
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/364388599

A comparison of the Laplace and the alternative multipole expansion series for

the Coulomb potential

Preprint · October 2022

DOI: 10.13140/RG.2.2.28580.14729

CITATIONS

0
READS

66

2 authors:

Some of the authors of this publication are also working on these related projects:

Electron/Positron Impact Scattering View project

Electron Correlation View project

Eric Ouma Jobunga

Technical University of Mombasa

30 PUBLICATIONS   28 CITATIONS   

SEE PROFILE

Otulo Wandera Cyril

Technical University of Mombasa

6 PUBLICATIONS   0 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Eric Ouma Jobunga on 26 January 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/364388599_A_comparison_of_the_Laplace_and_the_alternative_multipole_expansion_series_for_the_Coulomb_potential?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/364388599_A_comparison_of_the_Laplace_and_the_alternative_multipole_expansion_series_for_the_Coulomb_potential?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Electron-Positron-Impact-Scattering?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Electron-Correlation?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eric-Jobunga?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eric-Jobunga?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technical_University_of_Mombasa?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eric-Jobunga?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Otulo-Cyril?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Otulo-Cyril?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technical_University_of_Mombasa?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Otulo-Cyril?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eric-Jobunga?enrichId=rgreq-6bf4d9b6030393c61b38487333aac9fc-XXX&enrichSource=Y292ZXJQYWdlOzM2NDM4ODU5OTtBUzoxMTQzMTI4MTExNDg3NjgwMkAxNjc0NzEyOTE3MTEy&el=1_x_10&_esc=publicationCoverPdf


A comparison of the Laplace and the alternative multipole expansion

series for the Coulomb potential
E. O. Jobunga,1 C. O. Wandera,1 and O. S. Okeyo2
1)Department of Mathematics and Physics , Technical University of Mombasa,
P. O. Box 90420-80100, Mombasa, Kenya
2)Department of Physics and Materials Science, Maseno University, Private Bag-40105, Maseno,
Kenya

(*Electronic mail: ejobunga@tum.ac.ke)

(Dated: 18 January 2023)

Multipole expansion is a powerful technique used in many-body physics to solve dynamical problems involving cor-
related interactions between constituent particles. The Laplace multipole expansion series of the Coulomb potential is
well established in literature. We compare it with our recently developed perturbative and analytical alternative multi-
pole expansion series of the Coulomb potential. In our working, we confirm that both expansion series are complete
but quite different in the basis functions used. The analytical expansion, being the infinite limit of the perturbative
expansion, is confirmed to be equivalent to the Laplace multipole expansion of the Coulomb potential. In terms of
performance, the perturbative alternative multipole expansion series yields the lower bound while the Laplace and the
analytical alternative multipole expansion series yield an upper bound of the expected results. The results show that
only a finite number of terms in the series expansion of the basis functions for the perturbative alternative multipole
expansion series are necessary for converged and accurate results. Our findings are likely to be useful in the perturbative
treatment of the Coulomb potential in electronic structure calculations as well as in celestial mechanics.

I. INTRODUCTION

The Laplace multipole expansion series is established in the
works of Laplace and Legendre in their search for solutions to
the problem of attractions. The historical developments that
led to the establishment of the expansion series and the in-
troduction of the Legendre polynomials, for the first time, as
the coefficients used in the Laplace expansion are captured in
Laden’s thesis1. The Laplace multipole expansion has become
conventional knowledge in physics textbooks2 and it is quite
useful in solving the many-body physics problems in celestial
mechanics, quantum physics and chemistry, nuclear physics,
and condensed matter physics.

Naturally, the multipole expansion becomes convenient to
use in solving physical problems in 3D if expressed in the
spherical polar coordinates. This decomposes the problem as
a product of both radial and angular parts. The radial part can
be treated as a 1D case while the well defined angular algebra3

can be used to simplify the angular parts. Several studies have
employed multipole expansion techniques in the recent past in
solving physical problems of interest4–9.

