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ABSTRACT

This thesis studies the approximate ruin probabilities under financial constraints which in-

clude the rate of inflation, constant interest rate, and taxation. When the surplus falls below

zero, the insurance company is technically considered ruined. The main objective of the

study included; to establish a risk model which takes into account all the financial con-

straints,to establish analytically, the formula for the approximation of ruin probabilities for

both exponentially and sub-exponentially distributed claims, to compare the approximate

ruin probabilities from our model and those of the classical Cramér-Lundberg model, and

finally to compare the convergence of Pareto and Log-normal distributions for the formu-

lated model. An extensive review of literature is done and much attention is given to the

research by Albrecher and Hipp whose research successfully formulates Lundberg’s (classi-

cal) risk process in presence of tax. A risk model is formulated in the present study whose

premium inflow is influenced by inflation and a constant interest rate. We thereafter in-

voke the Albrecher and Hipp loss-carried-forward tax scheme from which an approximation

of probability of ruin for the light tailed (exponential) distribution is derived for an exact

solution. Then, a suitable formula for the claims with sub-exponential distribution is also

derived using the Pollaczek-Khintchine formula. Simulations are hence done using R and

Microsoft Excel in this regard. The results show that approximating ruin probability when

taking into account all the three financial constraints gives desirable results as compared to

those of classical Lundberg model. The comparison between the two heavy-tailed distribu-

tions under the concept of limiting density ratio, shows that a Log-normal density exhibit

a lighter tail, thus converges faster. However, the model is open for further improvements,

specifically to incorporate a stochastic rates of interest. The results of this study will hence

guide the policymakers and the insurance industry to make informed decisions to help guard

against future ruin as witnessed in local insurance companies in Kenya and globally.
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Chapter 1

Introduction

This chapter gives the background information, basic actuarial concepts used, mathematical

tools needed to solve the problem,statement of the problem, objectives, and significance of

the study.

1.1 Background Information and Preliminary Informa-

tion

Risk theory, the concept which is the basis of the present study, was pioneered by Filip Lund-

berg in 1903 whose work was later reviewed, refined, and expanded further by Harald Cramér

around 1930 and 1955. Their research and contributions marked the foundation of actuar-

ial risk theory, a concept that is immensely driving research in actuarial mathematics. The

classical risk model that came out of the mentioned research is the famous Cramér-Lundberg

model whose details are discussed in chapter 3 of this thesis. This model generated a lot of

research and extensions which have been extensively discussed in (Schmidli, 1995), (Cheung

and Landriault, 2012), (Grandell, 1977), (Embrechts et al., 2013), and (Rolski et al., 2009).

It is important to highlight that Cramér-Lundberg model and classical risk model or process

are used interchangeably in the sequel.

Taylor (1979), studied the probability of ruin when the classical risk model was modified to

take into account inflationary conditions and interest rate. Albrecher and Hipp (2007) pio-

neered the study of the risk model by considering the aspects of taxation. They investigated

1



how the element of tax affects the ultimate ruin probability. Wei (2009) investigated the

model termed a general risk in which probability of ruin is estimated in presence of Albrecher

and Hipp tax scheme and a constant force of interest . Also, Dbicki et al. (2015) investigated

the effect of financial factors including effects of the inflation and that of interest rates on

Gaussian risk models.

The present research studies and reviews the classical risk processes outlined in (Cramér,

1930) and (Cramer, 1955) and extends the model to be more realistic by including the ef-

fects of economic factors such as taxation, inflation, and interest rates on the model. In this

thesis, interest rates, inflation, and taxation will be referred to as financial constraints or

economic factors. The probability of ruin is an indispensable technical tool which reflects

the financial position of an insurance company. It is a tool which is used in the manage-

ment of the capital of insurance portfolio. Though technical, a higher probability of ruin

ultimately indicates instability and thereafter the panic by the management. This calls for

consideration of factors such as attraction of extra capital by the insurance, lowering the

premium rates to attract many policyholders. On the same note proper reinsurance should

also be given a lot of consideration. It is imperative to note that the probability of ruin

solely examines the risk of insurance but not corruption and mismanagement of the assets

of the company, therefore a model that seeks to generate the accurate probabilities for a

portfolio of insurance should specifically be used devoid of such vices.

1.2 Basic Concepts

At this point, we define some important and basic concepts that are very useful in this thesis.

We highlight risk mathematics (actuarial) concepts, some probability distributions which

are useful in the final chapters of the present research, and some mathematical concepts for

example the monotone convergence theorem which aid the understanding of various concepts

in the present study. Law of large numbers due to Poisson process is also highlighted.

2



1.2.1 Actuarial Science Concepts

(a) An insurance is the financial protection against losses from an insurance portfolio

in exchange of regular premiums paid by the insured. An insurer is an entity or a

business which develops a policy while insured is the policyholder who received financial

protection upon taking the policy as outlined in (Wang et al., 2018) and (Kaas et al.,

2008).

(b) A premium is the amount of money paid by policyholders for the protection from an

anticipated risk as indicated in (David, 2016), (Promislow, 2006), (Feller, ),(Ni, 2015),

(Grandell, 1977), (Taylor, 1979), and (Klugman et al., 2012).

(c) Claims are the payments that are made to the insured for their insurance. The claim

count process is usually denoted by {N(t), t ≥ 0} where N(t) is the number of claims

up to time t as outlined in (David, 2016), (Promislow, 2006), (Feller, ), (Ni, 2015),

(Grandell, 2012), (Embrechts et al., 2013), and (Klugman et al., 2012).

(d) An epoch of a claim, is the time when the claim arrive. Denoting the epochs by

τ1, τ2, τ3, ..., τ∞ then

Tk = τk − τk−1, k ≥ 1

are known as the arrival time between claims as in (Kaas et al., 2008), (Embrechts

et al., 2013), and (Klugman et al., 2012).

(e) A counting process N(t), t ≥ 0. It enumerates the total number of claims until time

t. It is modelled using a Poisson process which is defined below,

Definition 1. N(t), t ≥ 0 is a Poisson process with rate λ > 0 lets the following

mandatory conditions are met as illustrated in (Grandell, 2012), (Embrechts et al.,

2013), and (Klugman et al., 2012):

(i) The number of claims count at time zero is usually zero i.e N(0) = 0.

(ii) The process is stationary and has independent increments.
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(iii) The number of claims (N(t), t ≥ 0) in an interval of length t is Poisson process

which is distributed with the expected value λt. That is to say, ∀ s > 0, and t > 0

we have

P (N(t+ s)−N(s) = k) =
(λt)kexp(−λt)

k!
, k = 0, 1, ..., t ≥ 0, λ > 0 (1.1)

Stationary increment as in (David, 2016), (Promislow, 2006), (Feller, ), (Ni, 2015) and

(Klugman et al., 2012), implies that the claim counts distribution in a fixed interval

depends solely on the interval’s length and not on the time of occurrence of the interval,

i.e, there are no trend effects. Independent increments implies there is no overlapping

between intervals. More importantly, Poisson process has the property that the times

between arrival of claims follows an i.i.d exponential process, each with expected value

λ−1. The inter-arrival times of claims follows an exponentially distributed r.v. which

when replaced by any arbitrary r.v. {X1, X2, ...}, leads to the generalization of the

counting process follows;

Definition 2. Consider the sequence of random variables {Xt}t>0. {N(t), t ≥ 0} is a

renewal process if the said sequence is i.i.d.

Thus, we can then define a counting process as follows:

N(t) = max {n : Sn ≤ t}

where Sn is the sum of individual claims i.e. Sn = X1 +X2 + · · ·+Xn =
∑n

i=1 Xi

(f) A risk is an unfavourable event. In insurance which is our subject of research, the typ-

ical risk is the possibility of a big claim which can cause ruin (bankruptcy/insolvency)

of an insurance portfolio as highlighted in (David, 2016), (Promislow, 2006), (Feller, ),

and (Ni, 2015).

(g) Inflation rate is the rate of increase in the price of goods and services. Presence of

inflation leaves us with less goods and services for the same amount of money. A real

rate takes into consideration the effects of inflation as opposed to money or nominal

rate.
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1.2.2 Required Probability Distributions

A probability function that illustrates and outlines countable and possible values, likelihood,

and moments that a r.v. can accommodate within a range of possible values and likelihoods

that a random variable can take with a range of possible values (which can be discrete or

continuous) is known as a probability distribution. The function has moments which are a

set of parameter that measure a distribution. Four moments are commonly used and they

include expected value (first moment);

E[X] = µ

variance (second moment);

Var(X) = E[(X − µ)2] = E[X2]− (E[X])2

coefficient of skewness(third moment);

Skew(X) = E[(X − µ)3]

and kurtosis (fourth moment)

Kurt(X) = E[(X − µ)4]

. Thus the moment generating function (M.G.F) generates the moments (Feller, ), (Shreve,

2004), and (Gupta and Kapoor, 1997).

Mathematically, M.G.F, MX(t) of a random variable X is given by MX(t) = E
[
etX
]

for

all values of t for which the expectation exists. Consider an arbitrary function g(x). The

expectation of a discrete random variable is

E [g(x)] =
∑
x

g(x)P(X = x)

for a discrete random variable and

E [g(x)] =

∫
x

g(x)f(x)dx

for a continuous random variable. where P(X = x) and f(x) are the probability mass

function p.m.f, and probability distribution function for the discrete and continuous r.vs
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respectively. The M.G.F is defined by

MX(t) =
∑
x

etxP(X = x)

for discrete distribution and

MX(t) =

∫
x

etxf(x)dx

, for continuous probability distributions.

