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On the Numerical Solution of Boundary Value Problem
(BVP) of the Ordinary Differential Equation (ODE) - The

Case of Steady-State Bio-Heat Equation with Combined Heat
Transfer Coefficient by Pseudo-Spectral Collocation Method
Alfred W. Manyonge, Benard A. Odongo, Dancun O. Owego, Richard O. Opiyo, and Thomas M. Onyango

Abstract—Spectral methods for the solution of a boundary
value problem of an ordinary differential equation are reviewed
with particular emphasis laid on pseudo-spectral collocation
method. The pseudo-collocation method is then used to solve
the one dimensional bio-heat equation with metabolic heat
generation in cylindrical coordinates applied to human tissue.
It was noticed that an increase in heat transfer coefficient (hA),
enhanced the temperature but a decrease in the tissue thickness
was observed when this coefficient was increased. The effects
of the combined heat transfer coefficient are analyzed and the
results indicate that the obtained solution can be used in the
study of the thermal behaviour of a biological system with the
potential to locate tumours in the living tissue.

Index Terms—bio-heat equation, BVPs, collocation, Chebyshev
polynomial, ODEs, spectral.

I. INTRODUCTION

THIS article is organized as follows; section one is the
introduction to the concept of mathematical modelling

in many aspects of human life, the various methods that are
used to find the solutions of the models, their merits, and
demerits. A brief literature review on the solution of the bio-
heat equation is presented. In section II, spectral methods as
applied to one class of differential equations-boundary value
problems (BVPs) of ordinary differential equations (ODEs)
are reviewed. Chebyshev polynomials and some of their
properties are introduced. Section III makes application of
the pseudo-spectral method(collocation) to the solution of the
steady state bio-heat equation with metabolic heat generation.
Section four is the discussion of results and section five is
the conclusion.

Research work done in the fields of engineering, physics,
medicine, biology, and economics among others requires
in some way mathematical modelling of some physical
phenomena i.e., real world issues represented in mathemati-
cal terms. For us to understand and predict the behaviour
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of some aspects of these phenomena, a ‘picture’ of the
physical system with simplifying assumptions is made into
a mathematical framework that we can then seek to find
a solution. The dynamical aspects of these phenomena are
usually described by a set of differential equations both
ordinary differential equations (ODEs) and partial differential
equations (PDEs) giving rise to a mathematical model. As
a simple example in physics, the temperature of a cup of
tea in a room of constant temperature will cool over time
at a rate proportional to the difference between the room
temperature and the temperature of the tea. We can model
this by Newton’s law of cooling which is a first order
ordinary differential equation, we obtain its solution and use
it to predict the temperature of the tea at any given time.

There is a wide range of methods both analytical and nu-
merical that have been developed over time for the solutions
of both ODEs and PDEs. Analytical solutions are limited in
their use, especially for non-linear differential equations and
high order equations. For this reason, numerical solutions
are preferred. Techniques for obtaining numerical solutions
of differential equations are numerous in the literature, for
example, see[ref]. Finite difference method (FDM), finite
element method (FEM), the shooting method, and spectral
methods among others are some of the numerical methods
commonly employed. FEM uses lower order interpolants
usually linear interpolation. As a comparison, unlike in FDM,
in spectral methods, the value of a derivative at a certain
point in the domain space depends on the solution at all other
points in space and not just on neighbouring grid points. Due
to this aspect of the spectral methods, they have very high
order of approximation. This is called spectral convergence
in which the error decreases exponentially with an increase
in grid resolution. Therefore for spectral methods, the rate of
convergence depends only on the smoothness of the solution.
The concept of smooth functions mean for example, C∞(D)

: class of functions f : D to R having infinitely many
continuous derivatives. Another advantage that spectral meth-
ods have over FDM is that, once the approximate spectral
coefficients have been found, the approximate solution can
be evaluated at any point in the domain, whereas to evaluate
a finite difference solution at an intermediate point requires
a further step of interpolation. Both FEM and FDM methods
handle very well two dimensional space problems.

