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ABSTRACT

From the work of Derksen, Weyman and Zelevinsky in [4], we get the

definition for mutation of a quiver with potential. Stern in [l~l describes .

some families of quivers corresponding to quivers with potential that can

be mutated indefinitely. In this work, we use two of these ialliilies as our

basic examples of study and find their appropriate potentials. Because the

potentials get larger and larger with the mutations, we use two notations;

first, a brief one and the second one providing useful information about

the individual potentials. The results of this study offer explicit examples

of quivers with potential which can be studied further.
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Chapter 1

Introduction

A quiver Q consists of a set of vertices Qo, a set of arrows Q1 and two

maps sand i: assigning to each arrow the starting and terminating vertices

respectively. The main objects of our study are quivers with potential. A

quiver with potential is a quiver 'Q together with the potential S, which

is a sum of cyclic paths of Q. The quiyers in the families obtained and

represented by tree diagrams by Stern in [18] are our main examples of

quivers with potential. We obtain the appropriate potentials for some

of the quivers in the two families given below. The quivers are related

through mutation and we begin the mutations with the quiver A, at the

centre of each tree diagram.

The following tree diagram represents quivers belonging to the p2

family:

1

rMASENO UNIVERSITY I

S.G. S. LIBRARY I



CD CD
® ®

@ ®

e
@

© ©

@

@ rrcuae nv B(N ElDR~1)Gf

The quivers corresponding to each of these points are:

In chapter 4 of this thesis, we calculate the potential for the quivers:

B, C, D and E in section 4.2, then write them into sums in section 4.3.

The next tree diagram represents quivers belonging to the P' x F"

family.
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The quivers corresponding to each of these points are:

In chapter 5, we calculate the potential for the quivers: B, C, D, E and

F in section 5.2 and express each potential into sums in section 5.3.
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Chapter 2

Mathematical background,

2.1 Introduction

This chapter introduces the basic mathematical terms and concepts that

are fundamental to the understanding of the entire thesis. We discuss

the concept of quivers, giving some important examples and the notation

used to represent them in this study in section 2.2. Paths and relations

are dealt with in section 2.3 while potential, quivers with potential and

cyclic derivatives are studied in section 2.4. A more algebraic approach

to discussing these concepts is given in Obiero [13]and Owino [14].

Section 2.5 provides the sources of our study and in section 2.6, we

state the problem area this study has attempted to solve. Section 2.7

gives the main objectives of our study while the main approach used in

the study is stated in section 2.8. Finally, the significance of our study is

covered in sectionz.O.
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2.2 Quivers and examples

In section 2.4, we introduce our main objects of study which are quivers

with potential. A transformation called mutation is defined on these

quivers with potential in chapter 3 and requires the quiver to have no loops

or oriented 2-cycles. In this section we discuss some of these concepts as

well as introduce the examples studied in chapters 4 and 5.

Definition 2.1. A quiver Q is a quadruple (Qo, Q1, s, t)where;

• Qo is a set of vertices,

• Q1 is a set of arrows,

• s : Q1 ~ Qo is a map taking an arrow to its starting vertex and

• t :Q1 ~ Qo is a map taking an arrow to its terminating vertex.

The following examples introduce the notation used for the vertices

and arrows in this study.

Example 2.2. Consider the quiver:

U~V

This quiver has vertices: U,lI E ·Qo and an arrow avu E Q1 with

s(avu) = U the starting vertex, and t(avu) = V the terminating vertex,

Example 2.3. The quiver;
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Example 2.6. The quiver

is an example of a quiver with a 2-cycle. It consists of two verti~es and

two arrows oriented in opposite direction to each other.

Definition 2.7. A finite quiver is a quiver whose sets of vertices Qo

and arrows Ql are both finite.

In this study, we deal with finite quivers. More specifically, we study

two families of quivers related to p2 and F" x t» by Stern [18]in chapters

4 and 5 respectively. Given below are the central quivers in each case:

For the p2 family, the centralquiver is:

T 3 )U

~/,
V

while in the t» x t» family, the central quiver is:

2.3 Paths and relations

The potential of quivers is defined in section 2.4 as a sum of the cyclic

paths of the quiver. It is from these cyclic paths that we take the cyclic
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derivatives discussed in the same section to obtain relations. In this see-
\

tion, we define paths, relations and a quiver with relations."

Definition 2.8. A path of length n of a quiver Q is a sequence of arrows:

where the terminating vertex of any arrow.is the starting vertex of the

arrow to its right.

Example 2.9. The quiver:

(T) ~(U)

lcwu

(V) -+--- (lV)
dvw

has a path: dvwcwubtrr, of length 3.

Definition 2.10. A trivial path is a path of length zero.

For each vertex 11 E Qo, ev denotes the trivial path which starts

and terminates at the vertex V.

Example 2.11. The quiver:

has three trivial paths: eT,eU,eV,

six paths of length one:
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Example 2.12. Consider the quiver below;

This quiver has four trivial paths: er , eu, ev, ew, four paths of leng;th

one: aUT, bov . cvw, dvw, and two paths of length two:· buy Cvw and

buvdvw·

Definition 2.13. A path is cyclic if its starting and terminating vertices

coincide. Otherwise, it is acyclic.

Definition 2.14. A cyclic path of length one is called a loop. A cyclic

path of length n is an n-cycle.

Any cyclic path of length n can be written:

Definition 2.15. A cyclic path

is said to be cyclically equivalent to itself and any path:

for Vi := Vimodn'
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Proposition 2.16. Cyclic equivalence of cyclic paths is an equivalence
l

relation.

Proof. Let f and 9 be cyclic paths. Suppose f is cyclically equivalent to

q, then either 9 = f or 9 -=f. f· If 9 = [, then f is cyclically equivalent to

itself.

Ifg -=f. i. then f = «v,VI aVI V2 ... aV,l-l V" is cyclically equivalent to

With

u,~ { Vk+i if isn-k

Vk+i-n if i>n-k

for Vi := Vimodn' This implies 9 is cyclically equivalent to f.

Let f = aV,l VI aVl V2 ... aV,l_l Vn be cyclically equivalent to 9 = aVk Vk+l ...

Then let

u,~ { Vk+i if isn-k

Vk+i-n if i>n-k

l~ := Vimodn. This implies f is cyclically equivalent to h. o

The cyclic paths dealt with in this study are defined to cyclic equiv-

alence; we are thus not careful about where to start and end a cycle since

whichever vertex we choose, we still have the same path.
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Consider the following example:

Example 2.17. In the quiver:

(T) ~(U)

aTV I !CWU

(V)~(W)
dvw

The cyclicpath can be expressed in the followingways: dvwcwubuTaTV:

bUTaTVdVWcWU: aTvdvwcwubuT: cWUbUTaTVdvw. However, cyclic equiv-

alence says that all these expressions are one path and so anyone of them

suffices to represent the cycle in this quiver.

Definition 2.18. A quiver with relations is a quiver Q together with

a set of relations. A relation is a linear combination of paths having the

same starting point and the same end point equated to zero.

A path algebra is an algebra whose basis is all the paths of a quiver.

The set of all relations imposed on a quiver Q generates an ideal with

which we quotient a path algebra to obtain a path algebra of a quiver

with relation, also called the quotient algebra. For more details on this,

see Obiero [13]and Owino [14].

We discuss some special types of relations called potentials in the next

section.

2.4 Quivers with potential

The relations introduced iri the previous section can be obtained by taking

cyclic derivatives on the potential of a quiver Q with respect to the single
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arrows in that quiver. This section thus gives the definitions for potential,

a quiver with potential and an example illustrating cyclic derivatives.

Definition 2.19. A quiver with potential is a pair (Q, S) consisting

of a quiver Q and its potential S. A potential, S of a quiver Q is ~ linear

combination of cyclic paths of Q.