Exponential Distribution

A continuous random variable X assumes a non-negative value is said to have an exponential

probability distribution with parameter λ > 0 if its probability function is given by (Gupta

and Kapoor, 1997) as

f(x) =


λe−λx, for x > 0

0, elsewhere

(1.2)

The d.f is given by F (x) = 1− e−λx, and the mean and variance of the distribution is given

by 1/λ, and 1/λ2 respectively. Finally the moment generation function (M.G.F) is given by

MX(t) =

(
1− t

λ

)−1

, λ > t

Pareto Distribution

The p.d.f of a r.v. X ∼ Par(α > 0, b > 0) is given by

f(x) =


αbα

(b+x)α+1 , x > 0, σ > 0

0 elsewhere

(1.3)

The tail of this distribution is given by

1− F (x) =

(
b

b+ x

)α
(1.4)

Which decreases with power speed as outlined in (Klugman et al., 2012) and (Gupta and

Kapoor, 1997). It’s expected value and variance include

E(X) =
b

α− 1
, α > 1 Var(X) =

αb2

(α− 1)(α− 2)
, α > 2

The proof of the two properties of the distribution is as sketched below.
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Proof. The M.G.F of a Pareto distribution is given by

(MX(t))r=k =

(∫
x

etxf(x)dx

)r=k
=

(∫ ∞
0

etx
αbα

(b+ x)α+1
dx

)r=k
k = 1, 2, ...

⇐⇒ dk

dtk
MX(t)|t=0 = E(X t) =

Γ(α− t)Γ(1 + t)

Γ(α)
bt t = 1, 2, ..., t < α

The expected value and variance follows from the M.G.F, and this completes the proof.

Log-Normal Distribution

Log-normal probability distribution function is given in (David, 2016) and (Marshall and

Olkin, 2007) by

f(x) =


1

σ
√

2π
1
x

exp
(
−1

2

(
log x−µ

σ

)2
)
, x > 0

0, otherwise

(1.5)

for a random variable X ∼ LN(µ, σ2). The tail is given by,

1− F (x) = 1− Φ

(
log x− µ

σ

)
(1.6)

The expected value and variance include

E(X) = exp

(
µ+

1

2
σ2

)
, Var(X) = exp(2µ+ σ2)

(
eσ

2 − 1
)

The proof of the two properties of this distribution is sketched as below.

Proof.

MX(t) =

∫
x

etxf(x)dx

E(X t) =
dk

dtk
MX(t)|t=0 = etµ+ 1

2
t2σ2

t = 1, 2, 3, ...

The expected value and the variance follows from the M.G.F, and this completes the proof.

1.2.3 Properties of Expectations

The following subsection follows the contents of (Shreve, 2004) closely,

Consider the probability space (Ω,F ,P) and a sub-σ-algebra G of F . Then the following

two important properties of expectation hold;

7



� If X, Y , and XY are integrable random variables, and X is G−measurable, then

E[XY |G] = XE[Y |G]

� If in addition, X is independent of G, then

E[X|G] = EX

The latter property also hold if X > 0 (not necessarily integrable), although both sides are

+∞.

Proof. The proof can be obtained in (Shreve, 2004).

1.2.4 The Law of Large Numbers

We state without proof the following important theorem as outlined in (Feller, ) and (Gupta

and Kapoor, 1997).

Assume X1, ..., Xn is a set of pairwise independent random variable with first and second

moments given as E(Xi) = µ, and Var(Xi) = σ2, respectively. Then for any l > 0,

P(µ− l ≤ X̄ ≤ µ+ l) ≥ 1− σ2

n2l

Therefore, as it is evident that as n −→ ∞ the probability tends to 1 a.s (almost surely).

Equivalently, given Sn = nX̄, the population mean;

P
(∣∣∣Sn

n
− µ

∣∣∣ < ε

)
−→ 1 a.s

Proof. The proof is omitted, refer to (Gupta and Kapoor, 1997).

Secondly, the strong law of large numbers for the Poisson states that

lim
t−→∞

N(t)

t
= λ a.s

and also that

lim
t−→∞

N(t) =∞ a.s

where N(t), and λ are defined above.

Proof. See (Kyprianou, 2013).
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1.2.5 The Monotone Convergence Theorem

Let fn(x) > 0 be measurable and integrable function on a measurable set X such that

fn(x) −→ f(x) point-wise almost everywhere and f1(x) ≤ f2(x) ≤ · · · , then∫
x

fn(y)dy ∼
∫
x

f(y)dy as n −→∞

Proof. Refer to (Trench, 2013) for the outline of the proof.

1.3 Statement of the Problem

Bankruptcy or insolvency is technically known as ruin of an insurance company. Ruin takes

place when the total value of assets falls below that of liabilities. It is important to asses

the ruin probability of an insurance portfolio so as to help ascertain the extent to which it

can survive. Models such as Cramér-Lundberg have been developed to help determine the

best approximations to ruin probabilities. However, the accuracy of the model is key for

the existence of an insurance portfolio. The classical model does not take into account the

effects of financial constraints, thus it is not an appropriate model for the approximation of

ruin for an insurance portfolio. Various economic factors e.g., a high rate of inflation, have

contributed negatively and certainly, the result is the decline in investments opportunities

and loss of employment. Notable modifications have been made to make the approximations

by the model more accurate by taking into account some economic conditions. In this study

we modify the classical risk model to come up with an improved model which captures all

the financial constraints.

1.4 Objectives of the Study

1.4.1 Core Objective

The main objective of the present research was to approximate ruin probabilities under the

financial constraints.

9



1.4.2 Other Objectives

Specific objectives of this research include:

(i) To formulate a risk model which takes into account the financial constraints.

(ii) To establish analytically, the closed form formula for approximating ruin probabilities

for both the exponentially and sub-exponentially distributed claims using the present

model.

(iii) To simulate and compare the approximate probabilities for classical or Cramér-Lundberg’s

model and the formulated model.

(iv) To compare the convergence of tails of Pareto and log-normal distributions under the

formulated model.

1.5 Significance of the Study

The results of this research are important since they accurately approximate the ruin prob-

ability of an insurance portfolio. The model developed gives better and reliable results as

compared to the existing models, particularly, the Cramér-Lundberg model since our model

takes into consideration the financial constraints. The insurance sector globally has experi-

enced quite a lot of challenges which have led to the insolvency of some insurance companies,

for example, the collapse of the Blue-Shield and Bima insurance companies in Kenya. Vari-

ous economic factors, for example, a high rate of inflation, have contributed negatively and

certainly, the result is the reduction in investments and loss of employment. Therefore, the

effective modification of the classical risk model to incorporate the financial constraints is

critical in the approximation of ruin probabilities. Though technical, the expected results

obtained can be used to guide the insurance companies, through the regulatory authorities,

to put proper structures and policies in place to guard against far-reaching consequences of

ruin.
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Chapter 2

Literature Review

The classical insurance risk model was proposed by Lundberg (1903). His research work laid

the foundation of modern actuarial theory. This was succeeded by the improvements made

by Cramér (1930), hence the invention of the Cramér-Lundberg model which is considered

as classical risk model for approximating the ruin probabilities.

Taylor (1979) modified the classical risk model to incorporate inflationary conditions and

interest rates. The author superimposed inflation in the model and realized that inflation

does not affect free reserves. If the risk process was subjected to both inflation and interest

accumulation, it was observed that the differences between the forces of inflation and those of

interest are constant, however small and positive, the probability of ruin still holds. In their

research, (Bohnert et al., 2016) asserted that there is a major concern on claims reserving

if inflation risk is not given required attention in the risk process and consequently, it is of

greater need in the non-life insurance.

(Debicki et al., 2015) investigated the aggregate claims as a Gaussian risk process as opposed

to the usual compound Poisson risk process. The resulting risk process incorporated infla-

tionary effect and interest rates. This was a commendable move to improve the classical risk

process. Their results captured the finite time horizon ultimate probability of ruin for the

non-classical model. They also came up with an estimate of the conditional ruin time as the

initial capital of an insurance portfolio keeps growing by an exponential random variable.

(Zhu and Yang, 2008) considered a compound Poison risk model in which a credit interest

adds, at some constant interest rate, to an insurance portfolio for some positive surplus,
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otherwise the debt interest is realized through some specified rate. It was also observed

that an absolute ruin occurs when the surplus value first hit some constant, usually some

negative critical value. The authors further investigated the ultimate ruin probability be-

haviour when the claim distribution are light-tailed and further extended it to the case when

the distribution of claims distribution are heavy-tailed and motivated by (Cai, 2007). The

model further presented the generalization of the ruin probability for the risk model with a

constant force of interest although it does not take into account all the economic factors.

(Konstantinides et al., 2010) studied the probability of absolute ruin with invariant premuim

rate and a constant force of interest for the case of both definite and indefinite time horizon

renewal model of risk. (Wang, 2018) also investigated the same renewal risk model which

follows a Lévy process which is Geometric and with variant rate of return and a Brownian

fluster. Their results indicated greater sensitivity to the said fluster, whenever heavy-tailed

distributions are considered in the modelling of the claims process. Nevertheless, the studies

mentioned above do not take into consideration the effects of taxation in the surplus models

used.

