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ABSTRACT g

From the work of Derksen, Weyman and Zelevinsky in [4], we get the
definition for mutation of a quiver with potential. Stern in [18] describes .
some families of quivers corresponding to quivers with potehtial that can
be mutated indefinitely. In this work, we use two of these 'fainihes as our
basic examples of study and find their appropriate potentials. Because the
potentials get larger and larger with the mﬁtations, we use two notations;
first, a brief one and the second one providing useful information about
the individual potentials. The results of this study offer explicit examples

of quivers with potential which can be studied further.



Chapter 1

Introduction

A quiver (@ consists of a set of vertices Qp, a set of arrows @, and two
maps ¢ and %, assigning to each arrow the starting and terminating vertices
respectively. The main objects of our study are quivers with potential. A
quiver with potential is a quiver @ together with the potential S, which
is a sum of cyclic paths of Q. The quivers in the families obtained and
represented by tree diagrams by Stern in [18] are our main examples of
quivers with potential. We obtain the appropriate potentials for some
of the quivers in the two families given below. The quivers are related
through mutation and we begin the mutations with the quiver A, at the

centre of each tree diagram.

The following tree diagram represents quivers belonging to the P?

family:
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The quivers corresponding to each of these points are:

FIGURE BY BEN ELDRIDGE

In chapter 4 of this thesis, we calculate the potential for the quivers:

B.C, D and FE in section 4.2, then write them into sums in section 4.3.

The next tree diagram represents quivers belonging to the P! x P!

family.
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The quivers corresponding to each of these points are:

]

i

6]

In chapter 5, we calculate the potential for the quivers: B,C,D,E and

F in section 5.2 and express each potential into sums in section 5.3.




Chapter 2

Mathematical background

2.1 Introduction

This chapter introduces the basic mathematical terms and concepts that
are fundamental to the understanding of the entire thesis. We discuss
the concept of quivers, giving some impé)rtant examples and the notation
used to represent them in this study in section 2.2. Paths and relations
are dealt with in section 2.3 while potential, quivers with potential and
cyclic derivatives are studied in section 2.4. A more algebraic approach

to discussing these concepts is given in Obiero [13] and Owino [14].

Section 2.5 provides the sources of our study and in section 2.6, we
state the problem area this study has attempted to solve. Section 2.7
gives the main objectives of our stud)'f while the main approach used in
the study is stated in section 2.8. Finally, the significance of our study is

covered in section 2.9.



2.2 Quivers and examples ¢

In section 2.4, we introduce our main objects of study which are quivers
with potential. A transformation called mutation is defined on these
quivers with potential in chapter 3 and requires the quiver to have no loops
or oriented 2-cycles. In this section we discuss some of these concepts as

well as introduce the examples studied in chapters 4 and 5.

Definition 2.1. A quiver @ is a quadruple (Qo, @1, s, 1) where;

e (o is a set of vertices,
e (), is a set of arrows,
e 5: ()1 — (o is a map taking an arrow to its starting vertex and

e t:()y — (Qp is a map taking an arrow to its terminating vertex.

The following examples introduce the notation used for the vertices

and arrows in this study.

Example 2.2. Consider the quiver:

I} —s ¥

This quiver has vertices: U,V € 'y and an arrow ayy € (1 with

s(ayy) = U the starting vertex, and t(ayy) = V the terminating vertex,

Example 2.3. The quiver;

T2y —>V

(@13




Example 2.6. The quiver

is an example of a quiver with a 2-cycle. It consists of two vertices and

two arrows oriented in opposite direction to each other.

Definition 2.7. A finite quiver is a quiver whose sets of vertices Qg

and arrows 7 are both finite.

In this study, we deal with finite quivers. More specifically, we study
two families of quivers related to P? and P* x P! by Stern [18] in chapters

4 and 5 respectively. Given below are the central quivers in each case:

For the P? family, the central quiver is:

N A

while in the P! x P! family, the central quiver is:

T

U

e
ZT 12
V*‘Q—‘T/V

2.3 Paths and relations

The potential of quivers is defined in section 2.4 as a sum of the cyclic

paths of the quiver. It is from these cyclic paths that we take the cyclic
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derivatives discussed in the same section to obtain relatioqs. In this sec-

tion, we define paths, relations and a quiver with relations.