The quiver examples illustrating paths in section 2.3 have no potential

since there are no cycles associated with them. However, the quivers in

the two families introduced in section 2.2 have potentials. The potentials

for the quivers at the center of each family is known from geometry and

we give them as our examples of quivers with potential.

Example 2.20. Quiver:

3T--"::""'-'--">-' U

/,
V

3

with the potential:

S

(2.1)

and

Example 2.21. Quiver:

12
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T~U

21 12
v~w

with the potential:

(2.2)

Calculation of the mutated potentials for some of the other quivers in

these families is our main task in chapters 4 and 5.

Definition 2.22. The cyclic derivative on the potential S, is the partial

derivative 6a of S with respect to an arr~w 0, E Ql on the potential. It is

given by the equation below,

d

6a(O'l····ad) = L 6a(ak)ak+l .... adal····ak-l
k=l

(2.3)

where

ak E Ql,Vk = 1, ... ,d

and

Example 2.23. Consider the quiver below;
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(T) ~(U)

aTV 1 !cwu

(if) dv;- (W)

We choose the potential for the quiver as:

We now proceed to find the cyclic derivative with respect to an arrow

of this quiver say: aTV.

Using the formulae:

d

ba(al .... ad) = L ba(ak)ak-j-l····adal····ak-l
k=l

(2.4)

We have:

+

From the condition :

1 if ak = a

o if ak # a

We get:

baTv (dvwcwubuTaTv) = 0 + 0 + 0 + dvwcWUbUT
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Thus:
\

oaTv(dVWcWUbUTaTV) = dvwcwubuT "-'

Giving the relation:

dvwcWUbUT = 0

2.5 Literature review

In the 1970s, a theorem of Gabriel [8] changed the way algebra were

studied. The theorem states that every basic algebra over an algebraically

closed field is isomorphic to the path algebra of a quiver with relations.

This theorem led to a change in the way algebras can be visualized and

discussed, since many algebras could be-represented using quivers.

Since then a number of connections of the representation theory of

quivers to other algebraic topics have come up, in particular to Lie algebra

[9, 11] , Hall algebras [1, 15, 17] and quantum groups [5, 12] and more

recently to cluster algebras [6, 7].

Mutation of quivers was first introduced as a case study in the study

of cluster algebras by Fomin and Zelevinsky in [6, 7]. Skew-symmetric

integer matrices encode quivers without loops and oriented 2-cycles and

their procedure for mutating a quiver is a special case of the mutation of

matrices.

The idea of mutating -quivers was further extended to mutation of

quivers with special types of relations called potentials by Derksen, Wey-
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man and Zelevinsky in [4]. Their work gives the definition for mutation

of a quiver with potential and the procedure involved provided the quiver

has no loops or oriented 2-cycles.

Defining mutation of quivers with potential raised a lot of interesting

questions, especially since the mutation was not an operation on quivers

with potential. Questions include: When is mutation an operation? If

it is an operation, what happens to the potentials as we move from one

mutation to another? How does this concept relate to other algebraic

topics? What other ideas can be taken from related subjects like physics?

Studies have been done in attempt to provide partial solutions to

some of the above issues. For instance, Stern [18] with strong exceptional

collections showed that tilting mutation is an operation on some families

of quivers corresponding to quivers with potential. He used family tree

diagrams to represent his mutations. Based on Stern's examples, Obiero

[13] related mutation of quivers with potential to R-charges in physics

and Owino [14] studied blocks of exceptional collections from geometry.

Both studies were done without knowing what the explicit potentials are

for these quivers, and this is the aim of our study.

2.6 Statement of the problem

Derksen, Weyman and Zelevinsky in [4] initiated the mutation theory of

a quiver with potential. Their study requires the quiver with potential to

have no loops or oriented 2-cycles. In Stern [18] we have a rich source of

families of quivers that correspond to quivers with potential which can be
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mutated indefinitely. The potentials for these quivers can be useful in a
\

number of studies but we have not found any provisions for them in the

literature. Thus, our main task is to obtain and write these potentials

consistently, particularly for the cases that Stern [18] related to the p2

and F" x pl.

2.7 Objective of the study

In this study, we obtain the potentials for some of the quivers with poten-

tial related to p2 and pl x pl found in Stern [18]. Through relabeling,

we write the potentials consistently so as to determine whether or not

prediction of the next mutated is possible using our notation.

2.8 Research methodology

An understanding of the mutated diagrams in Stern [18]is a guideline for

this work. An ability to effectively and carefully calculate the mutated

potential for a given quiver following the steps based on the work of Derk-

sen, Weyman and Zelevinsky in [4]and writing them in a brief manner is

the backbone of this study. These steps entail;

1. Obtaining an unreduced quiver through the first few steps of muta-

tion.

2. Reducing this quiver using relations.
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3. Relabeling of the arrows so to write the reduced potential in a short

and a consistent way.

2.9 Significance of the study

Any result in the study of quivers with potential is important in the de-

velopment of this new and active area of study. Our calculations provide

explicit examples of quivers with potentials which can be worked on fur-

ther. This study is already of use to my colleagues working on related

areas. For instance: relabeling of arrows yielded patterns in which the

symmetry of potentials expected in blocked quivers was seen in the rele-

vant examples.
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Chapter 3

Mutation of quivers with

potential

3.1 Introduction

The key reference for this section is the paper by Derksen, Weyman and

Zelevinsky [4]. They defined mutation of a quiver with potential provided

the quiver has no loops or 2-cycles. A quiver is transformed to a mutated

one with aid of the rules governing the transformation. This transforma-

tion is reversible by repeating mutation at the same vertex to obtain the

original Quiver.

3.2 Mutation of a quiver with potential

In mutating a quiver with potential, it is a consequence of Proposition

2.16 in section 2.3 that no two cyclically equivalent paths appear in the

19



expansion of S. However: it is also required that no cyclic path in this

expansion starts (and terminates) at the vertex of mutation.

Construction 1. (See [4]) Mutation of a QP (Q: S) at a vertex V E Qo

can be defined if Q satisfies the following conditions:

i) Q has no loops.

ii) Q has no oriented 2-cycles.

This construction involves seven steps which are described and illus-

trated by the example below:

Example 3.1. Consider the quiver:

(i)

(T) a~T ) (U):>3 3<~~ "<, ;/ a~~j

(V)
with the potential:

S

Let's mutate it at vertex 11:

1. The new quiver has the same vertices as the old one.

(T) (U)

(1/)

20



2. Arrows into vertex V become arrows out of V.

(T) (U)
3~./a~L

(V)

3. Arrows out of V become arrows into V.

(T) (U)
)3 3~.

a~~ ~ / a~~j

(v')

4. Arrows not into or from V remain unchanged.

5. All paths of length two through vertex V, denoted a~i?a~L give

arrows, (a~~a~~), from the start to the terminating vertex of the

original path.

In this case we have 9 paths through V which give 9 new arrows

namely:

21



This quiver is the unreduced quiver whose potential is given in the~
next step.

6. To obtain the unreduced potential: we use the formula:

S = (S)+ 6v: (3.2)

where (S) is obtained from S of the original quiver. We do not

have paths of the form a~~a~~ in the unreduced quiver: but rather

compositions for arrows of the form (a~~a~~). We thus substitute

(a~~a~~) for each factor a~~a~~.with s( a~~) = t( a~~) = V: for any

cyclic path occurring in the expansion of S.

