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ABSTRACT
We considered the anti-Jaynes-Cummings (AJC) interaction of a two-level atom in
an initial ground state interacting with a field mode in an initial squeezed coherent
state at arbitrary values of squeeze parameter r and provided the Jaynes-Cummings
(JC) interaction as a comparison. We analysed the degree of entanglement (DEM)
measured by the von Neumann entropy and the nature of the field quantified by
the Mandel Q parameter in relation to the atomic population inversion during the
AJC interaction and separately the corresponding JC interaction. We noted in our
examples that at r > 1.4, photon statistics evolved to super-Poissonian from sub-
Poissonian during the respective AJC, JC interactions. Further, for high values of
r, the form of the time evolution of atomic population inversion depicted enhanced
ringing revivals at the collapse region in comparison to the case of an initial coherent
state. What is more, at higher values of r the time evolution of DEM showed more
rapid oscillations and recorded higher values, concurrently, an increase in the degree
of mixedness.

KEYWORDS
Jaynes-Cummings; anti-Jaynes-Cummings; degree of entanglement; squeezed
coherent states; Mandel parameter; anti-bunching; von Neumann entropy

1. Introduction

Interaction of an initial single mode of squeezed coherent light [1–4] and a two-level
atom in the JC interaction has received much attention leading to advanced studies
of the interaction properties [5–8].

In this present study we present a comparison, of presently, the AJC model [9] and
the well known JC model [10] with respect to time evolution of DEM as measured by
the von Neumann entropy and photon statistics quantified by the Mandel Q parameter
during time evolution of atomic population inversion while varying the r parameter at
resonance and at constant corresponding AJC, JC field intensities. We relate variation
in r to the form of time evolution of atomic population inversion, DEM and photon
statistics during the respective AJC, JC interactions.

This work is organised as follows; Sec. 2 introduces the AJC, JC theoretical models
and their time evolutions; in Sec. 3 comparison of the nature of photon statistics

Christopher Mayero. Email: cmayero@tmu.ac.ke

ar
X

iv
:2

21
1.

13
14

9v
1 

 [
qu

an
t-

ph
] 

 2
3 

N
ov

 2
02

2



during the respective AJC, JC interactions is proffered; Sec. 4 discusses time evolution
of DEM and atomic population inversion during the AJC process in relation to the
corresponding JC process; and finally, Sec. 5 provides the conclusion.

2. The models and their time evolution

The quantum Rabi model [9] can be reorganised into a two-component (rotating and
counter(anti)-rotating) form

ĤRabi =
1

2

(
Ĥ + Ĥ

)
(1a)

where the rotating part Ĥ is the normal order component, known as the JC Hamilto-
nian

Ĥ = ~
[
ωN̂ + δŝz + 2λ(âŝ+ + â†ŝ−)− 1

2
ω
]

; N̂ = â†â+ ŝ+ŝ− ; δ = ω0 − ω

(1b)

defining the coupling of a two-level system to the positive frequency field mode com-
ponent. The standard conserved excitation number operator N̂ in Eq. (1b), commutes

with the Hamiltonian Ĥ, i.e, [N̂ , Ĥ] = 0. The counter(anti)-rotating part Ĥ is the
anti-normal order component known as the AJC Hamiltonian

Ĥ = ~
[
ωN̂ + δŝz + 2λ(âŝ− + â†ŝ+)− 1

2
ω

]
; N̂ = ââ† + ŝ−ŝ+ ; δ = ω0 + ω

(1c)

that defines the coupling of a two-level system to the negative frequency field mode

component [11]. The conserved excitation number operator N̂ of the AJC interaction in

Eq. (1c), commutes with the Hamiltonian Ĥ, i.e, [N̂ , Ĥ] = 0. Here, ŝz, ŝ+, ŝ− are the
atomic operators, â†, â are the field operators, ~ the reduced Planks constant, ω0 the
atomic state transition frequency and ω the quantised field mode angular frequency.