In our alternative multipole expansion of the Coulomb
potential10,11, we stated that the Laplace multipole expansion
series of the Coulomb repulsion term is incomplete, and there-
fore inaccurate. This statement was met with considerable
criticism12. Because of the controversy, we feel obligated and
motivated to give a comprehensive treatment to the problem
with regards to the completeness of the Laplace multipole ex-
pansion series. We also compare the equivalence and the per-
formance of the Laplace expansion method relative to our per-
turbative and analytical alternative multipole expansion meth-
ods. We have seen in literature that such a comparison, not
exactly similar to the current study, is reported in ref.13,14.
Comparison of different methods allows characterization of
relative accuracy and capabilities, which is quite instrumental

in guiding application13.
In this study, we show that the Coulomb potential

1
| r⃗i − r⃗ j |

=
1

r>

∞

∑
s=0

fs(x) t̃s (1)

is presented as the Laplace multipole expansion series, where
t̃ = r</r>, r> = max{ri,r j}, r< = min{ri,r j}, x = cosθ ,
with θ being the relative angle between the position vectors
r⃗i and r⃗ j, s are integers, and fs(x) are the sth order Laplace
coefficients of t̃s, also known as the Legendre polynomials.

In the alternative approach, the multipole expansion of the
Coulomb potential

1
| r⃗i − r⃗ j |

=
1

r>

∞

∑
l=0

hl(t̃)Pl(x) (2)

is expressed in the basis of Legendre polynomials,Pl(x),
where

hl(t̃) =
(2l +1)√

1+ t̃2
j̃l(t̃), (3)

with j̃l(t̃) as spherical Bessel-like functions which can be ex-
panded in the perturbative polynomial form as10,11

j0(t̃) = 1+∑
∞
k=1

(4k−1)!!
(2k)!!(2k+1)!!

(
t̃

1+t̃2

)2k
(4)

jl>0(t̃) = ∑
∞
k=0

(2l+4k−1)!!
(2k)!!(2l+2k+1)!!

(
t̃

1+t̃2

)l+2k
(5)

or analytically as a differential equation11

j̃l(t)= (−1)l t l

(2l +1)!!

[
1
t

d
dt

]l { 1
2t

[
(1+2t)l+ 1

2 − (1−2t)l+ 1
2

]}
,

(6)
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with

t =
ri r j

r2
i + r2

j
=

t̃
1+ t̃2 (7)

defined in terms of t̃ this case.
The coefficients of the Legendre polynomials in Eq. (2)

can be shown to simplify to the conventional Laplace form,
fl(t)≈ t̃ l , using the lowest order approximation10.

Our ultimate goal in this work is to highlight and emphasize
the differences between the two exact forms of expansion of
the Coulomb potential given by Eqs. (1) and (2), with the lat-
ter evaluated in both perturbative and exact expansions given
by Eqs. (4) - (6) respectively. It is important to note that the
form given by Eq. (1) is considered as the generating function
for the Legendre polynomials2,15.

II. THEORY

The Coulomb repulsion potential term can be expressed as

1
| r⃗i − r⃗ j |

=
1

r>

(
1−2xt̃ + t̃2)− 1

2 (8)

with a further expansion of the function(
1−2xt̃ + t̃2)− 1

2 =
∞

∑
k=0

(
n
k

)
(t̃2 −2xt̃)k

=
∞

∑
k=0

k

∑
λ=0

(
n
k

)(
k
λ

)
(−2x)λ t̃2k−λ

(9)

using the Binomial expansion series with n =−1/2, while k
and λ being integers. Using the change of integer variable,
s = 2k−λ , and some reorganization, Eq. (8) can further be
expressed as

1
| r⃗i − r⃗ j |

=
1

r>

∞

∑
k=0

2k

∑
s=k

(
n
k

)(
k

2k− s

)
(−2x)2k−s t̃s

=
1

r>

∞

∑
s=0

fs(x) t̃s

(10)

where

fs(x) =
s

∑
k≥ s

2

(
n
k

)(
k

2k− s

)
(−2x)2k−s (11)

is the desired Laplace coefficient. Since the Binomial coeffi-
cients are (

n
k

)
=

(2k−1)!!
(−2)kk!

; (12)(
k

2k− s

)
=

k!
(s− k)!(2k− s)!

, (13)

where n =− 1
2 , the Laplace coefficients can, explicitly, be ex-

pressed as

fs(x) =
s

∑
k≥ s

2

(−2)k−s (2k−1)!!
(s− k)!(2k− s)!

x2k−s. (14)

In Eq. (3) of ref.10, we have shown that,

x2k−s =
2k−s

∑
l=0or1

a2k−s
l Pl(x), (15)

can be expanded in terms of even or odd orders of the Legen-
dre polynomials in ascending order for even and odd values of
2k− s respectively, where the coefficient

a2k−s
l =

(2l +1)× (2k− s)!
(2k− s− l)!!(2k− s+ l +1)!!