This element in our case is:

and

6v= L (ba)a*b*
a,bEQ l:s(b )=t(a)= v

(3.3)

In this case this element is:
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Thus combining the two, the unreduced potential will be:
. l

(1) ( (2) (3)) (1) ( (3) (2)) (2) ( (i) (3))S = aUT aTVaVU - aUT aTVaVU - aUT OTvavu +
(2) ( (3) (1)) (3) ( (1) (2)) (3) ( (2) (1))

aUT aTVaVU + aUT aTVaVU - aUT aTVaVU +

( (1) (1)) (1)* (1)* + ( (1) (2)) (2)* (1)* + ( (1) (3)) (3)* (1)* +
aTVaVU aVU aTV aTVaVU avu aTV aTVaVU avu aTV

(
(2) (1)) (1)* (2)* ((2) (2)) (2)* (2)* ((2) (3)) (3)* (2)*

aTVaVU aVU aTV + aTVaVU avu aTV + aTVaVU aVU aTV +

( (3) (1)) (1)* (3)* + ( (3) (2)) (2)* (3)* + ( (3) (3)) (3)* (3)*
aTVaVU aVU aTV aTVaVU aVU aTV arvavu aVU aTV

The next step is the reduction process where the 2-cycles in the

unreduced potential are removed 'using relations to give the reduced

potential. This step is built on theorem 4.6 in [4]where we remove

the trivial part; the linear combination of 2-cyclic paths of the unre-

duced potential to remain with the reduced part; the part involving

only the n-cyclic paths, with n 2: 3.

7. To obtain the reduced potential, we take the cyclic derivatives on

the unreduced potential with respect to the single arrows in the

2-cycles of the quiver appearing in the unreduced potential to get

relations. In this case we have:

Notice that each relation reduces a 2-cycle and we thus end up with

six arrows out of the initial nine arrows.
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We relabel the arrows of the quiver for simplificatioIl; and consistency

as follows:

b(i) ._ (i)*
VT .- o,TV

b(i) (i)*uv := o,vu

b(4) ._ '( (1) (1))
TU ,- o,TVo,VU

The reduced quiver becomes:

(T) E 6 (U)

~/
(V)

with the reduced potential:

bel) b(2) b(3) + bel) b(3) b(2) + b(2) b(3) bel) +
TU UV VT TU UV VT TU UV VT

b(2) bel) b(3) + b(3) bel) b(2) + b(3) b(2) bel) +
TU UV VT TU UV VT TU UV VT

b(4) b(l.) bel) + b(S) b(2) b(2) + b(6) b(3) b(3) (3.4)
TU [:v VT TU [IV VT TU [IV VT

24



Chapter 4

Calculation of potentials for

quivers with potential related

to p2

4.1 Introduction

In this chapter, we deal with a family of quivers corresponding to quivers

with potential given in the tree diagram that Stern in [18]related to t».

The tree diagram is:
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The quivers corresponding to each of these points are:

The quiver at the center of the tree diagram, called A was introduced in

section 2.2 and its potential stated in section 2.4. It is a consequence of

Stern [18] that this quiver together with all its mutants can be mutated

indefinitely without giving loops or 2-cycles, and so the tree diagram
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shows how one quiver is related to another through mutation, However,
<..-

there is no attempt in the literature to write the potentials for these

mutations.

In section 4.2 we work out the potential for quiver C, and then provide

the calculated potentials for the quivers D and E. Since these potentials

are too big to write, section 4.3 provides the notation used to write them

briefly.

4.2 Calculations

In this section we mutate quiver B using the steps discussed in section

3.2 to obtain quiver C and its potential. We then provide the mutated

potentials for the quivers D and E.

Thus consider the quiver B:

(T) • 6 (U)

~/,
(V)

whose potential is:

S b~bb~~b~~~ + bWJb~;~b~~ + b~bb~~b~~ +
b(2) bel) b(3) + b(3) bel) b(2) + b(3) b(2) b(l) +
TU UV, VT TU UV VT TU UV VT

b(4) b(l) bel) + b(5) b(2) b(2) + b(6) b(3) b(3)
TU UV VT TU UV VT TU UV VT

27



If we mutate it at U the unreduced quiver will be:

(T) 6 , (U)

~/
l~(V)

with the unreduced potential:

(b(l) b(2) )b(3) + (b(l) b(3) )b(2) + (b(2) b(3) )b(l) +
TU UV VT TU UV VT TU UV VT

(b(2) bel) )b(3) + (b(3) bel) )b(2) + (b(3) b(2) )b(l) +
TU UV VT TU UV VT TU UV VT

(b(4) bel) )b(l) + (b(5) b(2) )b(2) + (b(6) b(3) )b(3) +
TU UV VT TU UV VT TU UV VT

(b(l) bel) )b(l)* b(l)* + (b(l) b(2) )b(2)* b(l).' + (b(l) b(3) )b(3)* b(l)* +
TU UV UV TU TU UV UV TU TU UV UV TU

(b(2) b(l) )b(l)"b(2)" + (b(2) b(2) )b(2)"b(2)" + (b(2) b(3) )b(3)"b(2)* +
TU UV UV TU TU UV UV TU TU UV UV TU

(
(3) (1)) (1)* (3)* ((3) (2)) (2)" (3)* ((3) (3)) (3)* (3)*

bTUbuv buv bTU + bTUbuv buv bTU + bTUbuv buv bTU +

(b(4) bel) )b(1)*b(4)* + (b(4) b(2) )b(2)*b(4)* + (b(4) b(3) )b(3)*b(4)* +
TU UV UV TU TU UV UV TU TU UV UV TU

( (5) (1)) (1)* (5)* ((5) b(2)) (2)* (5)* ((5) (3)) (3)* (5)*
bTUbuv buv bTU + bTU UV buv bTU + bTUbuv buv bTU +

(
(6) (1)) (1)" (6)* ((6) (2)) (2)* (W ((6) (3)) (3)* (6)*

bTUbuv buv bTU + bTUbuv buv bTU + bTUbuv buv bTU

Taking the cyclic derivatives with respect to the single arrows in the

2-cyclesof the unreduced potential we obtain the relations below:
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3 arrows out of the 18 have been reduced. We are left with 15 new,
arrows.

We rename the arrows as follows:

(i) ._ b(i)-
CUT·- TU

(9) ._ ( (6) (1»)
CTV·- bTUbUV

(i) b(i)-
CVU:= UV

(10) ._ (b( 4) b(2) )
CTV·- TU UV

(12) ._ ( (6) (2»)
CTV .- bTUbUV

(13) ._ (b(4) b(3) )0v·- TU UV

(14) ._ (b(5) b(3) )
GTV·- TU UV

(15) ._ (b(6) b(3) )
CTV·- TU UV

_ (3) _ (15) _ (b(l) b(2) )
CTV CTV - TU UV

Thus the resulting quiver is C:

(T) 6 , (U)

~/.
(V)

29



with the potential:

s c¥tc~i:c~n- c¥tc~i:c~~+ c¥tc~i:c~;~-
(2) (1) (3) (3) ,(1) (2) (3) (2) (1)

CTVCVUCUT + CT1fCVUCUT - CTVCVUCUT +

(13) (3) (4) (14) (3) (5) (15) (3) (6)
CTV CVUCUT + CTV CVUCUT + CTV CVUCUT -

(7) (3) (2) (11) (1) (3) (15) (2) (1)
CTVCVUCUT - Crv CVUCUT - ('-'TV CVUCUT (4,1)

It is worth noting mutation of quiver A at any of its three vertices

yields the same quiver B, that is why there are three lines from A that

rejoin before entering B. Mutation of B at U and T gives quiver C and

C' respectively. The difference between the primed and the unprimed

quivers is that the arrows of one are reversed in the other.

We now give the worked out potentials for the other quivers with

potentials obtained by mutations of quiver C .