The other economic factor that is of keen interest in the present thesis is the incorpo-

ration of taxation in the classical risk process. In their paper, (Albrecher and Hipp, 2007)

considered an insurance portfolio and the insurance risk modelled by the Lundberg risk pro-

cess and incorporated the tax rate in the classical risk model, specifically for the infinite

time probability of ruin. In their model, it is assumed that tax is paid at an invariant rate

γ ∈ [0, 1) of the income due to premium inflow only if the insurance portfolio is stable in

terms of profit inflow. Ultimately, the resulting non-ruin probability is the power of the

non-ruin probability for the classical ruin model. The model nevertheless is far from real-

ity as observed since it ignores very important economic factors like inflation, return, and

dividend payments just to mention a few. This is done purposely to achieve simplicity and

tractability as put by the authors.

Wei (2009) investigated the ruin probability in what the author described as a general-
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ization of the risk model in which the probability of ruin generated by claims process which

follows a compound Poisson process was derived. In their study, the authors outlined as a

Corollary, the Albrecher and Hipp loss-carried-forward tax scheme. Further, an invariant

force of interest is introduced presenting a special case. A closed form formula for the ap-

proximation of the probability of ruin with both light-tailed (exponential) and heavy-tailed

(sub-exponential) claims distribution are derived. The authors, however, do not include the

effects of taxation in their approach to approximation of ruin probability.

In general the results for the Cramér-Lundberg model with taxation presented by (Albrecher

et al., 2008) in and the works of (Albrecher et al., 2008) in which the two-sided exit prob-

lem is properly solved using the fluctuation theory whereby the probability of ruin for the

general spectral negative Lévy’s model of risk with influence of taxation through a loss-

carried-forward tax scheme is also investigated. The arbitrary moment of the discounted

total tax and determination of the level of surplus to commence incorporation of taxation to

maximize discounted average aggregate income for the authority in the model presents an

adequate condition to come up with a unique optimal taxation. The model is nevertheless,

far from reality since inflationary conditions and interest rates conditions are not taken into

consideration.

(Wang et al., 2010) investigated a loss-carried forward tax scheme in the surplus-dependent

risk process with a constant rate of investment interest. The authors stipulated that taxation

affects both premium inflow and the rate of interest due to investment. On discounting, a

closed form of the discounted tax payment and in presence of investment rate is explicitly

presented, resulting into a proper condition for the constant rate of taxation for which there

exists a starting level for levying a tax to an insurance portfolio. Clearly, the effects of

inflation is not incorporated by the authors in their model.

(Cheung and Landriault, 2012) analysed the compound model of risk for the surplus process

which depends on the premium inflow rate in the tax scheme introduced by (Albrecher and

Hipp, 2007). Upon careful reading through the research and findings of (Albrecher et al.,

2008), the generalization of the findings in the Gerber-Shiu work whereby a function for the

maximum surplus before ruin occurs is obtained. The author demonstrated that there exists
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no significant differences between the said Gerber-Shiu’s function in the tax-dependent risk

model and the initial Gerber-Shiu function which is independent of taxation in the dividend

barrier framework. Also closely captured in the paper is the level where taxation thrives

and the discounted taxation moment. Nevertheless, the authors did not include inflationary

conditions in the model.

(Sundt and Teugels, 1995) came up with a model which takes into consideration the effect

of nominal force of interest on the risk reserve process. An integral equation for the survival

probability is obtained explicitly under the said model, together with bounds on ruin prob-

abilities for example Lundberg bound. However, the authors do not consider the effects of

inflation and taxation in their analysis.

Clearly, the above-mentioned models and findings do not present a model which takes into

consideration the effects of all the three economic factors, therefore, in this present study,

we consider a more general risk process which factors in the three economic factors including

rate of inflation, interest rates, and rate of taxation. This model will enable us to obtain

approximate ruin probabilities which are considered more accurate.
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Chapter 3

Research Methodology

3.1 Introduction

In this chapter, we consider in details, the classical risk model and outline the methods

which we have used to help us achieve our main objective. We also discuss the classical

approximation to the ruin probabilities by outlining an integro-differential equation from

the key renewal theorem. We finally outline the properties of heavy-tailed (long-tailed or

fat-tailed) distributions, specifically a class of sub-exponential, and regularly varying tails.

3.2 The Cramér-Lundberg Model

This model is known as the classical risk process because it’s birth laid down the foundation

of actuarial risk mathematics. It is from this model that we base our present study. A risk

surplus is the amount by which an insurance portfolio’s premium inflow exceeds its claims

outgo. The classical risk process is usually described mathematically by a very significant

equation in actuarial science as illustrated in (David, 2016),(Grandell, 2012), (Embrechts

et al., 2013), (Promislow, 2006), and (Feller, ). This is known also as the surplus equation,

given by,

U(t) = u+ ct− S(t), t ≥ 0 (3.1)
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Whereby, u = U(0) denotes the initial surplus, ct denotes the premium income collected

from time 0 to time t where it is also assumed that c ≥ 0, and

S(t) =


∑N(t)

k=1 Xk, for t > 0

0 for t = 0

(3.2)

denotes the aggregate claim amount in which Xk, k = 1, 2, ..., N(t) are individual claim

sizes, and of course N(t) are claim count.

{S(t), t ≥ 0}, is called Poisson process with Poisson(λ). The density function of X ′ks is

henceforth denoted by F (x) and it will be assumed for the entire research that F (0) = 0 so

that there exists no negative amounts of claims as indicated in (Grandell, 2012), (Embrechts

et al., 2013), and (Klugman et al., 2012).

Figure 3.1: A trajectory of a Risk Process (Source: Internet)

It is important to understand what exactly Equation (3.1) means in practice. These

parameters have the following interpretation; U(t) is known mathematically as a risk process

or the risk of insurance at time t. This value, identical to the current capital shows how

risky the insurance portfolio is at time t. Increase (decrease) in this particular value brings

a pleasant (unpleasant) news for the total insurance portfolio because its total capital tends

to increase (decrease). If U(t) hits 0 or becomes negative, the insurance company is ruined.

U(0) = u is termed the initial capital. It is the quantity of resources needed to establish an
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insurance portfolio. Finally, S(t) is the claims process and its interpretation is explicit in

Definition 1 of chapter 1.

3.2.1 Deriving the Rate of Premium inflow (ct)

This is called premium at time t, meaning the premium that an insurance portfolio asks from

its policyholders to ensure its own survival, with survival rate corresponding to E[U(t)] ≥

u,∀ t > 0 i.e. the capital should be in the sense of expectation, no less than the initial

capital. Derivation of ct is thus the most crucial part of this model. A natural question

is how to figure out a reasonable ct i.e. how to determine premium at time t such that

E[U(t)] ≥ 0. Clearly this is a mathematical question and we have, using the expected value

principle (Rolski et al., 2009), that

E(U(t)) = E

u+ ct−
N(t)∑
k=1

Xk

 = u+ ct− E

N(t)∑
k=1

Xk

 (3.3)

by conditional expectation, we have

u+ ct− E

E
N(t)∑

k=1

Xk|N(t)

 = u+ ct− E

N(t)∑
k=1

E (Xk|N(t))


by independence between Xk and N(t),

= u+ ct− E


N(t)∑
k=1

E[Xk] =

N(t)∑
k=1

µ = µN(t)


 = u+ ct− µE[N(t)]

E[U(t)] = u+ ct− µλt

Consequently, E[U(t)] ≥ u ⇐⇒ ct − µλt ≥ 0. This condition can be interpreted that the

average outflow (claims) being strictly smaller than the average income (premium inflow)

in an insurance portfolio. This is also referred to as the net profit condition. Therefore a

conscientious insurance company would go, after taking into account some business changes

into consideration, for

ct = (1 + θ)µλt (3.4)

where, θ is the relative safety loading.
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3.2.2 Integro-differential Equation

This subsection follows closely the working as outlined in (Grandell, 1977). Consider

Φ(u) = E [Φ(u) = (u+ cT1 − x1)] =

∫ ∞
0

λe−λt
∫ u+ct

0

Φ(u+ ct− x)dF (x)dt

where, T1 is the epoch of the first claim, then we have U(T1) = cT1 −X1. It is important to

note that ruin cannot occur in the interval (0, T1) since the Poisson process is a special case

of renewal process.

The function Φ(?) is differentiable . By appropriate differentiation, integration, together

with change of variable , the following famous integro-differential equation is obtained. Refer

to [Appendix A2] for explicit steps.