Spectral methods approximate the solutions of differen-
tial equations by means of a truncated series of orthogonal
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functions. Spectral methods derive their strength from a class
of discretization methods called the Method of Weighted
Residual (MWR) which uses the trial (or basis) functions
and the test functions that ensure the approximate solution
of the differential equation is as close to the exact solution
as possible. Spectral methods can be applied to the following
classes of differential equations. Boundary Value Problems
(BVPs) for both ODEs and PDEs, Initial Boundary Value
Problems (IBVPs) for PDEs (parabolic and hyperbolic),
both linear and non-linear problems, the group of linear
BVPs include singularly perturbed problems and eigenvalue
problems.

There are three types of spectral methods, pseudo-
collocation, Tau and Galerkin. The choice of the method
depends on the application. Collocation method deals mainly
with non-linear problems/complicated coefficients. The Tau
method handles complicated boundary conditions(where
Galerkin is impossible). Galerkin method is used when
optimal error estimates are required and also provides con-
venient analysis. The standard approach for application of
spectral methods is to obtain the trial and test functions.
There are disadvantages however, (i) the matrices resulting
from discretization process have increased condition number
meaning that rounding errors reduce the expected theoretical
exponential accuracy, (ii) discretization matrices are not
sparse so efficient algebraic solvers are difficult to apply. The
above disadvantages become obvious when solving 4th order
problems where stability and numerical accuracy are lost
when applying higher order approximations. One solution
to these challenges is to address the flexibility in the choice
of test and trial functions, and reduce condition number and
band-width of matrices.

The heat transfer in a living biological tissue involves
a combination of three major processes of heat transfer,
namely, thermal conduction in tissues, convection and per-
fusion of blood, and metabolic heat generation. This was
first noted by Harry Pennes, an American physician and
clinical researcher in 1948. The bio-heat equation emerged
from this observation[1]. It is also called Pennes bio-heat
equation, it relates the rate of heat transfer between the
blood and tissue as being proportional to the product of
the volumetric perfusion rate(the volume flow rate of blood
to the tissue per unit volume tissue) and the difference
between the arterial blood temperature and the local tissue
temperature. This equation is the typical model used for
predicting the distribution of temperature inside a biological
system. Pennes validated his model against a series of
experimental studies he performed. It turned out that the
results of Pennes bio-heat model were in reasonable agree-
ment with the experimental data. Since then both analytic
and numerical solutions of the bio-heat equation have been
reported by numerous researches. Some of them are reviewed
here. Zhou et al.[4] presented a steady-state one dimensional
solution in Cartesian coordinates. A similar analysis in
cylindrical geometry showing the parameter effects in spatial
temperature distribution had been done earlier by[4]. Shih et
al.[5] discussed the analytic solution of living tissue model
with sinusoidal heat flux on the skin surface. The obtained
solution can be used to analyse the of effects metabolic

heat generation, tissue thermal conductivity, blood perfusion,
and heat transfer coefficient. Heat transfer within a perfused
tissue in the presence of a blood vessel was modelled by
Huang et. al[8]. Exact analytical solution of the bio-heat
equation subjected to intensive moving heat source was
examined by Mohammad et.al[9]. They used eigen function
expansion to find the solution with potential to be used as a
verification tool for numerical solutions. Hongyun et. al[10]
obtained an analytical solution of the one dimensional Pennes
bio-heat equation by Fourier transform and applied it to
the case of multiple electromagnetic heating pulses. In the
present study, we obtain the solution of the one dimensional
bio-heat equation in a cylindrical tissue using the pseudo-
collocation method.