• Mutation of quiver C above at V gives D:

(T), 39 (U)

~/
(1l)
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with the potential:

s rP) d(2) d(3) + riel) d(3) d(2) + d(2) del) d(3) + d(2) d(3) del) +
""TU 'UV VT ""TU UV VT TU UV VT TU UV VT

d(3) d(2) del) + d(3) del) d(2) + d(4) del) d(l) + d(5) d(2) d(2) +
TU UV VT TU UV VT TU UV VT TU ov VT

d~iJdU~d~t + d¥bd~J~d0t + d~iJd~J~d~t + d~iJd~J~d~t +

d(lO)d(2) d(4) + d(1l)d(2) d(5) + d(12)d(2) d(6) + d(13)d(3.) d(4) +
TU UV VT TU UV VT TU UV VT TU UV VT

d(14)d(3) d(5) + d(15)d(3) d(6) + d(16)d(l) d(lO) + d(17)d(l) dell) +
TU uv VT TU rrv 'VT TU [IV VT TU uv VT,

d(18)d(1) d(12) + d(19)d(1) d(13) + d(20)d(1) d(14) + d(21)d(1) d(15) +
TU uv VT TU uv VT TU UV VT TU uv VT

d(22)d(2) d(lO) + d(23)d(2) dell) + d(24)d(2) d(12) + d(25)d(2) d(13) +
TU UV VT TU UV VT TU UV VT TU UV VT

ri(26)d(2) d(14) + d(27)d(2) d(15) + d(28)d(3) d(lO) + d(29)d(3) dell) +
""TU UV VT TU UV VT TU UV VT TU UV VT

d(30)d(3) d(12) + ri(31)d(3) d(13) + d(32)d(3) d(14) + d(33)d(3) d(15) _
TU UV VT ""TU UV VT TU UV VT TU UV VT

(7) d(3) d(2) _ ri(ll)d(l) d(3) _ d(15)d(2) del) _ d(22)d(1) d(7) _CTu UV VT ""TU UV VT TU UV VT TU UV VT

d(23)d(1) d(8) _ d(24)d(1) d(9) _ d(31)d(1) d(7) _ d(32)d(1) d(8) _
TU UV VT TU UV VT, TU UV VT TU UV VT

d(33)d(1) d(9) + d(17)d(2) del) + d(27)d(3) d(2) + d(37)d(1) d(3) +
TU Ull VT TU Ull vr TU Ull vr TU [Ill liT

d(34)d(2) d(7) + d(35)d(2) d(8) + d(36)d(2) d(9) + d(37)d(3) d(7) +
TU UV VT TU UV VT TU UV VT TU UV VT

d(38)d(3) d(8) + d(39)d(3) d(9) (4.2)
TU Ull VT TU Ull vr

• Mutation of quiver Cat T gives quiver E:

(T) , 6 (U)

~~
(V)
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whose potential is:

(3) (2) (1) (4) (1) (1) (5) (2) (2) (6) (3) (3) (7) (4) (1)
eUVeVTeTU + eUVeVTeTU + eUVeVTeTU + eUVeVTeTU + eUVeVTeTU +

(8) (5) (1) (9) (6) (1) (10) (7) (1) (11) (8) (1)' (12) (9) (1)
eUVeVTeTU + eUVeVTeTU + eUV eVTeTU + eUV eVTeTU + eUV eVTeTU +

(13) (10) (1) (14) (11) (1) (15) (12) (1) (16) (13) (1) (17) (14) (1)
eUV eVT ere: + eUV eVT eTU + eUV eVT eTU + eUV eVT eTU + eUV eVT eTU +

(18) (15) (1) (19) (4) (2) (20) (5) (2) (21) (6) (2) (22) (7) (2)
eUV eVT eTU + eUV eVTeTU + euv eVTeTU + eUV eVTeTU + eUV eVTeTU +

(23) (8) (2) (24) (9) (2) (25) (10) (2) (26) (11) (2) (27) (12) (2)
eUV eVTeTU -t- eUV eVTeTU -j- eUV eVT eTU + eUV eVT eTU -j- eUV eVT eTU +

(28) (13) (2) (29) (14) (2) (30) (15) (2) (31) (4) (3) (32) (5) (3)
eUV eVT eTU + eUV eVT ere.! + eUV eVT eTU + eUV eVTeTU + eUV eVTeTU +

(33) (6) (3) (34) (7) (3) (35) (8) (3) (36) (9) (3) (37) (10) (3)
eUV eVTeTU + eUV eVTeTU + eUV eVTeTU + eUV eVTeTU + eUV eVT eTU +

(38) (11) (3) (39) (12) (3) (40) (13) (3) (41) (14) (3) d(42) (15) (3)
eUV eVT eTU + eUV eVT eTU + eUV eVT eTU + eUV eVT eTU + UV eVT eTU +

(43) (1) (3) (44) (2) (4) (45) (3) (4) (46) (4) (4) (47) (5) (4)
eUV eVTeTU + eUV eVTeTU + eUV eVTeTU + eUV eVTeTU + eUV eVTeTU +

(48) (6) (4) (49) (7) (4) (50) (8) (4) (51) (9) (4) (52) (10) (4)
eUV eVTeTU + eUV eVTeTU + eUV eVTeTU + eUV eVTeTU + eUV eVT eTU +

(53) (11) (4) (54) (12) (4) (55) (13) (4) (56) (14) (4) (57) (15) (4)
eUV eVT eTU + eUV eVT eTU + eUV eVT eTU + eUV eVT eTU + eUV eVT eTU +

(58) (1) (5) (59) (2) (5) (60) (3) (5) (61) (4) (5) (62) (5) (5)
eUV eVTeTU + eUV eVTeTU + eUV eVTeTU + eUV eVTeTU -t- eUV eVTeTU +

(63) (6) (5) (64) (7) (5) (65) (8). (5) (66) (9) (5) (67) (10) (5)
eUV eVTeTU + eUV eVTeTU + eUV eVTeTU + eUV eVTeTU + eUV eVT eTU +

(68) (11) (5) (69) (12) (5) (70) (13) (5) (71) (14) (5) (72) (15) (5)
eUV eVT eTU + eUV eVT ere: + eUV eVT eTU + eUV eVT eTU + eUV eVT eTU +

(73) (1) (6) (74) (2) (6) (75) (3) (6) (76) (4) (6) (77) (5) (6)
eUV eVTeTU + eUV eVTeTU + eUV eVTeTU + eUV eVTeTU + eUV eVTeTU +

(78) (6) (6) (79) (7) (6) (80) (8) (6) (81) (9) (6) (82) (10) (6)
eUV eVTeTU + eUV eVTeTU + eUV eVTeTU + euv eVTeTU + eUV eVT ere: +

(83) (11) (6) (84) (12) (6)· (85) (13) (6) (86) (14) (6) (87) (15) (6)
eUV eVT eTU + eUV eVT eTU + "irv eVT eTU + eUV eVT eTU + eUV eVT eTU +

(33) (2) (1) (49) (3) (2) (52) (1) (3) (55) (2) (1) (65) (3) (2)
eUV eVTeTU - eUV eVTeTU - eUV eVTeTU - eUV eVTeTU - eUV eVTeTU -

(68) (1) (3) (71) (2) (1) (81) (3) (2) (84) (1) (3)
eUV eVTeTU - <uv eVTeTU - eUi! eVTeTU - eUV eVTeTU -

(4.3)
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4.3 Notation introduced

The potentials in 4.2 are too big, this section writes down the calculated

potentials for quivers: A, B, C, D and E into sums using two notations

namely: sum notation and the grouped sum notation. In the former,

we label the arrows in a way that all the cycles in the potentials can

be summed together, while in the latter, the arrows are labeled in a

manner that similar arrows between any two vertices appearing in given

summation can be put together. The grouped sum notation followsfrom

the sum notation .

• For the original quiver A:

(T) 3 , (U)

~/.
(V)

the potential 3.1 can be written as:

(jED (123) (132) (231) (213) (312) (321)

sgn(o) + - + - + -

This notation can be found in [21]where the sign of a permutation

o denoted sgn (o) is defined as +1 if a is even and -1 if a is odd.