(16)

as per Eq. (20) of the same reference10. Substituting Eq. (15)
into Eq. (11), we obtain the Laplace coefficient

fs(x) =
s

∑
k≥ s

2

2k−s

∑
l=0or1

(
n
k

)(
k

2k− s

)
(−2)2k−s a2k−s

l Pl(x) (17)

expanded in terms of the Legendre polynonials. Eq. (17) can
equivalently be expressed in terms of the Legendre basis func-
tions as

fs(x) =
s

∑
l=0or1

cs
l Pl(x) (18)

where the the sum runs over even or odd values of l respec-
tively and the coefficients

cs
l =

s

∑
k= (l+s)

2

[(
n
k

)(
k

2k− s

)
(−2)2k−s a2k−s

l

]
(19)

are a series summed over k values. The coefficients for the
Legendre polynomials in Eq. (15) therefore simplify to

cs
l =

s

∑
k= (l+s)

2

[
(−1)k−s (2l +1)2k−s (2k−1)!!

(s− k)!(2k− s− l)!!(2k− s+ l +1)!!

]
(20)

when the constants in Eqs. (12), (13), and (15) are explicitly
replaced.

III. RESULTS

We have expanded the Coulomb potential in the form of Eq.
(1) in our investigation of the completeness of the Laplace
multipole series. We obtain the Laplace coefficients explic-
itly in terms of the polynomials of order s and in terms of the
Legendre polynomials as given by Eqs. (14) and (18) respec-
tively. Using Eq. (14), the first six Laplace coefficients can be
expressed in terms of x as

f0(x) =1
f1(x) =x

f2(x) =
1
2
[3x2 −1]

f3(x) =
1
2
[5x3 −3x]

f4(x) =
1
8
[35x4 −30x2 +3]

f5(x) =
1
8
[63x5 −35x3 +15x].

(21)
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By inspection, these Laplace coefficients converge to the Leg-
endre polynomials, Pl(x), showing that Eqs. (1) and (2) are
equivalent. It can also be confirmed that the series given by
Eq. (20) converge to unity, that is,

cs
l =

{
1 if l = s
0 if l ̸= s . (22)

The equivalence of the Laplace coefficients and the Legen-
dre polynomials has a further implication that

t̃ l !
=

(2l +1)√
1+ t̃2

kmax→∞

∑
k=0

(2l +4k−1)!!
(2k)!!(2l +2k+1)!!

(
t̃

1+ t̃2

)l+2k

(23)
if the multipole expansion series are to converge locally for
every order of the Legendre polynomials. In Eq. (23), we
have defined (−1)!! = 1. In Fig. 1, we plot the convergence
of the first two orders of the Laplace functions, t̃ l , relative to
the alternative multipole expansion functions, hl(t̃), as given
by Eqs. (4) and (5). The domain 0 ≤ t̃ ≤ 1 has been chosen to
coincide with the regime of convergence of the Laplace mul-
tipole expansion series. The convergence tests should confirm
the validity of Eq. (23). If valid, the results would imply
that the Laplace basis functions are equivalent to the alter-
native multipole expansion basis functions. Since hl(t̃) is an
infinite series function, it can be seen that only three terms
(with kmax = 2) of the summation series already yield reason-
able convergence. In subsequent figures, we use hkmax=2

l (t̃) as
our converged perturbative results.

In Fig. 2a, we compare the converged perturbative results
with the corresponding analytical, hl(t̃) = hkmax→∞

l , functions
as given by Eq. (6) and the Laplace basis functions for the first
six orders of l. Except at lower values of t̃, the corresponding
perturbative basis functions diverge from each other in all the
cases considered. The analytical basis functions, on the other
hand, show excellent agreement with the Laplace basis func-
tions. In Fig. 2b, we show the relative deviation between the
analytical and the Laplace basis functions. The relative de-
viation are calculated as the absolute difference between the
analytical hl(t̃) and the Laplace fl(t̃) = t̃ l functions divided by
the Laplace functions. The observed relative deviations can be
attributed to numerical noise as well as the divergences due to
singularities in the analytical function as t̃ → 0.

The convergence of the corresponding analytical and
Laplace basis functions imply that the Laplace multipole ex-
pansion method is exactly equivalent to the present alternative
multipole expansion method. The analytical functions given
by Eqs. (3) and (6) can be considered as the infinite limit
of the perturbative expansions given by Eqs.(4) and (5). The
equivalence of Eq. (23) implies that:

∑
kmax→∞

k=0
(2l+4k−1)!!