II. NUMERICAL SOLUTION OF AN ORDINARY

DIFFERENTIAL EQUATION

Consider a boundary value problem(BVP) of an ordinary
differential equation (ODE) of the form:

Lu = f, x ∈ [−1, 1], u(−1) = 0 and u(1) = 0

where L is a differential operator(linear or non-linear),
u = u(x) is the solution function we are looking for over the
domain [−1, 1]. f is a known source function( may depend
on x or is a constant), u(−1) = 0 and u(1) = 0 are the
boundary conditions. We denote the approximate solution
function to the BVP by uN (x) and write it as an expanded
finite series of orthogonal polynomials, where N + 1 is the
finite number of basis functions that are considered. The
commonly used orthogonal polynomials include Chebyshev,
Legendre, and Bessel. Hence we write

uN (x) =

N∑
k=0

akϕk(x)

where {ak}Nk=0 are the expansion coefficients we are going
to determine and

{ϕk}Nk=0

are basis or trial functions(orthogonal polynomials). Form
the quantity

R[uN (x)] = [LuN (x)− f ]

called the residual. Since the basis functions are given, the
challenge is to keep R[uN (x)] as small as possible across
the domain [−1, 1] as we find the expansion or spectral
coefficients {ak}Nk=0.

A. Determination of Expansion Coefficients {ak}Nk=0:

There are three popular methods that can be used to
find these coefficients. Here we describe them but use
pseudo-spectral collocation method in the solution of the
bioheat equation in our application.

(i) Tau-Lanczos method: {ak}Nk=0 are selected such that
the boundary conditions are satisfied identically and
R[uN (x)] is orthogonal to as many basis functions as
possible
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(ii) Galerkin method: The first basis functions are re-
combined {ϕk(x)}Nk=0 → {Φk(x)}Nk=0 so that the
boundary conditions are satisfied identically. Then,
the coefficients {ak}Nk=0 are determined such that the
residual R[uN (x)] be orthogonal to as many new basis
functions {Φk(x)}Nk=0 as possible

(iii) Collocation method: {ak}Nk=0 are selected such that
the boundary conditions are satisfied. The rest of the
coefficients are determined so that R[uN (x)] vanishes
at as many spatial locations as possible. The spatial
locations are called collocation points. The best choice
of collocation points are the Gauss-Lobatto points
xk = − cos(πkN ), k = 0, 1, 2, . . . , N

B. Chebyshev Series

Fourier series is a good choice for periodic functions.
Problems with non-periodic boundary conditions require
trial functions based on orthogonal polynomials. A popular
choice is Chebyshev polynomials defined on −1 ≤ x ≤ 1.
They are defined as follows: from trigonometry cos(0θ) =

1, cos(1θ) = cos θ, cos(2θ) = 2 cos2 θ − 1, cos(3θ) =

4 cos3 θ − 3 cos θ, cos(4θ) = 8 cos4 θ − 8 cos2 θ + 1, . . .

Hence cos(nθ) can be expressed as a polynomial in cos θ

i.e cos(nθ) = tn(cos θ) = tn(x), x = cos θ, x ∈
[−1, 1], n ∈ N tn(x) are Chebyshev polynomials. The
first five Chebyshev polynomials are cos(0θ) = t0(x) =

cos 0 = 1,cos(1θ) = t1(x) = cos θ = x,cos(2θ) =

t2(x) = 2x2 − 1,cos(3θ) = t3(x) = 4x3 − 3x,cos(4θ) =

t4(x) = 8x4 − 8x2 + 1 Also from trigonometry, cosA +

cosB = 2 cos(A+B
2 ) cos(A−B

2 ) so cos(nθ)+cos(n− 2)θ =

2 cos θ cos(n− 1)θ from which we deduce that

tn(x) + tn−2(x) = 2xtn−1

subsequent polynomials can be found by using the following
recurrence relation tn+1(x) + tn−1(x) = 2xtn(x), n ≥ 1.
Shifted Chebyshev polynomials t∗n(x) can be defined on
[0, 1] from [−1, 1] by a transformation s = 2x− 1, t∗n(x) =
tn(s) = tn(2x− 1) or more generally t∗n(x) can be defined
on [a, b] from [−1, 1] by a transformation s = 2x−(a+b)

b−a ,
t∗n(x) = tn(s) = tn(

2x−(a+b)
b−a ).