Φ(u) = Φ(0) +
λ

c

∫ u

0

Φ(u− x)(1− F (x))dx (3.5)

Where λ, c, u, and F (x) are as defined earlier and Φ(0) is the non-ruin probability when the

surplus is zero. By monotone convergence theorem, it follows from Equation (3.5) that as

u −→∞, we have

Φ(∞) = Φ(0) +
λµ

c
Φ(∞) (3.6)

From law of large numbers,

P
(

lim
t−→∞

U(t)

t
= c− λµ

)
= 1 a.s

Therefore,

Φ(∞) = 1⇐⇒ Φ(0) = 0 (3.7)

Hence for exponentially distributed claims, it can be observed that,

Ψ(0) =
λµ

c
=

1

(1 + θ)
, where c > µλ (3.8)

and finally for u > 0, it can be observed that

Ψ(u) =
1

(1 + θ)
exp

(
− θu

µ(1 + θ)

)
(3.9)

Proof. See Appendix A1.
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3.3 The Definite and Indefinite Probabilities of Ruin

The classical risk process is defined by Equation (3.1). It is normally assumed that as

time increases to infinity, so does the risk process. A critical quantity that is a subject of

investigation in the present research is the level of possibility that at some time t, the reserve

will be insufficient to overcome claims i.e. U(t) < 0. More formally;

Definition 3. The probability of ruin in definite time is given by

Ψ(u, T ) = P [U(t) < 0 for some t ≤ T ] , 0 < T <∞, u ≥ 0 (3.10)

Whenever, T = ∞ we have ultimate ruin or infinite time ruin. It is denoted by Ψ(u) =

Ψ(u,∞), u ≥ 0. The time to ruin is thus given by

τ(T ) = inf {t : 0 ≤ t ≤ T , U(t) < 0} , 0 < T <∞ (3.11)

whereby by convention,

inf(∅) =∞ (3.12)

We usually write τ = τ(∞) for the ruin with infinite time horizon.

Definition 4. Given a risk process with a Poisson process {N(t), t ≥ 0}

S(t) =

N(t)∑
k=0

Xk − ct, t ≥ 0 (3.13)

is termed a claim process which has a supremum L = supt≥0 S(t). Then equivalently

Ψ(u) = P (L > u|U(0) = u)) (3.14)

3.4 The Adjustment Coefficient

Definition 5. Consider an arbitrary claim size r.v X. t = r is the smallest possible solution

to the equation

1 + (1 + θ)µt = MX(t) (3.15)

where MX(t) is the M.G.F of X. We shall refer to such a variable as the adjustment coeffi-

cient.
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If X ∼ Exp(µ), the adjustment coefficient is obtained from Equation (3.15) as follows.

1 + (1 + θ)µr =
1

(1− µr)
(3.16)

An equation which r satisfies from Equation (3.15), and solving Equation (3.16) quadrati-

cally, r = 0 or r = θ
µ(1+θ)

. r can also be numerically solved by initial guess.

From Equation (3.15), we may write

1 + (1 + θ)µr = E(erX)

Expanding we obtain

1 + (1 + θ)µr = 1 + rµ+
1

2
r2E(X2)

Thus,

r <
2θµ

E(X2)
(3.17)

Another useful form for the adjustment coefficient is

1 + θ =

∫ ∞
0

erxG(x)dx where G(x) =
1− F (x)

µ
, x > 0 (3.18)

Also from Equations (3.15), and (3.18), we have∫ ∞
0

erxG(x)dx =
(MX(r)− 1)

µr
(3.19)

so that replacing MX(r) by 1 + (1 + θ), gives Equation (3.18).

3.4.1 Lundberg Inequality

Theorem 1. Suppose that r > 0 is a solution to Equation (3.15). Then the probability of

ruin satisfies

Ψ(u) ≤ e−ru, u ≥ 0 (3.20)

Proof. See Appendix A3.

This is an important result since it presents an upper bound on the ruin probability on an

insurance portfolio. Nevertheless, the condition does not exist for many practical scenarios

i.e. the adjustment coefficient does not exist for many distributions especially the heavy tail

distributions.
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3.5 Cramér-Lundberg Approximation to the probabil-

ity of Ruin

We state the key Renewal theorem which is of importance in the approximation of Cramér-

Lundberg ruin probability.

Let B(y) satisfy the following equation

B(y) = C(y) +

∫ y

0

B(y − x)dA(x) (3.21)

Where, C is known, A is a given distribution function, limy−→∞B(y) = limy−→∞C(y) +

1
µ(A)

∫∞
0
C(y)dy, and µ(A) = E(X(A)), 0 < µ(A) <∞.

Proof. The proof can be found in (Feller, ) and (Schmidli, 2017).

We then assume that θ > 0, or c > λµ. Consider the following equation

Φ(u) = Φ(0) +
λ

c

∫ u

0

Φ(u− x)[1− F (x)]dx

from Equation (3.8), we rewrite

1−Ψ(u) = 1− λµ

c
+
λ

c

∫ u

0

(1−Ψ(u− x)) [1− F (x)] dx

Ψ(u) =
λ

c

(
µ−

∫ u

0

[1− F (x)]dx+

∫ u

0

Ψ(u− x)[1− F (x)]dx

)
Next using the definition of the expected value, µ =

∫∞
0

[1− F (x)]dx,

Ψ(u) =
λ

c

(∫ ∞
u

[1− F (x)]dx+

∫ u

0

Ψ(u− x)[1− F (x)]dx

)
(3.22)

To solve Equation (3.22) which is a renewal type equation. This equation resembles renewal

one but ∫ ∞
0

λ

c
[1− F (x)]dx =

λµ

c
< 1

is not a probability distribution. For this function to be regarded as a density function

of a distribution A, the integral must be equal to 1, which is a very important axiom of

probability.
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According to (Feller, ), both sides of equation (3.22) is multiplied by eru, r > 0 and r is a

properly chosen constant (Lundberg exponent) i.e.

λ

c

∫ ∞
0

erx[1− F (x)]dx = 1

and that

eruΨ(u) =
λ

c

(∫ ∞
u

eru[1− F (x)]dx+

∫ u

0

er(u−x)Ψ(u− x)[1− F (x)]dx

)
Which is now a proper renewal equation since∫ ∞

0

λ

c
[1−F (x)]erudx =

λ

c

∫ ∞
0

∫ ∞
x

erxdF (y)dx =
λ

c

∫ ∞
0

∫ ∞
x

erxdF (y)dx =
λ(MY (r)− 1)

cr
= 1

It then follows that

lim
t−→∞

eruΨ(u) =
C1

C2

(3.23)

where

C1 =
λ

c

∫ ∞
0

eru
∫ ∞
u

[1− F (x)]dxdu (3.24)

and

C2 =
λ

c

∫ ∞
0

xerx[1− F (x)]dx (3.25)

provided finite positive numbers r, C1,and C2 exist.

We then solve for C1 as follows; we first change the order of integration in Equation

(3.24) as indicated

C1 =
λ

c

∫ ∞
0

[1− F (x)]

∫ x

0

erududx

since
∫ x

0
erudu = erx

r
− 1

r
and using the relationships µ =

∫∞
0

[1 − F (x)]dx and
∫∞

0
erx[1 −

F (x)]dx = c
λ

, we obtain

C1 =
λ

rc

∫ ∞
0

erx[1− F (x)]dx− λ

rc

∫ ∞
0

[1− F (x)]dx =
1

r
− λµ

rc
=

θ

r(1 + θ)

Next we obtain C2, by first introducing the function

MX(r) =

∫ ∞
0

erxdF (x)− 1
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Where MX(r) is the M.G.F of the severity r.v X. Then using
∫∞

0
erx[1− F (x)]dx = 1, and

also using integration by parts

c

λ
=

∫ ∞
0

erx[1− F (x)]dx = −1

r
+

1

r

∫ ∞
0

erxdF (x) =
MX(r)− 1

r

and we see that

MX(r) =
cr

λ
+ 1 (3.26)

Note that, M ′
X(r) =

∫∞
0
xerxdF (x). Now using

∫
xerx =

(
x
r
− 1

r2

)
erx + C3 (anti-derivative

of xerx), integrated by parts.

C2 =
λ

c

∫ ∞
0

xerx[1−F (x)]dx =
λ

c
[1−F (x)]

[(
x

r
− 1

r2

)
erx
]∞

0

+
λ

c

∫ ∞
0

(
x

r
− 1

r2

)
erxdF (x)

Where using integrable functions

lim
x−→∞

[1− F (x)]erx = 0

, and

lim
x−→∞

[1− F (x)]z · erx = 0

C2 =
λ

c
· 1

r2
+
λ

c

∫ ∞
0

(
x

r
− 1

r2

)
erxdF (x)

Next, using expressions for MX(r) = cr
λ

+ 1 and M ′
X(r) =

∫∞
0
xerxdF (x)

C2 =
λ

c

(
1

r2
+
M ′

X(r)

r
− MX(r)

r2

)
=
λ

c

(
1

r2
+
M ′

X(r)

r
−

cr
λ

+ 1

r2

)

C2 =
λ

c

(
1

r2
+
M ′

X(r)

r
− MX(r)

r2

)
=
λ

c

(
1

r2
+
M ′

X(r)

r
− cr

λr2
− 1

r2

)

C2 =
λ

c

(
M ′

X(r)

r
− c

λr

)
=
λµ

c

1

r

1

µ

(
M ′

X(r)− c

λ

)
Thus

lim
u−→∞

eruΨ(u) =

θ
r(1+θ)

λ
c

(
M ′X(r)

r
− c

λr

) =
θµ

M ′
X(r)− c

λ

(3.27)
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Therefore, asymptotically we have

Ψ(u) ∼ Ce−ru, as u −→∞ (3.28)

where

C =
θµ

M ′
X(r)− µ(1 + θ)

(3.29)

(The Exponential Distribution): If 1 − F (x) = exp
(
−x
µ

)
, x ≥ 0. The asymptotic classical

ruin probability is given by

Ψ(u) ∼ 1

1 + θ
exp

(
− θu

µ(1 + θ)

)
, as u −→∞

Proof. using r = θ
µ(1+θ)

and MX(t) = (1− µt)−1 ⇐⇒M ′
X(t) = µ(1− µt)−2

M ′
X(t) = µ(1− µt)−2 = µ[1− θ(1 + θ)−1]−2 = µ(1 + θ)2

Thus using Equations (3.28) and (3.29), we obtain C = 1
1+θ

which completes the proof.