In this work we are going to consider when a two-level atom is in an initial atomic
ground state |g〉 during a resonant AJC , JC interaction. To provide the desired com-
parison we define the sum frequency δ = ω0 + ω in the AJC interaction in terms of
frequency detuning δ = ω0 − ω in the JC interaction according to

δ = δ + 2ω (1d)

and so a resonant condition during the AJC interaction δ = 2ω, corresponds to δ = 0
during the JC interaction.

Now, considering |ψa〉t=0 as the generalised initial atomic state prepared in a super-
position of excited |e〉 and ground state |g〉 prior to the JC, AJC interaction mechanism
in the form

|ψa〉t=0 =
√
A |e〉+

√
B |g〉 (2)
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where the atom is in an excited state |e〉 with probability A and ground state |g〉
with a probability B=1-A, and | ∝, ς〉t=0 the state of the field initially prepared in a
squeezed coherent state defined as [1] (where ∝≡ α, α and Cn ≡ Sn, Sn)

| ∝, ς〉t=0 = Cn|n〉 ;

Cn =
1√

cosh(r)
exp

[
−1

2
| ∝ |2 − 1

2
∝∗2 eiθ tanh(r)

]

×
∞∑
n=0

[
1
2e
iθ tanh(r)

]n

2

√
n!

×Hn

[(
∝ cosh(r)+ ∝∗ eiθ sinh(r)

)(
eiθ sinh(2r)

)− 1

2

]
(3)

we easily define at B=1,A=0 the JC and the AJC initial atom-field qubit state
vectors |ψgn〉JC , |ψgn〉AJC obtained as direct product of atom, field quantum systems
[12] according to

|ψgn〉AJC(JC) = |ψg〉 ⊗ | ∝, ς〉 , (4a)

to obtain

|ψgn〉JC =

∞∑
n=0

Sn |g, n〉 ; |ψgn〉AJC =

∞∑
n=0

Sn |g, n〉 ;

〈â†â〉t=0 = |α|2 + sinh2(r) ; 〈ââ†〉t=0 = 〈1 + â†â〉t=0 = |α|2 + sinh2(r) .

(4b)

The probability of finding n photons in the field is given by [1]

Pn = Pn = |〈n| ∝, ς〉|2

=

[
1
2 tanh(r)

]n
n! cosh(r)

exp

[
−| ∝ |2 − 1

2

(
∝∗2 eiθ+ ∝2 e−iθ

)
tanh(r)

]
×

∣∣∣Hn

[
(∝ cosh(r)+ ∝∗ eiθ sinh(r))(eiθ sinh(2r))−

1

2

] ∣∣∣2 . (5)

Referring to Eq. (3), ς = r exp(iθ) is the complex squeeze parameter, r the squeeze
parameter and α, α the JC, AJC coherent amplitude. Here, we consider an initial
squeezed coherent state with θ = 0, and so ς = r, α, α are real. This implies that the
generalised squeezed coherent state | ∝, ς〉 is now mapped onto | ∝, r〉.

The exact solution |Ψgn(t)〉, |Ψgn(t)〉 to the Schrödinger equation [9] for the JC, AJC
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initial atom-field system in Eq. (4b) take the explicit forms (t > 0)

|Ψgn(t)〉 = e−
i

~ Ĥt|g, n〉 =

∞∑
n=0

[
Sn e

−iωnt
(

cos(Rgnt)

+icgn sin(Rgnt)
)
|g〉 − ie−iω(n+1)t Sn+1 sgn+1 sin(Rgn+1)|e〉

]
⊗ |n〉 ;

Rgn =
λ

2

√
4n+ β2 ; cgn =

β√
4n+ β2

; sgn = 2

√
n

4n+ β2
; β =

δ

λ

(6a)

and

|Ψgn(t)〉 = e−
i

~ Ĥt |g, n〉 =

∞∑
n=0

[
e−iω(n+1)t Sn

(
cos(Rgnt)

+icgn sin(Rgnt)
)
|g〉 − ie−iωnt Sn−1 sgn−1 sin(Rgn−1)|e〉

]
⊗ |n〉 ;

Rgn =
λ

2

√
4n+ 4 + (β + 2ξ)2 ; cgn =

(β + 2ξ)√
4n+ 4 + (β + 2ξ)2

sgn =

√
4(n+ 1)

4n+ 4 + (β + 2ξ)2
; δ = δ + 2ω ; ξ =

ω

λ
; β =

δ

λ
.