A function u(x) is approximated via a finite series of
Chebyshev polynomials as

uN (x) =

N∑
k=0

aktk(x)

where ak are the N + 1 Chebyshev coefficients. A function
interpolated by higher order polynomials leads to oscillations
at the end points of the domain(Runge phenomenon)[6]. If
a function is interpolated on an equidistant grid, the error
grows by 2N . However, using non-equidistant distribution of
points with denser points towards the domain boundaries, it
can be shown that interpolation errors decrease exponentially.
A common distribution of points for Chebyshev polyno-
mials are the Gauss-Lobatto points.: xj = − cos(πjN ), j =

0, 1, 2, . . . , N [7].

C. Some Properties of Chebyshev Polynomials

• tk(−x) = (−1)ktk(x), e.g.k = 0, t0(−x) = t0(x), k =

1, t1(−x) = −t1(x) etc
•

|tn(x)| ≤ 1∀x ∈ [−1, 1]

• boundary conditions tk(1) = 1, and tk(−1) = (−1)k

III. SOLUTION OF THE BIO-HEAT EQUATION

Consider the second order BVP of an ODE in the form
of steady-state Bio-Heat Equation in cylindrical coordinates
with metabolic heat generation on the domain D = [0, R]

where R is the radius of the cylindrical tissue.

d

dr
(kr

dT

dr
) +Mr(Ta − T ) + rQm = 0, r = 0,

dT

dr
= 0,

r = R,−k
dT

dr
= hA(T − T∞) (1)

where Qm is the metabolic heat generation in the tissue-
assumed to be homogeneously distributed throughout the
tissue, Ta is the temperature of the arterial blood, T is
tissue temperature, k is the thermal conductivity of the
tissue assumed to be uniform, r is the radial position in
the limb, M blood perfusion rate parameter. We use a
convective boundary condition at the skin surface where hA

is the combined convection/radiation heat transfer coefficient
between the skin surface and the surroundings, which are at
temperature T∞. The approximate numerical solution for the
problem is cast as follows

TN (r) =

N∑
k=0

akt
∗
k(r) (2)

where t∗k(x) is the shifted Chebyshev polynomial of the first
kind and {ak}Nk=0 are the spectral coefficients to be deter-
mined. Note that the interval [0, R] transforms as follows:
r → s = 2r

R − 1 with t∗n(r) = tn(s) = tn(
2r
R − 1). Equation

(1) may be written as

LT = −r(MTa +Qm) (3)

where L = kr d2

dr2 + k d
dr − Mr is the differential operator.

For the bio-heat equation, let us take N = 4 which will yield
a system of (N + 1) = 5 linear equations. i.e

T4(r) =

4∑
k=0

akt
∗
k(r) (4)

The residual is given by

R4(r) = LT4(r) + r(MTa +Qm) (5)

A. Collocation(pseudo-spectral) method:

L[T4(rj)] + rj(MTa +Qm) = 0, j = 1, 2, 3 (6)

dT4(r)

dr

∣∣∣∣
r=0

= 0, −k
dT4(r)

dr

∣∣∣∣
r=R

= hA(T4 − T∞) (7)

boundary conditions in Equation (7), we have

0a0 + a1 − 4a2 + 9a3 − 16a4 = 0 (8)
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hAa0 + (hA +
2k

R
)a1 + (hA +

8k

R
)a2 + (9)

(hA +
18k

R
)a3 + (hA +

32k

R
)a4 = hAT∞

The other three relations can be evaluated in order to solve
for all the coefficients. The Chebyshev grid points on the
domain [−1, 1] are given by rj = − cos(πj4 ), j = 0, 1, 2, 3, 4,
or rj = {−1,− 1√

2
, 0, 1√

2
, 1} which must transform to

rj = {0, R
2 (1 − 1√

2
), R

2 ,
R
2 (1 + 1√

2
), R} on domain [0, R].