3.6 Heavy-tailed Claims Distributions

These are claims in which ”the actuary has to go and see one of the chief members of the

company” [11]. Such claims may result in the technical ruin of an insurance company. For

this reason, it is always observed that good models for claims distributions encompass heavy

tail, i.e. claims distributions with tails which do not have an exponential factor (not bounded

exponentially). In practice, among the heavy-tailed distribution, the most commonly used

belong to a class of sub-exponential. It is important to note that this section follows closely

the description from (Deelstra et al., 2014), (Schmidli, 2017) ,(Embrechts et al., 2013), (Wei,

2009), and (Rolski et al., 2009).

3.6.1 Sub-exponential Claims

Sub-exponential class denoted by S is an important class of heavy-tailed distributions. We

define, a distribution F on R[0,∞) to be sub-exponential if

lim
x−→∞

¯F n∗(x)

F̄ (x)
= n, for n ≥ 2 (3.30)
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where F̄ = 1−F (x) > 0 ∀ x ≥ 0 is the tail of the distribution, and ¯F n∗(x) = P (
∑n

i=1Xi ≤ x)

is the n−fold convolution of F .

Given any two i.i.d random variables X1 and X2 with common distribution function F ,

the convolution F 2∗ is defined by

P[X1 +X2 ≤ x] = F 2∗(x) =

∫ ∞
−∞

F (x− y)dF (y)

Therefore, a distribution F on the positive half-line is sub-exponential if

¯F 2∗(x) ∼ 2F̄ as x −→∞

Then for n−fold convolutions is defined the same way, such that for any n ≥ 1

¯F n∗(x) ∼ nF̄ as x −→∞

Thus ¯F n∗(x) is the tail of the distribution of the maxima of n random variables, X1, ..., Xn

and due to

(1− a)n ∼ 1− na where a −→ 0

we obtain

P[max(X1, .., Xn) > x] = 1− F n(x) = 1−
(
1− F̄ (x)

)n ∼ nF̄ (x)

Finally, from the principle of single big jump for the sum of r.v’s X1, ..., Xn with common

distribution function, assuming independence of the variables,

P (Sn = X1 +X2 + · · ·+Xn > x) ∼ P (Mn = max(X1, X2, ..., Xn) > x) as x −→∞

The following are some of the important properties of the sub-exponential distribution

(Embrechts et al., 2013), and (Kyprianou, 2013).

(i) F ∈ S,

(ii) 1−Ψ(u) = Φ(u) ∈ S and,

(iii) limu−→∞
Ψ(u)

1−F (u)
= 1

θ

Proof. See (Schmidli, 2017), (Embrechts et al., 2013), and (Kyprianou, 2013) for proofs.
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3.6.2 Regularly Varying Tails

Definition 6. A function f(x) > 0 is a regularly varying at ∞ if ∃ α ∈ R such that

lim
x−→∞

f(t.x)

f(x)
= tα ∀ t > 0 (3.31)

Pareto distributions are regularly varying as opposed to the log-normal distribution.

Indeed from the p.d.f of the latter distribution, we have that

lim
x−→∞

f(t.x)

f(x)
= lim

x−→∞

1

t
e−

(ln t)2

2σ2 e− ln t
(ln x−µ)
σ2 =



0 t > 1

1 t = 1

∞ t < 1

A rapidly decreasing function at infinity results from this limit trait resulting to both Pareto

and Log-normal distributions exhibiting quantitatively unique behaviours in their upper

tails, (Kaas et al., 2008) and (Embrechts et al., 2013).

We have discussed the methods which are applied in the next chapter. These methods have

aided in the formulation of the risk model in the present study. For example, the sub-

exponential distribution discussed will help in the study of heavy tailed distribution and

consequently, comparison between the convergence of the tails.
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Chapter 4

Ruin Probabilities Under Financial

Constraints

4.1 Introduction

This chapter constitutes the main part of this thesis. We state the theorems for two of the

main results in the present thesis. We then outline the modified classical surplus process,

in which it is assumed that the effects of real rate of interest only affects the premium

inflow and not the claims outgo. It is also assumed that ruin does not occur as a result of

mismanagement by the insurers. In this chapter, we outline the formulation of our surplus

process in the presence of inflation and interest rate using the Fisher relation. The non-

ruin probability in the presence of the two economic factors is hence obtained. Finally, the

first main results are achieved by invoking the Albrecher and Hipp loss-carried-forward tax

scheme as outlined in (Albrecher and Hipp, 2007) to allow us to include all the financial

constraints in an approximation of our ruin probability, thus completing the proof of our

first main result. The second main result then follows.
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4.2 The Model Formulation

4.2.1 Fisher Relation for Real Force of Interest

Surplus Process in the Presence of Real rate of Interest The classical risk process is given

by Equation (3.1). We modify the classical risk process to take into account the effects of

interest rate and inflation. This is done by considering Fisher relation, which is defined by

δ(M, i) =
loge(1 +M)

loge(1 + i)
(4.1)

where δ(M, i), M , and i are the real force of interest, money rate of interest, and rate of

inflation respectively.

4.2.2 Assumption for the model

Before outlining the model, the following assumptions are inevitable. First, the premium

received for the present risk model is paid continuously at an invariant rate c, secondly, the

company also receives investment interest with a constant real force of interest denoted by

δ(M, i). The effects of inflationary conditions and the normal or money return on the total

capital do not cancel out each other exactly.

4.2.3 Risk model in the Present Study

We modify Equation (3.1) and the risk reserve process outlined in (Klugman et al., 2012)

to obtain the following model ((4.2)). Let ˆUδ(M,i)(t) be the reserve at some time t and from

the above-mentioned assumptions,

d ˆUδ(M,i)(t) =
{
c+ ˆdUδ(M,i)(t) · δ(M, i)

}
dt− dS(t), t ≥ 0

ˆUδ(M,i)(t) = ueδ(M,i)t + c · s̄δ(M,i)

t
−
∫ t

0

dS(s), t ≥ 0 (4.2)
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Where u = U(0), and

s̄
δ(M,i)

t
=

∫ t

0

eδ(M,i)sds =


t if δ(M, i) = 0

eδ(M,i)t−1
δ(M,i)

if δ(M, i) > 0

Now, discounting Equation (4.2), we obtain the following as the present value of the present

model.

Vδ(M,i)(t) = e−δ(M,i)t ˆUδ(M,i)(t) = e−δ(M,i)t·u·eδ(M,i)t+e−δ(M,i)t·c·s̄δ(M,i)

t
−e−δ(M,i)t·

∫ t

0

dS(s), t ≥ 0

But

e−δ(M,i)t · s̄δ(M,i)

t
= ā

δ(M,i)

t
=


t if δ(M, i) = 0

1−eδ(M,i)t
δ(M,i)

if δ(M, i) > 0

Therefore,

Vδ(M,i)(t) = u+ c · āδ(M,i)

t
− e−δ(M,i)t · S(t), t ≥ 0 (4.3)

From Equation (4.3), for a definite time T > 0, the definite time horizon probability of ruin

is defined by

Ψ(u, t) = P
(
Vδ(M,i)(t) < 0 for some 0 ≤ t ≤ T

)

= P

(
sup
t∈[0,T ]

[
e−δ(M,i)tS(t)− c · āδ(M,i)

t

]
> u

)
Also, the indefinite time ruin probability is defined in this case by

Ψ(u) = Ψ(u,∞) = P
(
Vδ(M,i)(t) < 0 for some t ≥ 0

)

4.3 Ruin Probability for the Exponentially distributed

Claims

Theorem 2. In the presence of all financial constraints, the surplus dependent ruin proba-

bility is expressed as

Ψγ,δ(M,i)(u) = 1−
[
1−Ψδ(M,i)(u)

](1−γ)−1

(4.4)
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where γ ∈ [0, 1) is the tax rate, Ψδ(M,i)(u) is the probability of ruin in the presence of inflation

and interest rate, in which δ(M, i) is the real force of interest.

Proof. To prove the above theorem, the following are necessary,

Lemma 1. Under equation (4.3) the premium loading factor is given by

θ∗ =
c · āδ(M,i)

t

e−δ(M,i)tµλ
− 1 t > 0 (4.5)

where θ∗ > 0 is the premium loading factor in the presence of real force of interest δ(M, i).

Proof. Using the expected value principle in Equation (4.3) as outlined in (Deelstra et al.,

2014).

E(Vδ(M,i)(t)) = E

u+ c · āδ(M,i)

t
− e−δ(M,i)t

N(t)∑
k=0

Xk



E(Vδ(M,i)(t)) ≥ u⇐⇒ c · āδ(M,i)

t
− e−δ(M,i)tµλ > 0

c · āδ(M,i)

t
= (1 + θ∗)e

−δ(M,i)tµλ

The result follows upon making θ∗ the subject.