(6b)

The final forms of Eqs. (6a) and (6b) have been arrived at through Schmidt decom-
position [1] and so entanglement of the two interacting atom, field quantum systems
is readily apparent.

3. Photon statistics

We now examine in this section the nature of photons during the respective JC, AJC
interactions by application of the Mandel Q parameter [8,13–15]. The Mandel Param-
eter is fundamental in characterising the quantum statistical properties of a system.
It can be calculated by knowing the photon-number distribution of a quantum state.
In the Fock space Hf it takes the general form

Q =
〈(∆η̂)2〉
〈η̂〉

− 1 ; ∆η̂ =
√
〈η̂2〉 − 〈η̂〉2 (7)

where 〈(∆η̂)2〉 is the photon number variance, 〈η̂〉 is the mean photon number and
η̂ ≡ â†â, ââ† are the normal, anti-normal order operators of the number of particles
(excitations). We take note that the sign of Mandel parameter determines the nature of
deviation of excitation statistics from the Poisson statistics. More precisely, the Mandel
parameter is positive (Q>0) when the statistic is super-Poissonian, zero (Q=0) when
Poissonian and negative (Q<0) when sub-Poissonian with values ranging between 0 and
-1 during which the phenomenon of anti-bunching occurs [14] a clear manifestation of
quantum effect.
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The initial average photon number in the normal [1], anti-normal order |α|2 +
sinh2(r), |α|2 + sinh2(r) in the JC, AJC processes are defined in Eq.(4b). As time
advances the average photon number in the JC, AJC processes take the forms (t > 0)

〈â†â〉t = tr
[
ρ̂f (t) â†â

]
; 〈ââ†〉t = tr

[
ρ̂f (t) ââ†

]
= tr

[
ρ̂f (t)

(
1 + â†â

)]
(8a)

and it therefore follows that

〈(â†â)2〉t = tr
[
ρ̂f (t) (â†â)2

]
; 〈(ââ†)2〉t = tr

[
ρ̂f (t)

(
1 + â†â

)2]
. (8b)

The time evolving reduced density operators of the field ρ̂gf (t), ρ̂
g
f (t) in the JC, AJC

interaction determined from Eqs. (6a), (6b) are easily obtained explicitly as

ρ̂gf (t) = tra(|Ψgn(t)〉〈Ψgn(t)|) =
[
S2
n

(
cos2(Rgnt) + c2gn sin2(Rgnt)

)
+S2

n+1 s
2
gn+1 sin2(Rgn+1t)

]
⊗ |n〉〈n| (9a)

and

ρ̂
g
f (t) = tra(|Ψgn(t)〉〈Ψgn(t)|) =

∞∑
n=0

[
S
2
n

(
cos2(Rgnt) + c2gn sin2(Rgnt)

)
+S

2
n−1 s

2
gn−1 sin2(Rgn−1t)

]
⊗ |n〉〈n| . (9b)