We now work out solution for the three interior points. It
can be shown from Equation (4) that

T4(r) = a0 +

[
2r

R
− 1

]
a1 +

[
2(

2r

R
− 1)2 − 1

]
a2+

[
4(

2r

R
− 1)3 − 3(

2r

R
− 1)

]
a3 +[

8(
2r

R
− 1)4 − 8(

2r

R
− 1)2 + 1

]
a4

From which we can find the first derivative with respect to
r

dT4(r)

dr
=

2

R
a1 +

[
8

R
(
2r

R
− 1)

]
a2 +[

24

R
(
2r

R
− 1)2 − 6

R

]
a3 +[

64

R
(
2r

R
− 1)3 − 32

R
(
2r

R
− 1)

]
a4 (10)

and the second derivative with respect to r

d2T4(r)

dr2
=

16

R2
a2 +

96

R2
(
2r

R
− 1)a3+

[
384

R2
(
2r

R
− 1)2 − 64

R2

]
a4 (11)

For j = 1 and therefore r1 = R
2 (1−

1√
2
), Equation (6) may

be written as

kr1
d2T4(r1)

dr2
+ k

dT4(r1)

dr
−Mr1T4(r1) =

−r1(MTa +Qm) (12)

yielding

c0a0 + c1a1 + c2a2 + c3a3 + c4a4 = −r1(MTa +Qm) (13)

where the c′s are the coefficients of the resulting linear
system of equations for the spectral coefficients a0, a1, a2, a3
and a4.

c0 = −Mr1, c1 =

(
2k

R
−Mr1(

2r1
R

− 1)

)

c2 =

(
16kr1
R2

+
8k

R
(
2r1
R

− 1)−Mr1(2(
2r1
R

− 1)2 − 1)

)

c3 =

(
96kr1
R2

(
2r1
R

− 1) + k(
24

R
(
2r1
R

− 1)2 − 6

R
)−

Mr1(4(
2r1
R

− 1)3 − 3(
2r1
R

− 1)

)

c4 = kr1(
384

R2
(
2r1
R

− 1)2 − 64

R2
) + k(

64

R
(
2r1
R

− 1)3 −
32

R
(
2r1
R

− 1))−Mr1(8(
2r1
R

− 1)4 −

8(
2r1
R

− 1)2 + 1)) (14)

Similarly, for j = 2, r2 = R
2 and j = 3, r3 = R

2 (1 + 1√
2
)

we have

c5a0 + c6a1 + c7a2 + c8a3 + c9a4 = −r2(MTa +Qm) (15)

c10a0 + c11a1 + c12a2 + c13a3 + c14a4 =

−r3(MTa +Qm) (16)

with

c5 = −Mr2, c6 =

(
2k

R
−Mr2(

2r2
R

− 1)

)

c7 =

(
16kr2
R2

+
8k

R
(
2r2
R

− 1)−Mr2(2(
2r2
R

− 1)2 − 1)

)

c8 =

(
96kr2
R2

(
2r2
R

− 1) + k(
24

R
(
2r2
R

− 1)2 − 6

R
)

−Mr2(4(
2r2
R

− 1)3 − 3(
2r2
R

− 1)

)

c9 = kr2(
384

R2
(
2r2
R

− 1)2 − 64

R2
) + k(

64

R
(
2r2
R

− 1)3

−32

R
(
2r2
R

− 1))−Mr2(8(
2r2
R

− 1)4 − 8(
2r2
R

− 1)2 + 1))

c10 = −Mr3, c11 =

(
2k

R
−Mr3(

2r3
R

− 1)

)

c12 =

(
16kr3
R2

+
8k

R
(
2r3
R

− 1)−Mr3(2(
2r3
R

− 1)2 − 1)