We therefore prove Theorem (2) by first stating the following tax scheme. Albrecher

and Hipp (2007), established the following loss-carried-forward tax scheme, a model that ex-

tended the classical risk model to incorporate taxation. The authors suggested that taxation

is only payable if the insurance portfolio is in a ”profitable situation”. The authors obtained

an important equation,

Ψγ(u) = 1− [1−Ψ0(u)](1−γ)−1

(4.6)

where Ψγ(u) is the surplus-dependent probability of ruin in the presence of taxation, Ψ0(u)

is the classical ruin probability, and γ ∈ [0, 1) is the rate of taxation. The reader is referred

to (Albrecher and Hipp, 2007) for more details and corresponding proofs.
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Thus invoking the said tax scheme as outlined in (Albrecher and Hipp, 2007), we obtain

the following surplus and tax-dependent approximate ruin probability explicitly under the

operation of all the financial constraints as follows,

Ψγ,δ(M,i)(u) = 1−
[
1−Ψδ(M,i)(u)

](1−γ)−1

(4.7)

which marks the end of the proof of Theorem (2).

Example 1. Suppose that the claim sizes exhibit an exponential distribution. The ruin

probability in the presence of al financial constraints is given by Equation (4.7) where,

Ψδ(M,i)(u) =
1

1 + θ∗
exp

(
− θ∗u

µ(1 + θ∗)

)
(4.8)

is the corresponding ruin probability in the presence of inflation and constant interest rate.

Finally, asymptotic probability of ruin in the presence of all the financial constraints is

given by

Ψγ,δ(M,i)(u) ∼ 1

1− γ
Ψδ(M,i)(u), u −→∞ (4.9)

as highlighted in (Albrecher and Hipp, 2007).

4.4 Ruin Probabilities for Claims with Sub-exponential

Distribution

Theorem 3. The probability of ruin for the claims with sub-exponential distribution in the

presence of interest rate and inflation is given by

Ψδ(M,i)(u) ∼ 1

θ∗
F̄ (u) as u −→∞ (4.10)

and in the presence of all financial constraints(including tax), the ruin probability is thus

given by

Ψγ,δ(M,i)(u) = 1−
[
1−Ψδ(M,i)(u)

](1−γ)−1

∼ 1

1− γ
Ψδ(M,i)(u) =

F̄ (u)

θ∗(1− γ)
(4.11)

where γ ∈ [0, 1) and δ(M, i) are the rate of taxation, and force of interest respectively, θ∗ is

the premium loading factor in the presence of interest rate and rate of inflation.
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For a density function with a finite mean, µ,

F (x) =
1

µ

∫ x

0

(1− F (y))dy x > 0 (4.12)

Proof. To prove the above theorem we first state without proof Lemma F.6 in Appendix of

(Rolski et al., 2009) and Theorem 1.3 in (Kyprianou, 2013).

Lemma 2. Let F ∈ S. Then for any ε > 0, there exist a D ∈ R such that

1− F n∗(x)

1− F (x)
≤ D(1 + ε)n ∀ x > 0 and n ∈ N

Proof. The proof of this theorem can be found in (Schmidli, 2017), pp. 219.

Next we state the Pollaczek-Khintchine formula (Theorem 1.3 in (Kyprianou, 2013)) as

a theorem below

It states that suppose λµ
c
< 1. For all u ≥ 0

Φ(u) =

(
1− λµ

c

)∑
k≥0

(
λµ

c

)k
η∗k(u)

where η(u) = 1
µ

∫ u
0

(1− F (y)dy) , u ≥ 0 and for k ≥ 0. It is understood that η∗k is the

k−fold convolutions of η with the special understanding that

η∗0(du) = δ0(du)

The proof of this theorem is ignored and can be found in (Kyprianou, 2013).

From Equation (4.12), and choosing ε > 0 such that λµe−δ(M,i)t(1 + ε) < c · āδ(M,i)

t

Recall that there exist a D such that

1− F n∗(x)

1− F (x)
≤ D(1 + ε)n (4.13)

Now, from Pollaczek-Khintchine formula, we obtain

Ψδ(M,i)(u)

1− F (u)
=

1− e−δ(M,i)tλµ

c · āδ(M,i)

t

 ∞∑
n=1

e−δ(M,i)tλµ

c · āδ(M,i)

t

n

1− F n∗(u)

1− F (u)
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≤ D

1− e−δ(M,i)tλµ

c · āδ(M,i)

t

 ∞∑
n=1

e−δ(M,i)tλµ

c · āδ(M,i)

t

n

(1 + ε)n <∞

Interchanging sum and limits and recalling from (3.30) that

lim
u−→∞

1− F n∗(u)

1− F (u)
= n

lim
u−→∞

Ψi,r(u)

1− F (u)
=

1− e−δ(M,i)tλµ

c · āδ(M,i)

t

 ∞∑
n=1

n

e−δ(M,i)tλµ

c · āδ(M,i)

t

n

=

1− e−δ(M,i)tλµ

c · āδ(M,i)

t

 ∞∑
n=1

n∑
m=1

e−δ(M,i)tλµ

c · āδ(M,i)

t

n

=

1− e−δ(M,i)tλµ

c · āδ(M,i)

t

 ∞∑
m=1

∞∑
n=m

e−δ(M,i)tλµ

c · āδ(M,i)

t

n

=
∞∑
m=1

e−δ(M,i)tλµ

c · āδ(M,i)

t

m

this is a sum of infinite series so that from s∞ = a
1−r , we obtain

lim
u−→∞

Ψδ(M,i)(u)

1− F (u)
=

e−δ(M,i)tλµ

c·āδ(M,i)
t

1− e−δ(M,i)tλµ

c·āδ(M,i)
t

=
λµe−δ(M,i)t

c · āδ(M,i)

t
− λµe−δ(M,i)t

t > 0

Recall that θ∗ =
c·āδ(M,i)

t

λµe−δ(M,i)t
− 1 t > 0.

This implies that

lim
u−→∞

Ψi,r(u)

1− F (u)
=

1

θ∗
⇐⇒ lim

u−→∞
Ψδ(M,i)(u) =

F̄ (u)

θ∗

so that

Ψδ(M,i)(u) ∼ F̄ (u)

θ∗
as u −→∞ (4.14)
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Now in the presence of all the financial constraints, we obtain

Ψγ,δ(M,i)(u) = 1−
[
1−Ψδ(M,i)(u)

](1−γ)−1

∼ 1

1− γ
Ψδ(M,i)(u)

=
F̄ (u)

θ∗(1− γ)

Which completes the proof.

4.5 Simulations and Numerical Results

4.5.1 Simulation and Numerical results for claims with Exponen-

tial Distribution

In this section, we test for the accuracy of the formulated model with that of the conventional

Cramér-Lundberg model. The probability of ruin is computed first when the model takes

into account the effects of interest rates and inflation, also in the case when all the economic

factors are taken into account.

The following important assumption is necessary; there is an average of 20 claims per

period i.e. λ = 20, the expected size of claims per period is 600 i.e. µ = 600, the nominal

rate of interest is approximately 13.66%, and the rate of inflation is 5.8% for the said period,

the value of the δ(M, i)|t=1 = 0.0717, the periodic premium inflow is taken to be c = 13, 200

giving the premium loading factor for the classical risk process is assumed to be θ = 0.1.

The premium loading factor for the new model is, therefore, θ∗ = 0.14039. We simulate for

three values of rates of taxation, viz, γ1 = 0.1, γ2 = 0.2, and γ3 = 0.3 in Tables 5.1 and 5.2,

and 5.3, respectively.

We restate the following formulas which are used to arrive at the values presented in the

tables. For classical risk process, the probability of ruin for exponential distribution is given
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by

Ψ(u) =
1

1 + θ
exp

(
− θu

µ(1 + θ)

)
, where θ =

c

λµ
− 1

For our model (which considers inflation and interest rate) given by Equation (4.3), the ruin

probability is given by

Ψδ(M,i)(u) =
1

1 + θ∗
exp

(
− θ∗u

µ(1 + θ∗)

)
, where θ∗ =

c · āδ(M,i)

t

λµe−δ(M,i)t
− 1 t > 0

Finally, ruin probability for our model and in the presence of all financial constraints

(when taxation is also considered) we have

Ψγ,δ(M,i)(u) = 1−
[
1−Ψδ(M,i)(u)

](1−γ)−1

, where γ ∈ [0, 1)

Table 4.1: Approximate ruin probabilities for exponentially distributed claims (γ1 = 0.1)

u Ψ(u) Ψδ(M,i)(u) Ψγ,δ(M,i)(u)

25,000 0.02059 0.00519 0.00577

30,000 0.00965 0.00186 0.00207

Table 4.2: Approximate ruin probabilities for exponentially distributed claims (γ2 = 0.2)

u Ψ(u) Ψδ(M,i)(u) Ψγ,δ(M,i)(u)

25,000 0.02059 0.00519 0.00648

30,000 0.00965 0.00186 0.00232

Table 4.3: Approximate ruin probabilities for exponentially distributed claims (γ3 = 0.3)

u Ψ(u) Ψδ(M,i)(u) Ψγ,δ(M,i)(u)

25,000 0.02059 0.00519 0.00741

30,000 0.00965 0.00186 0.00266
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As indicated in tables 4.1, 4.2, and 4.3, the probability of ruin decreases when the eco-

nomic factors are included in the computation. For instance in table (4.1), an investor with

an initial capital of 25,000 has a probability of ruin of 0.02059. It is clear that when the

interest rates and inflation are included in the model, the probability of ruin decreases to

0.00519. When the taxation rate of 10% are included, the probability of ruin increases to

0.00577, indicating the effects of taxation in the probability of ruin. The trend is evident in

Tables 4.2 and 4.3, except the different taxation rates have varying effects on the computa-

tion of the ruin probabilities. For the same ruin probability of 0.00519, the rates of taxation

of 20% and 30% produces ruin probabilities of 0.00648 and 0.00741 respectively. The data

used here comprises a simulation of values of u from 0 to 30,000 in an interval of 100. Ap-

propriate R codes and commands are used to accomplish this and the following observations

are made. For exponential distribution, all the curves emanate from closely the same point

and then diverges as u gradually increases with exponential decay, then ultimately converge

as initial reserve increases. Graphs of all financial constraints with a taxation rate of 30

percent converges to zero faster as compared to that of the classical ruin model.