With the reduced field density operators in Eqs. (9a), (9b), interaction parameters,
Rabi frequencies defined in Eqs. (6a), (6b) and mean, mean square photon number
defined in Eqs. (8a), (8b) we easily evaluate Q(t) in Eq. (7) at resonance δ = 0 (JC),
δ = 2ω ; δ = 0 (AJC) and JC, AJC field intensity |α|2+sinh2(r) = |α|2+sinh2(r) = 40.
We then plot time evolution of the Mandel Q parameter Q(τ) (where τ = λt is the
scaled time) for an initial atomic ground state |g〉 in an initial squeezed coherent state.
Plots of the JC process at resonance δ = 0 ; r = 1, 1.3, 1.4, 1.5 and field intensity
|α|2 + sinh2(r) = 40 are presented in Figs. 1a, 2a, 3a and 4a while the corresponding
AJC curves are provided in Figs. 1b, 2b, 3b and 4b.
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(a) JC
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(b) AJC

Figure 1. Time evolution of Mandel parameter. Fig. (1a),Q(τ) at β = 0, r = 1 and |α|2 + sinh2(r) = 40 in

the JC interaction while Fig. (1b) is the corresponding time evolution of Q(τ) at 2ξ ; β = 0, r = 1, ξ = 0.0001
and |α|2 + sinh2(r) = 40 in the AJC process

〈a
∧†
a
∧
〉=40 ; β=0 ; r=1.3

0 20 40 60 80 100

-0.44

-0.42

-0.40

-0.38

-0.36

-0.34

τ

Q
(τ
)

(a) JC
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(b) AJC

Figure 2. Time evolution of Mandel parameter. Fig. (2a),Q(τ) at β = 0, r = 1.3 and |α|2 + sinh2(r) = 40 in
the JC interaction while Fig. (2b) is the corresponding time evolution of Q(τ) at 2ξ ; β = 0, r = 1.3, ξ = 0.0001

and |α|2 + sinh2(r) = 40 in the AJC process
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(b) AJC

Figure 3. Time evolution of Mandel parameter. Fig. (3a),Q(τ) at β = 0, r = 1.4 and |α|2 + sinh2(r) = 40 in
the JC interaction while Fig. (3b) is the corresponding time evolution of Q(τ) at 2ξ ; β = 0, r = 1.4, ξ = 0.0001

and |α|2 + sinh2(r) = 40 in the AJC process
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Figure 4. Time evolution of Mandel parameter. Fig. (4a),Q(τ) at β = 0, r = 1.5 and |α|2 + sinh2(r) = 40 in

the JC interaction while Fig. (4b) is the corresponding time evolution of Q(τ) at 2ξ ; β = 0, r = 1.5, ξ = 0.0001
and |α|2 + sinh2(r) = 40 in the AJC process

From the plots in Figs. 1 - 4 we see that;

i) the photon statistics during the AJC interaction just like the JC interaction is
dominantly sub-Poissonian at squeeze parameters r = 1 to r = 1.4 as presented
in Figs. 1 - 3. The only exception is in Fig. 4 set at r = 1.5 where the photon
statistics evolves to a dominant super-Poissonian from sub-Poissonian photon
statistics;

ii) in the AJC plots in Figs. 1b, 2b, 3b and 4b, the form of the time evolution
of the Mandel parameter takes the same form as the corresponding JC cases in
Figs. 1a, 2a, 3a and 4b. However the evolutions ofQ(τ) during the JC interactions
in Figs. 1, 2 and 3 oscillate about mean positions different from the corresponding
AJC Q(τ) evolutions. In the dominant super-Poissonian photon statistics in
Fig. 4 during the AJC and separately JC interaction, Q(τ) oscillates about exact
mean positions.

iii) individual peaks in the AJC process record higher values of Q(τ) as plot-
ted in Figs. 1b, 2b, 3b and 4b than the corresponding JC peaks plotted in
Figs. 1a, 2a, 3a and 4b.

We conclude at this point that the interaction feature of the nature of photon statistics
during the AJC process is similar to that realised during the JC interaction when an
initial squeezed coherent field mode is considered.