It can be explicitly expressed as
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where fJ,(o-) is the number of inversions of (J,

• The potential 3A for quiver B

(T)( 6 (U)

~. /,
(V)

obtained through mutating A at V can be written:

We relabel the arrows:

and the potential becomes:

Note that while we had the sign of permutation in the original

quiver A, after mutation at vertex V the sign of permutation is not

there. We see this behavior every time we move from one mutation

to another. We can thus say that our sign of permutation in the

potential of a quiver alternates between + and - with successive

mutations of that quiver.

Another outcome is that all the composites of length two through

the vertex of mutation appear in the potential. like in the case

above, all paths of length 2 through V are in this potential. This

is also a phenomenon encountered in all the potentials obtained in

this case of t=.
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• The potential 4.1 for quiver C below

(T) 6 , (U)

~/
(V)

which was obtained after mutation of B at vertex U can be written

as:

3

S '" (o) cr1 cr2 cr'l '" (i+3) (i) (i)= L sgn a aTVaVUaUT + L aTV aVUaUT
crEi1 i=l

3 3 3

+ '" '" (i+3j+3) (j) (i+3) '" (4i+3) (i+2):1 (i+l):JL L aTV aVUaUT - L aTV aVU aUT
i=1 j=l i=l

Where (a)n is the mapping of a E Z into the equivalence classes [a]

in {[l], ...: [n]} under the equivalence mod n.

For instance;

(3)3· h (3)
avu IS t e arrow avu:

(4):1' h (1) davu IS t e arrow avu: an

(5):1' h (2)avu IS t e arrow avu e.t.c

We relabel the arrows:

(4) (5) (6) (1) (2) (3)
aTV: aTV: aTV by bTV: bTV: bTv

(7) (15) (1) (2) (9)
aTV: ... : aTV by CTV: CTV: ... : Crv

(4) (5) (6) (1) (2) (3)
aUT: aUT: aUT by bUT: bUT: bUT

The potential thus becomes:
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3

S L sgn( (J )a~lva~2ua~~ + L b~~a~ba~~
<TEn i=l

3 3 3

+ ~ ~ (i+3j-3) (j) b(i) ~ (4i-3) (i+2):1 (i+l):l
L LCTV avu UT - LCTV aVU aUT_
i=l j=l i=l

We now make observe that the component ~~=1 b~~a~ba~~ which is

equivalent to ~7=1 b~~Ja~~a~~ already encountered in the grouped

potential for the underlying quiver, B features here! From now

onwards, this element is recognizable in all the grouped potentials

for the quivers in this chapter.

• Mutation of quiver Cat 1/ gave the quiver D:

(T) < 39 (U)

~/
(1/)

whose potential 4.2 can be written in the sum notation as:
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S ~ <11 <12 <1'\ ~ (i+3) (i) (i)
L aTUaUVaVT + L aTU aUVaVT
<1En i=l

3 3 6 3

+ ~ ~ (i+3j+3) (j) (i+3) + ~ ~ (i+6j+9) (j) (i+9)
L LaTU aUVaVT L LaTU aUVaYIT
i=l j=l i=l j=l

3 3
~ (4i+3) (i+2)a (i+1);\ + ~ (10i+7) (i+1h (i)
L aTU aUV aVT L aTU aUV aVT
i=l i=l
3 3

~( (i+21) + (i+30)) (1) (i+6) + ~ (i+33) (2) (i+6)L aTU aTU aUVaVT L aTU ac,:VaVT
i=l i=l

3

+ ~ (i+36) (3) (i+6)
L aTU aUVaVT
i=l

We relabel these arrows as follows:

(4) (5) (6) (1) (2) (3)
aTU: aTU: aTU by bTU: bTU: bTU

(7) (15) (1) (9)
aTU: ."": Di'u by CTU: """: CTU

(4) (5) (6) (1) (2) (3)
aVT: aVT: aVT by bVT: bVT: bVT

(7) (8) (9) (1) (2) (3)
aVT: aVT' aVT by CVT: CVT: CVT

(10) (15) (1) (6)
aVT: """' aVT by dVT: """' dVT

(16) (33) (1) (2) (18)
aTU: """' o,TU by dTU: dTU: """' dTU

(34) (39) (1) (2) (3)
aTU : """:aTU by eTU: eTU' """' eTU

and the potential now becomes:
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S ~"'1"'2 ""1 ~ b(i) (i) (i)
. L aTUaUVaVT + L TUaUVaVT

.,.En i=1
3 3 6 3

+ ~ ~ (i+3j-3) (j) b(i) + ~ ~ d(i+6j-6) (j) d('.·.)
LLCTU aUV VT L L TU aUV VT
i=l j:=1 i=1 j=1
3 3

~ (4i-3) (i+2):1 (i+l):l + ~ d(lOi-8) (i+l):l (i)
L CTU aUV aVT L TU aUV aVT
i=l i=l
3 3

~((i+6) d(i+l5)) (1) (i) ~ (i) (2) (i)
L dTu + TU aUVcVT + L eTUaUVcVT
i=l i=1
3

~ (i+3) (3) (i)+ L eTU aUVcVT
i=1

I hi ti 1 '1 '" "'1"'2 ""1 ",3 b(i) (i) (i)n t s poten ia : we recognize e ements L.."'En aTUaUVaVT: L..i=l TUaUVaVT:

",3 ",3 (i+3j-3) (j) b(i) d ",3 (4i-3) (i+2):1 (i+l)" '81
L..i=1 L..j=l CTU aUV VT an L..i=1 CTU aUV aVT equrvs ent to
'" ( ) "'1 "'2 ""1 ",3 b(i) (i) (i) ",3 ",3 (i+3j-3) (j) b(i)L...,.Eflsgn (5 aTVaVUaUT:L..i=1 TVaVUaUT: L..i=1 L..j=1 CTV aVU UT

d ",3 (4i-3) (i+2)3 (i+l)3, h d '81 f h dan L..i=1 Crv aVU' aUT . ill t e groupe potenti 0 t e un er-

lying quiver C,

Lets find out these elements in the next mutation potential.

• The potential for the quiver E

(T) • 6 (U)

~~
(11)

after mutating C at vertex T given in 4.3 can be written in the sum

notation as:
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3

S '" (Tl (T2 (T'1 '" (i+3) (i) (i)L auvavTaiu + L aUV aVTaTU
(TEn i=I
12 3 15 3

+ '" '" (i+I2j-6) (i+3) (j) + '" '" (i+I5j+27) (i) (j+3)L L aUV aVT aTU L L aUV aVTaTU
i=I j=I i=I j=I
3 3 3

'" '" (3i+I6j+30) (i+2);1 (i+1);l '" (13i-6) (i+2);1 (i+1);lL L aUV aVT aTU - L aUV aVT aTU
i=I i=I i=I
(18) (1) (3) (22) (2) (1)+ aUV aVTaTU + aUV aVTaTU

(38) (3) (2)+ aUVaVTaTU

We relabel the arrows as follows:

(4) (5) (6) (1) (2) (3)
aUV' aUV' auv by buv, buv, bUY

(7) (42) (1) (36)
aUV' "" auv by cuv, "" CUV

(4) (15) (1) (12)
aVT' "" aVT by bVT' .. " bVT

(43) (87) (1) (45)
aUV' "" auv by duv, "" duv

(4) (5) (6) (1) (2) (3)
aTU' aTU' aTU by bTU' bTU' bTU

Giving the potential:
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3

S '"""' Gl G2 Gol '"""' b(i) (i) (i)L auvavTaiu + L UVaVTaTU
aEn i=1

12 3 3 3

+ '"""''"""' (i+l2j-12)b(i) U) + '"""'('"""'ii+15j-15) (i) b(j)L L cUV VTaTU L L uv aVT TU
i=l j=l j=l i=l

12 3 3

+ '"""'d(i+l5j-12)b(i) bU) ) _ '"""' '"""' d(3i+l6j-12) (i+2);1 (i+1);JL 'uv VT TU LL uv aVT aTU
i=1 i=l i=l

3
'"""' (13i-12) (i+2)a (i+lh + d(12) (1) (3)L CUV aVT aTU UV aVTaTU
i=l

+ d(16) (2) (1) + d(32) (3) (2)
uvavTOTu uvavTOTu

o In this potential, we recognize three elements:i::GE!1 a~va~2Tai~,

",3 b(i) (i) (i) d ",3 (13i-12) (i+2)3 (i+lh . al h
Ui=l uvavTOTu an Ui=l cuv aVT aTU 0 equiv ent to t ose
di d i C H 0 th 1 t ",12 ,\,3 (i+12j-12)b(i) (j)iscovere In quiver . owever, e e emen ui=l ~j=l CUV V'1'a'1'U

is different from that in the underlying quiver C, in terms of the

number of arrows C and b and hence posing a threat to om notation!.