(2k)!!(2l+2k+1)!!

(
t̃

1+t̃2

)2k
= (1+t̃2)l+ 1

2

2l+1 , (24)

(2l+1)√
1+t̃2

j̃l(t̃) = t̃ l , (25)

j̃l(t̃) =
( 2l−1

2l+1

)
t̃ j̃l−1(t̃). (26)

The use of the recurrence relation given by Eq. (26) can be
useful in eliminating singularities associated with the analyt-
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FIG. 1. (Color online) Comparison of the functions (a) f0(t̃) = 1 and
h0(t̃) = f kmax

0 (t̃) and (b) f1(t̃) = t̃ and h1(t̃) = f kmax
1 (t̃) , summed up

to the maximum value (kmax), plotted using left and right hand side
of Eq. (23) respectively. The black solid line corresponds to the
Laplace basis functions, t̃ l .

ical expression of the spherical Bessel-like functions, j̃l(t̃),11

as t̃ → 0.

Because of the divergence with the perturbative functions,
it became of importance to test the performance of the expan-
sions in repreducing the function given by Eq. (9) for various
values of t̃ across the angular spectrum, with the maximum
value of l = 5 used in all the series. The performance results
are summarized in Fig. 3 for all values of x = cosθ . As ex-
pected, at lower values of t̃, there is a good agreement between
all set of results, although the descrepancy with the perturba-
tive results is still visible between the approximation methods
used. At large values, t̃ > 0.5, the perturbative results of the
alternative multipole expansion series are significantly better
in comparison with the Laplace series and the analytical func-
tions, which overestimates the expected actual results. The
discrepancy with the expected results show that not all terms
in the infinite series expansion of the basis functions are nec-
essary to accurately approximate the desired function. From
the results presented, it can be observed that the perturbative
alternative multipole expansion series sets the lower bound
while the Laplace and the analytical alternative multipole ex-
pansion series sets an upper bound to the expected results.
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FIG. 2. (Color online) (a) Comparison of the six functions of
fl(t̃) = t l , hl(t̃) = f̃ kmax

l (t̃) with the value kmax = 2, and the analytical
hl(t̃) = f̃l(t̃), plotted using left and right hand side of Eq. (23) re-
spectively. The solid and the dash-dot lines represent the perturbative
and the analytical hl(t̃) functions, as given by Eqs. (3) - (6), while
the dashed lines represent the Laplace basis functions, fl(t̃) = t̃ l , re-
spectively. (b) The relative deviation given as the absolute difference
between the analytical hl(t̃) and the Laplace fl(t̃) = t̃ l functions di-
vided by the Laplace functions.

IV. CONCLUSION

The completeness as well as the performance of the Laplace
multipole expansion of the Coulomb potential, in comparison
with our recently developed alternative multipole expansion
series, is investigated in this study. We have confirmed that
the Laplace expansion series are in deed complete as opposed
to our claim in ref.10,11. However, because of the difference in
the basis functions used, the expansions yield complementary
set of results with the Laplace and the analytical alternative
multipole expansion series being an upper bound while the
perturbative alternative multipole expansion being the lower
bound of the expected results. In general, it can be seen that
the alternative multipole expansion series is convergent in all
the regimes, that is 0 < t̃ < ∞, as opposed to the Laplace ex-
pansion series which is only valid for 0 < t̃ < 1. Accurate
results can be obtained using only a finite number of terms
in the perturbative treatment of the spherical Bessel-like func-
tions used in the alternative multipole expansion series of the
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FIG. 3. (Color online) Comparison of the convergence of the dif-
ferent multipole expansion series to the expected actual value of the
function g(x, t̃) = (1−2xt̃ + t̃2)−

1
2 given by Eq. (9) for various val-

ues of t̃: (a) t̃ = 0.00, (b) t̃ = 0.125, (c) t̃ = 0.25, (d) t̃ = 0.50, (e)
t̃ = 0.75, and (f) t̃ = 1.00, and for all values of x = cosθ . The se-
ries is summed up to lmax = 5 for all the expansions. The black
solid curve is the actual curve, the red dashed line correspond to the
Laplace multipole expansion series approximation, the blue dotted
line correspond to our alternative multipole expansion series approx-
imation with up to second-order perturbatively evaluated functions,
and the orange dash-dot line corresponding to the analytical alterna-
tive multipole expansion method.

Coulomb potential.
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