4. Evolution of atomic population inversion and von Neumann entropy

To describe the evolution of the atom alone we introduce the reduced density matrices
of the atom by tracing the JC, AJC density operators ρ̂gn, ρ̂gn over the field states
determined from Eqs. (6a), (6b) according to

ρ̂ga(t) = trf (|Ψgn(t)〉〈Ψgn(t)|) ; ρ̂
g
a(t) = trf

(
|Ψgn(t)〉〈Ψgn(t)|

)
(10a)

7



taking explicit forms

ρ̂ga(t) =

∞∑
n=0

[
S2
n

(
cos2(Rgnt) + c2gn sin2(Rgnt)

)
|g〉〈g|

+i Sn Sn+1 sgn+1e
iωt sin(Rgn+1t)

(
cos(Rgnt) + icgn sin(Rgnt)

)
|g〉〈e|

−i Sn Sn+1 sgn+1e
−iωt sin(Rgn+1t)

(
cos(Rgnt)− icgn sin(Rgnt)

)
|e〉〈g|

+S2
n+1 s

2
gn+1 sin2(Rgn+1t)|e〉〈e|

]
(10b)

and

ρ̂
g
a(t) =

∞∑
n=0

[
S
2
n

(
cos2(Rgnt) + c2gn sin2(Rgnt)

)
|g〉〈g|

+i Sn Sn−1 sgn−1e
−iωt sin(Rgn−1t)

(
cos(Rgnt) + icgn sin(Rgnt)

)
|g〉〈e|

−i Sn Sn−1 sgn−1eiωt sin(Rgn−1t)
(

cos(Rgnt)− icgn sin(Rgnt)
)
|e〉〈g|

+S
2
n−1 s

2
gn−1 sin2(Rgn−1t)|e〉〈e|

]
.

(10c)

We then define the time evolving Bloch vector in the JC interaction ~r(t) =

rx(t)̂i+ry(t)ĵ+rz(t)k̂ with components easily evaluated as rx(t) = tr (σ̂xρ̂
g
a(t)) , ry(t) =

tr (σ̂yρ̂
g
a(t)) , rz(t) = tr (σ̂zρ̂

g
a(t)) reducing to explicit forms

rx(t) =

∞∑
n=0

[
Sn Sn+1

(
− 2sgn+1 sin(Rgn+1t) cos(Rgnt) sin(ωt)− 2sgn+1cgn

sin(Rgn+1t) sin(Rgnt) cos(ωt)
)]

;

ry(t) =

∞∑
n=0

[
Sn Sn+1

(
2sgn+1 sin(Rgn+1t) cos(Rgnt) cos(ωt)− 2sgn+1cgn

sin(Rgn+1t) sin(Rgnt) sin(ωt)
)]

;

rz(t) =

∞∑
n=0

[
S2
n+1 s

2
gn+1 sin2(Rgn+1t)− S2

n

(
cos2(Rgnt) + c2gn sin2(Rgnt)

)]
.

(11a)

Similarly, the time evolving Bloch vector in the AJC process ~r(t) = rx(t)̂i +

ry(t)ĵ + rz(t)k̂ with components obtained as rx(t) = tr
(
σ̂xρ̂

g
a(t)

)
, ry(t) =

8



tr
(
σ̂yρ̂

g
a(t)

)
, rz(t) = tr

(
σ̂zρ̂

g
a(t)

)
taking respective explicit forms

rx(t) =

∞∑
n=0

[
Sn Sn−1

(
2sgn−1 sin(Rgn−1t) cos(Rgnt) sin(ωt)− 2sgn−1cgn

sin(Rgn−1t) sin(Rgnt) cos(ωt)
)]

;

ry(t) =

∞∑
n=0

[
Sn Sn−1

(
2sgn−1 sin(Rgn−1t) cos(Rgnt) cos(ωt) + 2sgn−1cgn

sin(Rgn−1t) sin(Rgnt) sin(ωt)
)]

;

rz(t) =

∞∑
n=0

[
S
2
n−1 s

2
gn−1 sin2(Rgn−1t)− S

2
n

(
cos2(Rgnt) + c2gn sin2(Rgnt)

)]
.