NB With the trend observed above, it is clear that we are able

to recognize only part of the elements in the new potential. This

means, with this notation, we are not able to predict fully the next

mutated potential.
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Chapter 5

Calculation of potentials for

quivers with potential related

to pI X t»

5.1 Introduction

This chapter deals with the family of quivers corresponding to quivers

with potential in the tree diagram by Stern [18]which he related to pi X

pl.

The tree diagram is:
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'- '- /
'- /

,4,
'0' AGURf BY BEN ELDRIDGE

The quivers corresponding to each of these points are:

Again, the potential for the central quiver in tree diagram A, is known

from geometry and was stated in section 2A. Mutation of this quiver

and its mutants at various vertices yielded the tree diagram above. In

other words, the tree diagram shows how one quiver is related to another

through mutation. In section 5.2, we calculate the mutated potential for

the quiver B, and then provide the worked out potentials for the quivers

C, D, E, F and G. In section 5.3 we write all these potentials into sums.
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5.2 Calculations

We calculate the potential for B using the steps in 3.2.

Consider the quiver A below:

(T) ~(U)

21 12
(V) ~ (11/)

with the potential:

(5.1)

Mutating it at W we get:

Using the formula given in 3.2 for the unreduced potential we get:

Note that we do not have 2-cyc1esin this expression, thus no reduction
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is needed.

Renaming the arrows:

(1) ((1) (1))bVU:= aVWaWU

(2) ._ ((1) (2))bVU'- aVWaWU

(4) ._ ((2) (2))bVU'- aVWaWU

We get the quiver B:

having the potential:

bel) bel) bel) + b(2) b(2) bel) + b(3) bel) b(2) +
VU UT TV VU UT TV· VU UT TV

b(4) b(2) b(2) + bel) b(1) bel) + b(2) b(2) bel) +
VU UT TV VU UW wv VU uw wv

b
(3) bel) b(2) + b(4) b(2) b(2)
vu uw WV VU uw WV (5.2)

Note that this resultant quiver B can be obtained by mutating A at

the other three vertices except to see this as the same quiver some rotation

of the resulting quivers will be required. There are four lines from A that'

rejoin before connecting to' B. This shows that there are four ways of
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obtaining B from A.

c.

The following are the worked out potentials for the other quivers ob-

tained from mutations of B and some of its mutants .

• When we mutate the quiver B above at U we get the quiver C:

with the potential:

-s (1) (1) (1) (2) (1) (3) (1) (2) (2)
CVT('-TUCUV + CVTCTUCUV + CVTCTf]CUV +

(2) (2) (4) (3) (1) (2) (4) (2) (1)
CvTCTuCuv + CVTCTf]CUV + CVTCTUCUV +

(5) (1) (4) (6) (2) (3) (1) (1) (1)
CvTCTuCuv + CVTCTUCUV + CVWCWUCUV +

(2) (1) (3) (1) (2) (2) (2) (2) (4)
CVWCWUCUV + CVWCWUCUV + CVWCWUCUV +

Note that mutating the same quiver B at V gives a quiver C/. The

difference between the primed and unprimed quivers is as explained

in the p2 case.

• When we again mutate the resulting quiver C above at T we get

the quiver D:
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(T)~(U)

61 Y 12
(11) --;; (lV)

With the potential:

del) del) del) + d(3) del) d(2) + d(2) d(2) del) + d(4) d(2) d(2) +
VU UT TV VU UT TV VU UT TV VU UT TV

d(2) del) d(3) + del) d(2) d(4) + d(4) del) d(5) + d(3) d(2) d(6) +vu UT TV VU UT TV VU UT TV VU UT TV

d(5) del) d(4) + d(6) d(2) d(3) + d(7) del) d(6) + d(8) d(2) d(5) +"
VU UT TV VU UT TV VU UT TV VU UT TV

del) del) d(l) rP) + d(2) del) del) d(2) + del) d(2) d(2) del) +
VW WU UT"'TV VW WU UT TV VW WU UT TV

d(2) d(2) d(2) d(2) + d(3) dOll) del) d(3) + d(4) d(2) d(2) d(4) +
VW WU UT TV VW WU UT TV VW WU UT TV

d(5) del) d(l) d(5) " d(6) d(2) d(2) d(6) (".4)vw WU UT TV -t- VW WU UT TV v

• If we mutate the quiver C at vertex V we get the quiver E:

(T)~(U)

61 -: 122
(V)li(W)

With the potential:
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(5) (3) (1) (6) (4) (1) (7) (5) (1) (8) (6) (1)
eUTeTVeVU + eUTeTVeVU + eUTeTVeVU + eUTeTVeVU +

(9) (3) (2) (10) (4) (2) (11) (5) (2) (12) (6) (2)
eUTeTVeVU + eUT eTVeVU + eUT eTVeVU + eUT eTVeVU +

(13) (3) (3) (14) (4) (3) (15) (5) (3) (16) (6) (3)
eUT eTVeVU + eUT eTVeVU + eUT enreVU + eUT eTVeVU +

(17) (3) (4) (18) (4) (4) (19) (5) (4) (20) (6) (4)
eUT eTVeVU + eUT eTVeVU + eUT eTVeVU + eUT eTVeVU +

(21) (1) (3) (22) (1) (4) (1) (2) (3) (3) (2) (4)
eUT eTVeVU + eUT eTVeVU + eUTeTVeVU + eUTeTVeVU +

(9) (2) (3) (19) (2) (3) (6) (2) (4) (16) (2) (4)
eUTeTVeVU + eUT eTVeVU + eUTeTVeVU + eUT eTVeVU +

(1) (1) (1) --l... (2) (2) (1) (3) (1) (2) (4) (2) (2)
eUWeWV-eVU I eUWeWVeVU + eUWeWVeVU + eUWeWVeVU +

(5) (3) (1) (6) (4) (1) (7) (5) (1)· (8) (6) (1)
eUWeWVeVU + eUWeWVeVU + eUWeWVeVU + eUWeWVeVU +

(9) (3) (2) (10) (4) (2) (11) (5) (2) (12) (6) (2)
eUWeWVeVU + eUWeWVeVU + eUWeWVeVU + eUWeWVeVU +

(13) (3) (3) I (14) (4) (3) (15) (5) (3) (16) (6) (3)
eUWeWVeVU T eUWeWVeVU + eUWeWVeVU + eUWeWVeVU +

(17) (3) (4) (18) (4) (4) (19) (5) (4) (20) (6) (4)
eUWeWVeVU + eUWeWVeVU + eUWeWVeVU + eUWeWVeVU +

(21) (1) (3) (22) (1) (4) (1) (2) (3) (3) (2) (4)
eUWeWVeVU + eUWeWVeVU + eUWeWVeVU + eUWeWVeVU +

