agro-meteorological information) were jointly significant F(2409) = 15.8779 (Prob > F = 0.0000). This 

implies that the instruments used in the model were valid. 

The values on (a) and (b) represents the observed actual sorghum output for adapters to climate variability 

and non-adapters to climate variability, respectively. On the other hand, values on (c) and (d) represent the 

counterfactual expected sorghum output for adapters to climate variability and non-adapters to climate 
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variability, respectively. The results show that ATT had a negative and significant effect on sorghum output at 

a 1% level. The mean sorghum output of adapters to climate variability would have decreased by 0.88 had they 

been non-adapters. On the other hand, results on ATU reveal a negative and significant effect of sorghum 

output on adaptation to climate variability by non-adapters at a 1% level. The farmers who are non-adapters to 

climate variability would have earned an extra 1.37 if they had been adapters. Both adapters to climate 

variability and non-adapters to climate variability deserve strategies to combat climate variability since the 

ATE for both categories was positive. BH1 of −0.68 implies that non-adapters to climate variability would have 

performed better than adapters to climate variability should they have been adapters, while BH2 of −0.19 

implies that non-adapters to climate variability would have performed better than adapters would they have 

been non-adapters. A negative transitional heterogeneity of −0.49 indicates that the effect on sorghum output 

is associated with unobserved household characteristics and not adaptation to climate variability. Adaptation 

to climate variability is significant to the output of sorghum farmers. This is because adapters to climate 

variability had higher sorghum output than non-adapters. 

Table 5. Mean treatment effect on sorghum yield. 

Sub-sample Decision 
 

 
Adapters to climate  

variability (ATT) 

Non adapters to climate 

variability (ATU) 

Average treatment 

effects (ATE) 

Adaptation to climate variability  (a) 6.43 (c) 5.55 0.88*** 

Non-adapters to climate variability (d) 7.11 (b) 5.74 1.37*** 

Heterogeneity effects BH1 = −0.68 BH2 = −0.19 −0.49 

*** significance at 1%. 

6. Conclusion 

This paper used a semi-structured questionnaire with a sample of 384 sorghum farmers. The specific 

objective of this paper was to determine the composite effect of climate variability, agrometeorological 

information and institutional factors on agricultural productivity in Bungoma County. The endogenous 

switching regression model results indicated that extension contacts and education level were positively 

significant among adapters of climate variability. Conversely, credit access, gender and age were negatively 

significant among adapters of climate variability. On the other hand, the proportion of income allocated for 

farming was positively significant among non-adapters of climate variability while, age was negatively 

significant among non-adapters of climate variability. The results of the mean treatment effect indicate that the 

sorghum yield was higher among adapters to climate variability compared to non-adapters. Policymakers, 

government institutions and non-government organizations should ensure increased extension contacts and 

promotion of education among farmers so that they know the various types of agrometeorological information 

available and the use of this information in making informed decisions on agricultural productivity. 

Agricultural policy seeking to enhance small-scale farmers’ awareness of CSA practices, various methods of 

appraising and selecting the farming technologies with high returns and the uptake level of these practices 

should be formulated. Properly packaging agrometeorological information in a more understandable language 

through efficient and reliable information dissemination pathways would build confidence and trust hence 

make farmers to make adaptation decisions based on accurate information thereby increasing their productivity. 
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