Figure 4.1: Exponentially Distributed Claims Curves

36



4.5.2 Numerical results and Simulation for Sub-exponential Claim

Distribution

The following formulas are used in this section to get the exact values of the ruin probabilities

for the sub-exponential distribution claims. For classical risk process, the ruin probability is

given by

Ψ(u) ∼ F̄ (u)

θ
as u −→∞, and θ > 0

For our model, the corresponding ruin probabilities is represented as

Ψδ(M,i)(u) ∼ F̄ (u)

θ∗
as u −→∞, and θ∗ > 0

and

Ψγ,δ(M,i)(u) ∼ F̄ (u)

θ∗(1− γ)
as u −→∞, and θ∗ > 0

The assumptions made in this chapter for the constant remain as they are except some vari-

able change for the computation of expected values of the Pareto and log-normal distribution

since different parameter values are engaged.

The probability density function of a Pareto distribution is given by Equation (1.3), and

its tail is given by Equation (1.4). In this section we assume that α = 2, and b = 600 and

the approximate ruin probabilities follow from the tables below.

Table 4.4: Approximate ruin probabilities for claims with Pareto distribution (γ1 = 0.1)

u Ψ(u) Ψδ(M,i)(u) Ψγ,δ(M,i)(u)

25,000 0.00549 0.00391 0.00352

30,000 0.00384 0.00274 0.00246
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Table 4.5: Approximate ruin probabilities for claims with Pareto distribution (γ2 = 0.2)

u Ψ(u) Ψδ(M,i)(u) Ψγ,δ(M,i)(u)

25,000 0.00549 0.00391 0.00313

30,000 0.00384 0.00274 0.00219

Table 4.6: Approximate ruin probabilities for claims with Pareto distribution (γ3 = 0.3)

u Ψ(u) Ψδ(M,i)(u) Ψγ,δ(M,i)(u)

25,000 0.00549 0.00391 0.00274

30,000 0.00384 0.00274 0.00192

The tail of a log-normal distribution is given by Equation (1.6) and from the initial assump-

tion its parameters include σ =
√

2, and µ = 5.4.

For the Pareto distribution, the approximate ruin probabilities for the classical ruin model

are the same. This probability is less than those obtained when the inflation and interest

rates are included in the model. A slight increase is observed when the model takes into

account all the financial constraints.

Table 4.7: Approximate ruin probabilities for claims with log-normal distribution (γ1 = 0.1)

u Ψ(u) Ψδ(M,i)(u) Ψγ,δ(M,i)(u)

25,000 0.00415 0.00296 0.00329

30,000 0.00259 0.00185 0.00205

The same is observed when dealing with the log-normal distribution. The difference

between the probability of ruin in the classical model and the corresponding ones in the

new model, specifically, when all the economic factors are taken into account is significantly

smaller as evident in the tables. The difference is also very explicit when the comparison is

further done to our model when only interest rates and inflation are taken into account.
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Table 4.8: Approximate ruin probabilities for claims with log-normal distribution (γ2 = 0.2)

u Ψ(u) Ψδ(M,i)(u) Ψγ,δ(M,i)(u)

25,000 0.00415 0.00296 0.00370

30,000 0.00259 0.00185 0.00231

For the case of exponentially distributed claims, there is a positive difference between the

probability of ruin in our model when other factors than taxation are taken into considera-

tion. It is exactly opposite when we look at the cases of sub-exponential distributions. This

implies that in such a case, the probability of ruin in the presence of all financial constraints

is slightly higher as observed in Tables 4.7 and 4.8.

Table 4.9: Approximate ruin probabilities for claims with log-normal distribution (γ3 = 0.3)

u Ψ(u) Ψδ(M,i)(u) Ψγ,δ(M,i)(u)

25,000 0.00415 0.00296 0.00423

30,000 0.00259 0.00185 0.00264

These results are consistent with those obtained from simulation and numerical analysis

from (Wei, 2009), especially for the sub-exponential distributions.

Finally we compare the thickness of the tails of Pareto and log-normal distributions. We

calculate the relative values of the densities of both Pareto and Log-normal densities at the

greatest end of the upper tail. Using the concept of the limiting density ratio, comparison

between the two heavy tailed distributions, the presence of an exponential factor in the log-

normal distribution results in a zero limiting density ratio, cementing the fact that the lighter-

tail exhibited by a log-normal density in comparison with that of Pareto as represented in

Figure (4.4). However with limited data, the tails of the Pareto and Log-normal distributions

are indistinguishable as seen in the Figure, and this is due to the fact that both have regularly

varying tails. The log-normal density goes to zero (decays at infinity) faster than Pareto
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Figure 4.2: Ruin probabilities for Pareto Distributions

density even in the presence of all the three financial constraints. Such results are consistent

with those from classical risk process as outlined in (Teugels, 1982) since log-normal density

exhibit an exponential factor, resulting in a lighter tails.
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Figure 4.3: Ruin Probabilities for log-normal distributions

Figure 4.4: Comparison between Log-normal and Pareto Convergence
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Chapter 5

Conclusions and Recommendations

This chapter covers the following; summary of findings, conclusions which are drawn, recom-

mendations, and areas of further research. The conclusions made are based on simulations

and numerical analysis, discussions, and results from the previous chapter.

5.1 Summary of the reseach findings

Based on the results of the simulation and numerical analysis, the model developed gives bet-

ter approximations to the ruin probabilities. Claims with Pareto distribution in the present

model give smaller approximate ruin probabilities as compared to those of the classical risk

process. Further, it is observed that approximate ruin probabilities in the present model

decrease as taxation increases. For the exponentially distributed claims, the approximate

ruin probabilities for the classical risk process are greater than those obtained when our

model is applied. Further, an increase in taxation rates results in increased ruin probabili-

ties for a given initial reserve. The same trend is exhibited by the claims with a log-normal

distribution. This is due to the presence of an exponential factor in the log-normal density.

5.2 Conclusions

In conclusion, the model developed in this thesis gives a better approximation to the ruin

probabilities in comparison to those of classical ruin model both graphically by simulation
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and analytically by the exact formula. This is observed right away when financial factors

such as inflation and interest are included in the classical risk model to come up with our

ruin model. The results show greater improvements upon the inclusion of taxation so that

the model takes into account all three financial factors (inflation rate, taxation, and constant

rate of interest). Such results are supported further from numerical result and simulations

of the values of initial reserves for the sub-exponential distribution, these results are very

much consistent with the numerical analysis from (Wei, 2009), who came up with a model

to approximate ruin probabilities in the presence of only interest rate and taxation. If log-

normal and Pareto distributions are compared in terms of limiting density ratios (a way for

measuring tail weight), the presence of exponential factor in log-normal density results in a

limiting density of zero confirming that it exhibit a lighter tail and thus converges at a faster

rate, thus this make it normally a good model for most non-life insurance.

5.3 Recommendations

Our model gives better and reliable approximate ruin probabilities in comparison to the

classical ruin model, thus the study recommends that the insurance industry approximate

their ruin probabilities with the model developed in the present research since it takes into

consideration the three important economic factors which includes rate of taxation and real

rate of interest. The present research was based on deterministic and particularly constant

rates of inflation and interest. Similar research can be done when stochastic rates of interest

and inflation are taken into consideration. Also claim count processes can be modelled with

other processes such as non-homogeneous Poisson process, Cox process, pure renewal process,

normal distribution, or any other suitable process in the presence of all the three economic

factors discussed in the present research.
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Appendix a

Appendix

I Some Selected Proofs

a1: If Xk ∼ Exp
(

1
µ

)
, then

Ψ(u) =
1

(1 + θ)
exp

(
− θu

µ(1 + θ)

)
(a.1)

Proof. Consider the following equation

Φ(u)′ =
λ

c
Φ(u)− λ

c

∫ u

0

Φ(u− x)dF (x)

u− x = v =⇒ dx = −dv

Φ(u)′ =
λ

c
Φ(u)− λ

µc

∫ u

0

Φ(x)e−
(u−x)
µ dx

Φ(u)′ =
λ

c
Φ(u)− λ

µc
e
−u
µ

∫ u

0

Φ(x)e
x
µdx

Φ(u)′′ =
λ

c
Φ(u)′ +

1

µ

(
λ

c
Φ(u)− Φ(u)′

)
− λ

cµ
Φ(u)

Φ(u)′′ =

(
λ

c
− 1

µ

)
Φ(u)′ = − θ

µ(1 + θ)
Φ(u)′

Φ(u)′′ = − θu

µ(1 + θ)
Φ(u)′ =⇒ Φ(u)′′

Φ(u)′
= − θu

µ(1 + θ)
= ln (Φ(u)′)

′

ln Φ(u)′ =
−θu

µ(1 + θ)
+ A1

i



Φ(u)′ = A2 exp

(
−θu

µ(1 + θ)

)
=⇒ Φ(u) = A3 exp

(
−θu

µ(1 + θ)

)
+ A4

From

Φ(∞) = 1 =⇒ A4 = 1, and Φ(0) = 1− 1

(1 + θ)
=⇒ A3 = − 1

(1 + θ)

Hence

Φ(u) = 1− 1

1 + θ
exp

(
−θu

µ(1 + θ)

)
Therefore,

Ψ(u) =
1

1 + θ
exp

(
−θu

µ(1 + θ)

)

a2: Let T1 be the time of the first claim X(T1) = cT1−X1.