(9) (2) (3) (19) (2) (3) (6) (2) (4)
eUWeWVeVU + eUWeWVeVU + eUWeWVeVU +

(5.5)

• Mutation of the quiver D above at W yields the quiver F:
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Whose potential is :

s j(l) j(1) 1(1) + j(2) j(2) 1(1) + j(3) 1(1) 1(2) + j(4) j(2),.((2) +
VU UT TV VU UT TV VU UT TV VU UTJTV

j(2) j(1)1(3) + j(l) 1(2)1(4) + j(4) 1(1)1(5) + j(3) 1(2)1(6) +
VU UT TV VU UT TV VU UT TV VU UT TV

j(5) j(l) 1(4) + j(6) j(2) 1(3) + j(7) j(l) 1(6) + j(8) 1(2) 1(5.) +
VU UT TV VU UT TV VU UT TV VU UT TV

j(9)j(1)1(1) + j(lO)/(l) 1(2) + j(U)j(1)1(3) + j(13)j(1)1(5) +
VU UT TV VU UT TV VU UT TV VU UT TV

j(15)/(2)1(1) + j(16)/(2)1(2) + j(18)j(2)1(4) + j(20)j(2) 1(6) +
VU UT TV VU UT TV Vu UT TV VU UT TV

j(l) j(l) j(1) + j(2) 1(2) j(1) + j(3) 1(1) j(2) + j(4) j(2) j(2) +
VU UW WV VU UW WV VU UW WV VU UW WV

j(2) j(l) j(3) + j(l) 1(2) j(4) + j(4) 1(1) j(5) + j(3) 1(2) j(6) +vu uw wv vu uw wv vu uw wv vu uw WV

j(9) j(l) j(l) + j(10)j(1) j(2) + j(11)/(l) j(3) + j(12)/(1) j(4) +vu uw wv vu uw wv vu uw wv vu uw wv

j(13)/(1) j(5) + j(14)j(1) j(6) + j(15)j(2) j(1) + j(16)j(2) j(2) +vu uw wv vu uw wv vu uw wv vu uw wv

j(17)/(2) j(3) + j(18)j(2) j(4) + j(19)/(2) j(5) +vu uw wv vu u.w wv vo uw wv

j(20)/(2) j(6) (t;.6)vu uw wv u

• Further mutating the resulting quiver D above at U we get the

quiver G:

(T)~(U)

101X 12
(V) *'6 (W)
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Whose potential has been found to be:

S- (1) (1) (1) (3) (1) (2) (2) (1) (3) (5) (1) (4)
9VT9TU9uv + 9VT9TU9uv + 9VT9TU9uv + 9VT9Tr;9UV +

(4) (1) (5) (7) (1) (6) (6) (1) (7) (9) (1) (8)
9VT9T[;9UV + 9VT9TU9uv + 9VT9Tr;9UV + 9VT9Tr;9UV +

(4) (2) (1) (1) (2) (2) (6) (2) (3) (2) (2) (4t
9VT9T[;9UV + 9VT9TU9uv + 9VT9T[;9UV + 9VT9TU9uv +

9~~9?i!9i;~ + 9V~9?b9~~ + 9~~) 9?b9g~ + 9~~f~~:'9~~ +
(1) (1) (1) (2) (2) (1) (3) (1) (2) (4) (2) (2)

9WT9TU9uw + 9WT9TU9uw + 9WT9TU9uw + 9WT9TU9uw +
(1) (1) (1) (1) (1) (4) (2) (2) (2) (1) (1) (3)

9vw9wT9TU9uv + 9VW9WT9Tr;9UV + 9vw9wT9TU9uv +
(2) (4) (2) (4) (3) (1) (1) (2) (4) (4) (2) (1)

9vw9wT9TU9uv + 9vw9wT.9TU9uv + 9VW9WT9Tr;9UV +
(5) (1) (1) (4) (6) (4) (2) (3) ( )

9vw9wT9TU9uv + 9vw9wT9TU9uv 5.7

5.3 Notation introduced

These potentials as the case was in 4.3 are very huge and as a result we

use the notation introduced in the same section to write them briefly.

• The potential for the quiver A:

(T)~(U)

21 12
(ll)~(W)

in 5.1 can be written in both notation as:

• Mutation of quiver A at the vertex W yielded the quiver B:
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whose potential 5.2 can be written:

2 2
S '" (2i+j-2) (j) (i) + '" (2i+j-2) (j) (i)= L aVU aUTaTV L aVU aUWaWV

i,j=l i,j=l

Note the symmetry between T and W displayed by this potential.

This is a very crucial behavior which is studied comprehensively by

Owino in [14]. We find it in the potentials for quivers: C: E and F.

• The potential for the quiver C:

(T)~(U)

61;/ 12
(V) *"6 (W)

in 5.3 can be written in the sum notation as:

2 2
S '" (i) (j) (2i+j-2) -"- '" (2i+j) (j) (2i-j+1)L aVTaTUaUV I L aVT aTUaUV

i,j=l i,j=l
2 2

+ '" (i) (j) (2i+j-2) + '" (2i+j) (j) (2i-H1)L avwawuauv L avw awuauv
i,j=l i,j=l

We rename the arrows as follows:

and the potential now reads:
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2 2
S ,,(i) (j) (2i+j-2) + "b(2i+j-2) (j) (2i-1+1)

L aVTaTUaUV L VT aTUaUV
i,j=l i,j=l

2 2

+ " (i) (j) (2i+j-2) + "b(2i+j-2) (j) (2i-j+1)
L °VWaWUaUV L vw aWUaUV i

i,j=l. i,j=l

• The potential for Mutation of C at T gives the quiver D:

whose potential 5.4 can be written in the sum notation as:

s
2 2

" (2i+j-2) (j) (i) +" (2i-j+1) (j) (2i+j)L avu aUTaTV. L avu aUTaTV
i,j=l i,j=l

2 2
" (2i+j+2) (j) (2i-j+3) +" (i) (j) (j) (i)L avu aUTaTV L avWaWUaUTaTV
i,j=l i,j=l

+

+
2

" (2i+j) (j) (j) (2i+j)L avw aWUaUTaTV
iJj=l

Relabeling the arrows:

(3) (4) (5) (6) (1) (2) (3) (4)
aTV: aTV: aTV: aTV by bTV: bTV: bTV: bTv

(5) (6) (7) (8) (1) (2) (3) (4)
avu: avu: avu: avu by bvu: bvu, bvu: bvu

(3) (4) (5) (6) bel) b(2) (3) (4)
avw: avw: avw: avw by vw- vw bvw: bvw

We thus write the potential as:
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2 2
S ~ (2i+j-2) (j) (i) + ~ (2i-j+l) (j) b(2i+j-2)

= L aVU aUTaTV L aVU aUT TV
i,j=1 i,j=1

2 2
+ ~ b(2i+j-2) (j) b(2i+j-2) + ~ (i) (j) (j) (i)

L vu aUT TV L aVWaWUaUTaTV.
i,j=1 i,j=1

2

+ ~ b(2i+j-2) (j) (j) b(2i+j-2)
L vw aWUaUT TV
i,j=1

Note that the symmetry we had in the original quiver C is lost but

we have created paths of length 4..