(11b)

We use the Bloch vector components in Eqs. (11a) and (11b) to evaluate time evolution
of atomic population inversion W (t) and the time evolution of the von Neumann
entropy Sa(t) (as a measure of DEM).

The atomic population inversion W (t) [12] is defined as the difference between the
excited and ground state probabilities

W (t) = tr (σ̂zρ̂a(t)) (12)

which is of the exact form as the z -component rz(t), rz(t) of the time evolving JC, AJC
Bloch vectors in Eqs. (11a), (11b).

Using the definitions of rz(t), rz(t) in Eqs. (11a), (11b), we plot W (t) in Figs. 5a, 6a
at δ = 0, r = 1, 1.5, |α|2 + sinh2(r) = 40 during the JC interaction and in Figs. 5b, 6b
at δ = 2ω ; δ = 0, r = 1, 1.5, |α|2 + sinh2(r) = 40 during the AJC interaction.
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(τ
)

(b) AJC

Figure 5. Time evolution of atomic population inversion. Fig. (5a)W (τ) at β = 0, r = 1 and |α|2+sinh2(r) =
40 in the JC interaction while Fig. (5b) is the corresponding time evolution of W (τ) at 2ξ ; β = 0, r = 1,

ξ = 0.0001 and |α|2 + sinh2(r) = 40 in the AJC process

9



〈a
∧†
a
∧
〉=40 ; β=0 ; r=1.5

0 20 40 60 80 100
-1.0

-0.5

0.0

0.5

1.0

τ

W
(τ
)

(a) JC
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(b) AJC

Figure 6. Time evolution of atomic population inversion. Fig. (5a), W (τ) at β = 0, r = 1.5 and |α|2 +
sinh2(r) = 40 in the JC interaction while Fig. (5b) is the corresponding time evolution of W (τ) at 2ξ ; β =

0, r = 1.5, ξ = 0.0001 and |α|2 + sinh2(r) = 40 in the AJC process
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Figure 7. Time evolution of atomic population inversion (Ringing revivals). Fig. (7a),W (τ) at β = 0, r = 1.5

and |α|2 + sinh2(r) = 40 in the JC interaction while Fig. (7b) is the corresponding time evolution of W (τ) at

2ξ ; β = 0, r = 1.5, ξ = 0.0001 and |α|2 + sinh2(r) = 40 in the AJC process

We proceed to plot the photon number distribution Pn = Pn defined in Eq. (5) at
r = 1, 1.5, | ∝ |2 + sinh2(r) = 40 in Figs. 8a, 8b.
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Figure 8. JC,AJC photon number distribution Pn, Pn. Fig. (8a), P (n), P (n) at r = 1 and | ∝ |2+sinh2(r) =
40 while Fig. (8b) P (n), P (n) at r = 1.5, | ∝ |2 + sinh2(r) = 40
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From the results in Figs. 5 - 8 we see:

i) that the time evolution of atomic population inversion during the AJC, JC pro-
cesses display exact forms;

ii) that the oscillations at r = 1.5 in Figs. 6a, 6b are more irregular at the collapse
region than when r = 1 in Figs. 5a, 5b, commonly referred to as ringing revivals
(see Fig. 7) in agreement with [5,16], i.e., the collapse region is modulated or
displays ringing different from the well known collapse region obtained when
an initial coherent field is considered [1]. As explained in detail in [5,16], the
ringing is due to interference of the additional peaks (see Fig. 8) in the JC
photon number distribution Pn = |〈n|α, r〉|2 and separately AJC photon number
distribution Pn = |〈n|α, r〉|2 because the revivals produced by different peaks
of Pn(JC), Pn(AJC) have different local mean photon numbers. In the process
revivals due to individual peaks overlap but the effect of the resulting interference
is to sharpen the ringing structure other than washing it away, i.e, the addition
of each local peak in Pn, Pn adds an echo in W (τ) and the successive echoes
brings further interference, which sharpens the echoes at earlier times and;

iii) in Fig. 5 sharpness of the revival regions during atomic population inversion
which occur when the field is sub-Poissonian (see Fig. 1 at r = 1) accordant
with [16], in comparison to the less pronounced and blunt peaks in Fig. 6 at
r = 1.5. We noted in our example in Fig. 4 plotted at r = 1.5 during the
AJC, JC processes, that the field is super-Poissonian.