At time T1, the risk process starts like again, with only

difference that the initial capital is cT1 − X1. Condi-

tioning upon T1 and X1 whose d.f’s are FT1(t) and F (x)

respectively

Φ(u) = E [Φ(u)|T1, X1] =

∫ ∞
0

∫ ∞
0

Φ(u+ct−x)FT1(t)dF (x) (a.2)

Taking into account that ruin cannot occur in (0, T1), and

also taking the distribution of T1 to be exponential and

replacing dFT1(t) = λe−λtdt and since large claims of size

x ≥ u + ct implies ruin, we have

Φ(u) =

∫ ∞
0

λe−λt
∫ u+ct

0

Φ(u + ct− x)dF (x)dt (a.3)
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Proof. Let y = u+ ct =⇒ dt = dy/c

Φ(u) =
λ

c
eλu/c

∫ ∞
u

λe−λy/c
∫ y

0

Φ(y − x)dF (x)dy

Using product rule of differentiation and
[∫ u

0
f(y)dy

]′
= f(y) we have

Φ(u)′ =
λ

c

λ

c
eλu/c

∫ ∞
u

λe−λy/c
∫ y

0

Φ(y − x)dF (x)dy︸ ︷︷ ︸
Φ(u)

−λ
c
eλu/ce−λu/c

∫ u

0

Φ(u− x)dF (x)

Φ(u)′ =
λ

c
Φ(u)− λ

c

∫ u

0

Φ(u− x)dF (x)

From

dF (x) = −d(1− F (x)) and integration by parts

Φ(u)′ =
λ

c
Φ(u) +

λ

c

∫ u

0

Φ(u− x)d(1− F (x))

Φ(u)′ =
λ

c
Φ(u) +

λ

c
[Φ(0)(1− F (u))− Φ(u)] +

λ

c

∫ u

0

Φ(u− x)′d(1− F (x))dx

Φ(u)′ =
λ

c
Φ(0)(1− F (u)) +

λ

c

∫ u

0

Φ(u− x)′d(1− F (x))dx

Integrating over (0, t) yield.

Φ(t)− Φ(0) =
λ

c
Φ(0)

∫ t

0

(1− F (u)) +
λ

c

∫ t

0

∫ u

0

Φ(u− x)′d(1− F (x))dxdt

Changing the order of integration in the double integral, we have

Φ(u)− Φ(0) =
λ

c
Φ(0)

∫ t

0

(1− F (u)) +
λ

c

∫ t

x=0

(1− F (x))

∫ t

u=x

Φ(u− x)′dudx

Φ(t)− Φ(0) =
λ

c
Φ(0)

∫ t

0

(1− F (u)) +
λ

c

∫ t

x=0

(1− F (x)) [Φ(t− x)− Φ(0)] dx

Φ(t)− Φ(0) =
λ

c

∫ t

0

(1− F (x))Φ(t− x)dx

hence,

Φ(u) = Φ(0) +
λ

c

∫ u

0

(1− F (x))Φ(u− x)dx
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a3 Suppose that r > 0 is a solution to Equation (3.15).

Then the probability of ruin satisfies

Ψ(u) ≤ e−ru, u ≥ 0 (a.4)

The proof of this is sketched by induction as follows;

Proof. Ruin occurs before the nth claim for n = 0, 1, 2, ..., with a probabiliy of Φn(u). Obvi-

ously Φ0(u) = 0 = e−ru. We assume that Φn(u) ≤ e−ru, we show that Φn+1(u) ≤ e−ru.

The inter-claim arrival time is exponentially distributed with density function λe−λt. If the

claim occurs at time t > 0, the surplus available at that time is u + ct, and ruin can only

occur if the claim exceed this surplus with probability 1− F (u+ ct). If x ∈ [0, u+ ct] is the

amount of claim in the event ruin does not occur upon the first claim, a srplus of u+ ct− x

remains after the first claim. Thus,

Φn+1(u) =

∫ ∞
0

[
1− F (u+ ct) +

∫ u+ct

0

Φn(u+ ct− x)dF (x)

]
λe−λt

Φn+1(u) =

∫ ∞
0

[∫ ∞
u+ct

F (x) +

∫ u+ct

0

Φn(u+ ct− x)dF (x)

]
λe−λt

Φn+1(u) ≤
∫ ∞

0

[∫ ∞
u+ct

er(u+ct−x)dF (x) +

∫ u+ct

0

e−r(u+ct−x)dF (x)

]
λe−λt

Combining the two integrals, we obtain

Φn+1(u) ≤
∫ ∞

0

[∫ ∞
0

er(u+ct−x)dF (x)

]
λe−λt = λe−λr

∫ ∞
0

∫ ∞
0

e−r(ct)
[
e−rxdF (x)

]
e−λtdt

Φn+1(u) = λe−λr
∫ ∞

0

e−r(λ+rc)t [MX(r)] dx = λe−λrMX(r)

∫ ∞
0

e−r(λ+rc)tdt =
λMX(r)

λ+ rc
e−ru

From Equations (3.15) and (3.4) we obtain,

λMX(r) = λ [1 + (1 + θ)rµ] = λ+ r(1 + θ)λµ = λ+ rc

so that Ψn+1(u) ≤ e−ru. Hence, Φn(u) ≤ e−ru for all n and finally

lim
t−→∞

Ψn(u) ≤ e−ru (a.5)
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II Codes Used

Codes for Exponentially Distributed Claims

> u=seq(0,3000000,100)# A sequence of numbers (initial capital + premiun inflow)

between 0 and 30,000 with an interval of 100

> nrp=function(u,theta,mu){

+ result=1/(1+theta)*exp(-(theta*u)/(mu*(1+theta)))

+ print(result)}

> y=nrp(u,0.1,600)# ruin probabilities for classical risk process

> y1=nrp(u,0.14039,600)# ruin probabilities for a risk process when

force of inflation is taken into account

> y2=1-(1-y1)^(1/0.9) # ruin probabilities for all financial constraints

with tax rate of 10%

> y3=1-(1-y1)^(1/0.8)# ruin probabilities for all financial constraints

with tax rate of 20%

> y4=1-(1-y1)^(1/0.7)# ruin probabilities for all financial constraints

with tax rate of 30%

>matplot(u,cbind(y,y1,y2,y3,y4),xlab="u",ylab="Approximate Ruin Probabilities",

main="Exponentially Distributed Ruin Curves",type="l",col=c(1,2,3,4,5),

lty=c(1,2,3,4,5))

>legend(x="topright",legend=c("Classical","Infinterst","AllFintax10%",
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"AllFintax20%","AllFintax30%"),col=c(1,2,3,4,5),lty=c(1,2,3,4,5))

b2: Claims with Pareto Distribution

> u=seq(0,3000,100)

> tpareto=function(u,alpha,b){

+ tail=(b/(b+u))^alpha

+ print(tail)}

> tpar=tpareto(u,2,600)

> y=tpar/0.1

> y1=tpar/0.14039

> y2=tpar/(.9*0.14039)

> y3=tpar/(.8*0.14039)

> y4=tpar/(.7*0.14039)

>matplot(u,cbind(y,y1,y2,y3,y4),xlab="u",ylab="Approximate ruin probabilities",

main="Pareto curves Combined",

type="l",col=c(1,2,3,4,5))

>legend(x="topright",legend=c("Classical","Infinterst","AllFintax10%",

"AllFintax20%","AllFintax30%"),col=c(1,2,3,4,5),lty=c(1,2,3,4,5))

b3: Codes Claims with Log-normal Distribution

>seq(0,3000,100)

> tlndist=1-plnorm(u,5.4,sqrt(2))

> y=tlndist/0.1
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> y1=tlndist/0.14039

> y2=tlndist/(.9*0.14039)

> y3=tlndist/(.8*0.14039)

> y4=tlndist/(.7*0.14039)

>matplot(u,cbind(y,y1,y2,y3,y4),xlab="u",ylab="Approximate ruin probabilities",

main="Log-normal curves combined",

type="l",col=c(1,2,3,4,5))

>legend(x="topright",legend=c("Classical","Infinterst","AllFintax10%",

"AllFintax20%","AllFintax30%"),col=c(1,2,3,4,5),lty=c(1,2,3,4,5))

b4: Codes for Comparison of Tails of Pareto and Log-

normal distributions

>x=1:1000

X1=dlnorm(x,5.4,sqrt(2))

> pdfparto=function(x,alpha,b){

+ result=(alpha*(b^alpha))/((b+x)^(alpha+1))

+ print(result)}

> X2=pdfparto(x,2,600)

>R=X1/X2

> matplot(cbind(X1,X2),R,xlab="Pareto and Log-normal densities",

ylab="Limiting Density Ratio (R)",main="Comparison between thickness of Tails")

>legend(x="topright",legend=c("Log-normal","Pareto"),col=c(4,5),lty=c(1,1))
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