)

c13 =

(
96kr3
R2

(
2r3
R

− 1) + k(
24

R
(
2r3
R

− 1)2 − 6

R
)

−Mr3(4(
2r3
R

− 1)3 − 3(
2r3
R

− 1)

)

c14 = kr3(
384

R2
(
2r3
R

− 1)2 − 64

R2
) + k(

64

R
(
2r3
R

− 1)3 −
32

R
(
2r3
R

− 1))−Mr3(8(
2r3
R

− 1)4 − 8(
2r3
R

− 1)2 + 1))

We now solve the system of linear equations,
(8), (9), (14), (15) and (16) simultaneously using
mathematical software. A mathematical algorithm for
the c′s is incorporated in the a code in order to enable
variation of parameters during computer simulation.

B. Data preparation and Mathematical Code

We require the following data of thermo-physical prop-
erties of the human body tissue as shown in Table I below.
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TABLE I: Thermo-Physical Properties of the Human Body Tissue

Thickness Specific heat Blood perfusion Thermal cond. Heat trans. coeff.
R(m) cbl(J/kg.K) rate wbl(m

3/m3.s) k(W/m.K) hA(W/m2.K)
Muscle 0.02 4000 0.00125 0.5 10.23

With the following data we can work out the coeffi-
cients for equations (9), (14), (15), and (16). Blood den-
sity ρb = 1100kg/m3, blood perfusion parameter M =

5400, R = 0.02, hA = 10.023, k = 0.5, T∞ = 250C, Ta =

370C,Qm = 1085, r1 = 0.029, r2 = 0.01, r3 = 0.017.
The code gives a0 = 35.8336, a1 = −2.04223, a2 =

−1.09398, a3 = −0.397479, a4 = −0.0777266. Our numer-
ical solution by collocation method is then

T4(r) = a0t
∗
0(r) + a1t

∗
1(r) + a2t

∗
2(r) + a3t

∗
3(r) + a4t

∗
4(r)

or

T4(r) = a0 + (
2r

R
− 1)a1 + (2(

2r

R
− 1)2 − 1)a2 +

(4(
2r

R
− 1)3 − 3(

2r

R
− 1))a3 + (8(

2r

R
− 1)4 −

8(
2r

R
− 1)2 + 1)a4

This is the numerical solution that is plotted.

Fig. 1. The Graph of tissue thickness against body temperature.

IV. NUMERICAL RESULTS AND DISCUSSION

This section discusses the effects of the combined heat
transfer coefficient in a living tissue using pseudo-spectral
collocation method solution. Note that we used N = 4

which is equivalent to taking the first N +1 = 5 basis func-
tions(Checbyshev polynomials) in the solution. To determine
the effects of combined heat transfer coefficients, various
values are taken for observation. Figure 1 above, represents
the graph of tissue thickness against body temperature using
pseudo-spectral collocation method.

V. CONCLUSION

In many practical applications, the heat transfer rate in
a living tissue is vital since it influences the general body
temperature. The present work, helps us in understanding
numerically as well as physically the effects of combined
heat transfer coefficient in a living tissue. The results indicate
that the obtained solution can be used in the study of the
thermal behaviour of a biological system. Thus, applications
of the effects of the combined heat transfer coefficient
are recommended for locating tumours in living tissue in
medicine. Based on the results, the effects of increasing the

combined heat transfer coefficient in a living tissue which
had significant effect on temperature and tissue thickness
were as follows;

From the numerical results, the positive values of heat
transfer coefficient, hA > 0 are utilised in our computations.
This corresponds to the heat transfer problem with respect to
the application. The heat transfer problem is often encoun-
tered in various biological system applications for example
in locating tumours in the living tissues.

It was noticed that an increase in heat transfer coefficient
(hA), enhanced the temperature but a decrease in the tissue
thickness was observed when this coefficient was increased.
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