Further, in order to discuss the collapses and revival phenomenon in relation to
degree of entanglement we introduce the von Neumann entropy Sa(t) defined in terms
of the time evolving Bloch vector ~r(t) in the general form [1]

Sa(t) = −η1 log2 η1 − η2 log2 η2 (13a)

where here

η1 =
1

2
[1− |~r(t)|] ; η2 =

1

2
[1 + |~r(t)|] . (13b)

The JC process atomic entropy plots at resonance δ = 0, r = 1, 1.5, and field intensity
|α|2+sinh2(r) = 40 are shown in Figs. 9a and 10a while the corresponding AJC curves
are in Figs. 9b and 10b.
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Figure 9. Time evolution of atomic entropy. Fig. (9a), Sa(τ) at β = 0, r = 1 and |α|2 + sinh2(r) = 40 in the
JC interaction while Fig. (9b) is the corresponding time evolution of Sa(τ) at 2ξ ; β = 0, r = 1, ξ = 0.0001 and

|α|2 + sinh2(r) = 40 in the AJC process
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Figure 10. Time evolution of atomic entropy. Fig. (10a), Sa(τ) at β = 0, r = 1.5 and |α|2 + sinh2(r) = 40

in the JC interaction while Fig. (10b) is the corresponding time evolution of Sa(τ) at 2ξ ; β = 0, r = 1.5,
ξ = 0.0001 and |α|2 + sinh2(r) = 40 in the AJC process

Based on the results in Figs. 9 and 10 we see;

i) in Fig. 9 during the JC, AJC interactions, the value of Sa(τ) at the revival

time [17] τR = 2π
√
|α|2 + sinh2(r) ' 39.7 , τR = 2π

√
|α|2 + sinh2(r) ' 39.7

respectively, is approximately equal to that at half the revival times τR
2 , i.e,

Sa(τ) ' 0.04 in our example. This means that at these times (τR,
τR
2 ) the atom-

field states are entangled (mixed) when an initial squeezed coherent state is
considered, accordant with [16]. In addition, as time advances, we note gradual
increase in DEM and consequently the degree of mixedness since Sa(t) records
gradual increasing values with every increase in time;

ii) that the behaviour in (i) is enhanced during the JC and separately AJC inter-
action set at r = 1.5 as presented in Fig. 10. The form of time evolution of
Sa(τ) becomes more rapid with oscillations between [' 0.2, 1] characterising an
increase in DEM (and so the degree of mixedness), consistent with [16]. It is now
clear that the DEM increases with an increase in r and;

iii) as demostrated in Fig. 9 set at r = 1, that the evolution of Sa(τ) during the JC
interaction and separately the corresponding AJC interaction are of the same
form. A similar observation suffices at r = 1.5 as visualised in Fig. 10.
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5. Conclusion

We analysed separately, the interaction of a two-level atom with a single mode of an
initial squeezed coherent light during the AJC, JC processes, and the results in the re-
spective interactions are consistent with earlier work cited in this paper. As visualised,
the nature of photon statistics and DEM take the same form during time evolution of
atomic population inversion for values of squeeze parameter set in the range [1, 1.5].
At r > 1.4 the field system becomes dominantly super-Poissonian. We also observed
that at a higher r = 1.5 the revival peaks during atomic population inversion becomes
less pronounced, irregular and ringing revivals observed at an expected collapse phase.
The DEM in the respective AJC, JC interactions, showed that it increases with every
increase in r and interaction time τ = λt albeit gradually, and so is the degree of
mixedness.
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