• .Mutation of quiver C at V gave the quiver E:

(T) ~(U)

61 /. 122
(V)~(W)

whose potential 5.5 can be written in the sum notation as:

2 4 2

S ~ (2i+j-2) (j) (i) + ~ (i+4j) (i+2) (j) + ~ (i+20) (1) (i+2)
L aUT aTVaVU L aUT aTV aVU L aUT aTVaVU
i,j=1 i,j=1 i=1

2
~ (2i-l) (2) (i+2) (9) (19)) (2) (3) (6) (16)) (2) (4)+ L aUT aTVaVU + aUT + aUT aTVaVU + aUT + aUT aTVaVU
i=1

2 4 2

+ ~ (2i+j-2) (j) (i) + ~. (i+4j) (i+2) (j) ~ (i+20) (1) (i+2)
L auw awvavu L auw awv avu + L auw awvavu
i,j=1 i,j=1 i=1

2
~ (2i-l) (2) (i+2) (9) (19)) (2) (3) (6) (16)) (2) (4)+ L auw awvavu + auw + auw awvavu + auw + auw awvavu
i=1

Renaming the arrows of this potential:
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(5) (6) (7) (20) b(l) b(16)
aUT: aUT: aUT: ... : aUT by UT: ... : UT

(3) (4) (5) (6) (1) (2) (3) (4)
aTV: aTV: aTV: aTV by bTV: bTV: bTV: bTV

(21) (22) (1) (2)
aUT: aUT by cUT: CUT

Since the potential is symmetrical, we apply the same relabeling to

the other arrows in this potential where vertex T is replaced with

w.
The potential in the grouped sum notation becomes:

2 4 2

S '" (2i+j-2) (j) (i) + '" b(i+4j-4)b(i) (j) + '" (i) (1) b(i)L aUT aTVaVU L· UT TVaVU L cUTaTV VU
i,j=l i,j=l i=l

2

+ '" (2i-1) (2) b(i) + (b(5) + b(15)) (2) b(l) + (b(2) + b(12)) (2) b(2)L aUT aTV VU UT UT aTV VU UT UT aTV VU
i=l

2 4 2

+ '" (2i+j-2) (j) (i) +.'" b(i+4j-4)b(i) (j) + '" (i) (1) b(i)L auw awvavu L uw wvavu L cuwawv vu
i,j=l i,j=l i=l

2

+ L a~;-l)aWvb~h + (bi;lv + b~~)a~Vvb~i: + (b~lv + b~~)aWvb~i:

i=l

• Quiver F was obtained by mutating D at W:

its potential 5.6 can be written in the sum notation as:
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2 2
+ '" (2i+j+2) (j) (2i-j+3) + '" (2i+j+lO) (j) (i)L aVU aUTaTV L aVU aUTaTV

i,j=l i,j=l

2 2

+ '" (2i-j+17) (j) (2i+j) + '" (2i+j-2) (j) (i)L aVU aUTaTV L aVU aUWaWV
i,j=l i,j=l

2 2

+ '" (2i-j+l) (j) (2i+j) +.", (2i+j+2) (j) (2i-j+3)L aVU aUWaWV L aVU aUWaWV
i,j=l i,j=l

2 2

+ '" (2i+j+1O) (j) (i) + '" (2i-j+l7) (j) (2i+j)L aVU aUWaWV L aVU aUWaWV
i,j=l i,j=l

Renaming the arrows of this potential:

(3) (4) (5) (6) (1) (2) (3) (4)
aTV' aTV' aTV' aTV by bTV' bTV' bTV' bTV

(5) (8) (1) b(4)
aVU' '" avu by bvu, '" VU

(13) (16) (1) (4)
aVU , .'" avu by cvu, "" CVU

(17) (18) (19) (20) (1) (2) (3) (4)
aVU' aVU' aVU' avu by dvu, dvu, dvu, dvu

Because of the symmetry between U and V of this quiver, we apply

the renaming above to the remaining arrows of this potential where

V is substituted with U,

The potential in the grouped sum notation as:
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2 2 0

S ~ (2i+j-2) (j) (i) + ~ (2i-j+1) (j) b(2i+j-2)
L aVU aUTaTV L aVU aUT TV .
i,j=l i,j=l

2 2

+ ~ b(2i+j-2) (j) b(2i-j+1) + ~ (2i+j-2) (j) (i)
L vu aUT TV L CVU aUTaTV
i,j=l i,j=l

2 2

+ ~ d(2i-j+1) (j) b(2i+j-2) + ~ (2i+j-2) (j) (i)
L vu aUT TV L avu auwaWV
i,j=l i,j=l

2 2

+ ~ (2i-j+1) (j) b(2i+j-2) +. ~ b(2i+j-2) (j) b(2i-j+1)
L avu auw wv L vu auw wv
i,j=l i,j=l

2 2

+ ~ (2i+j-2) (j) (i) + ~ d(2i-j+1) (j) b(2i+j-2)
L Cvu auwaWV. L vu auw wv
i,j=l i,j=l

• The potential for Mutation of D at U gave the quiver G:

(T)~ (U)

101X 12
(V) "(5 (l/V)

with potential 5.7 which can be written in the sum notation as:

2 2

S ~ (2i+j-2) (j) (i) + ~ (i) (j) (2i+j-2)
L aWT aTUaUW L aVTaTUaUV
i,j=l i,j=l

2 2
+ ~ (2i-)+3) (j) (2i+j+2) + ~ (2i+j+4) (j) (2i-)+5)L aVT aTUaUV L aVT aTUaUV

i,j=l i,j=l

2

+ ~ (2i+j) (3j-2) (j) (2i-j+1)
L avw aWT aTUaUV
i,j=l
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Relabeling the arrows:

(3) (4) (5) (6) (1) (2) (3) (4)
aVT' aVT' aVT' aVT by bVT' bVT' bVT' bVT

(5) (6) (7) (8) (1) (2) (3) (4)
aUV' aUV' aUV' auv by buv, buv, buv, buv

(7) (8) (9) (10) (1) (2) ,(3) (4)
aVT' aVT' aVT' aVT by eVT' eVT' eVT' eVT

(7) (8) (9) (10) (1) (2) (3) (4)
aUV' aUV' aUV' "uv by buv, buv, buv, buv

(3) (4) (5) (6) b(l) b(2) b(3) (4)
avw,avw,avw,avw by VW' VW' VW' bvw

We thus write the potential in the grouped sum notation as:

2 2

S '" (2i+j-2) (j) (i) + '" (i) (j) (2. i+j-2)L aWT aTUaUW "L aVTaTUa[;V
i,j=l i,j=l

2 2

+ '" b(2i-j+l) (j) b(2i+j-2) + '" (2i+j-2) (j) b(2i-j+1)L VT aTU UV L eVT aTU UV
i,j=l i,j=l

2 2

+ '" b(2i+j-2) (j) (2i~j+1) + '" (i) (3j-2) (j) (2;+j-2)L VT aTUaUV L aVWaWT aTUaUV
i,j=l . ;,j=l

2

+ '" b(2i+j-2) (3j-2) (j) (2i-j+1)L vw aWT aTUaUV
i,j=l
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Chapter 6

Summary and

recommendations

In this work, we have calculated potentials for some quivers that Stern

[18] related to p2 and t» x pl. The number of terms in these potentials

get too big with mutations. Even if an applet were to be used in do-

ing the calculations, the potentials would still be big and thus difficult

to understand. Our study has introduced some notation to write them

briefly.

In using this notation, we discovered some interesting patterns in the

potentials of the quivers in these families. For the P? family, certain

patterns repeatedly occurred in the mutated potentials giving an idea of

what the next mutated potential can be for a given quiver. This means

that the notation used here is not the right one to use to fully predict

the mutated potentials. We thus recommend that a study be done on

a better notation to write these potentials. There is a relevant ongoing

study by Crew and Velez in' [2]which hopefully: might yield results that
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offer a better notation to write potentials.

The two families dealt with in this study are the simplest of the ten

known del pezzo quivers. The fact that oUI notation has failed for these

simple cases implies that there is much more work in studying the poten-

tials for the other families namely: p2 blown up to 1 point: t= blewn up

to 2 points: t= blown up to 3 points: p2 blown up to 4 points: p2 blown

up to 5 points: p2 blown up to 6 points: p2 blown up to 7 points and p2

blown up to 8 points.
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