Definition 2.8. A path of length n of a quiver () is a sequence of arrows:

l AV Vi AV Vo eenenennns ay, v,
where the terminating vertex of any arrow. is the starting vertex of the
arrow to its right.

Example 2.9. The quiver:

(T) = (V)

lCW’U

(V) (W)

dvw

has a path: dVWcWL-'bUT: of length 3. .

Definition 2.10. A trivial path is a path of length zero.

For each vertex V € @y, ey denotes the trivial path which starts

and terminates at the vertex V.

Example 2.11. The quiver:

T—2>U—>V
has three trivial paths: er,ep. ey,

six paths of length one:

o @ 1) (2 _3) (4
vTyAuT: Svs Gvus Gy Gvy

8




. 1) (1 2
and eight paths of length two: ag,g agf} %,l) a(Llf)p %}q’(), é% ;@ g}?’ él% %,1[), g% gg (2)

®) (2 (4 (2 -
Ayyayr: Ay .

Example 2.12. Consider the quiver below;

T U v w

2

This quiver has four trivial paths: er, ey, ey, ew, four paths of length
one: aLvT=erv,CVW7dVW7 and two paths of length t\’VO:n bUVCVW and

buvdyw.

Definition 2.13. A path is cyclic if its starting and terminating vertices

coincide. Otherwise, it is acyclic.

Definition 2.14. A cyclic path of length one is called a loop. A cyclic

path of length n is an n-cycle.

Any cyclic path of length n can be written:

v, viQnivya - - - AV, 1V,

Definition 2.15. A cyclic path

a‘V'nVI a‘Vl‘/Q FEA aV‘n.—an

is said to be cyclically equivalent to itself and any path:

aVka+1 =R a’VnVla’Vl‘/Q s G‘Vk_lvk

for V; := Vimodn-




B

Proposition 2.16. Cyclic equivalence of cyclic paths is an equivalence

relation. -

Proof. Let f and g be cyclic paths. Suppose f is cyclically equivalent to
g, then either g = f or g # f. If g = f, then f is cyclically equivalent to
itself. '

Ifg # f, then f = ay,vianv, ...av,_,v, is cyclically equivalent to
g = CLVka_'_1 AV VOV Ve BV Ve for V; = V;Z-mod-n-
With
Viyi if i<n—k

Ui =
Vk+i—-n, 1f 7 > — k

Then, g9 = ap, . t,AU,\Us - - - QUn_1Un and f = AU, Un_py1 -+ QURUY - - - ay, _x—1Un—k

for V; := Vimodn. This implies g is cyclically equivalent to f.

Let f = ay,v,anvs - - - av,_,v, be cyclically equivalent to g = av,v,,, - - -
AV, AN Vs - - - AV Vs ADd ¢ = Qp, 0, @, - - - Au,_,u. cyclically equivalent

to h = a‘UlUl+1 QG L O/ U - - - O T

Then let
Ui = '
Vk+i_.n 7:f i>n—k
f = ay,w, .- -y, 1V, and h = AVi Vi - - AV Vi -+ - AV Vi for
Vi = Vimodn. This implies f is cyclically equivalent to h. O
p y y eq

The cyclic paths dealt with in this study are defined to cyclic equiv-
alence; we are thus not careful about where to start and end a cycle since

whichever vertex we choose, we still have the same path.

10




Consider the following example: )

Example 2.17. In the quiver:

(T) == (U)

arv T lCLVL?

4 (__ 7
(V) <— (W)
The cyclic path can be expressed in the following ways: dywcw i byrary,
bUTaTVdVWCWU: aTVdVWcWUbUT, CWUbD'TdTVdVW- However, cyclic eciuiv—

alence says that all these expressions are one path and so any one of them

suffices to represent the cycle in this quiver.

Definition 2.18. A quiver with relations is a quiver @ together with
a set of relations. A relation is a linear combination of paths having the

same starting point and the same end point equated to zero.

A path algebra is an algebra whose basis is all the paths of a quiver.
The set of all relations imposed on a quiver ) generates an ideal with
which we quotient a path algebra to obtain a path algebra of a quiver
with relation, also called the quotient algebra. For more details on this,

see Obiero [13] and Owino [14].

We discuss some special types of relations called potentials in the next

section.

2.4 Quivers with potential

The relations introduced in the previous section can be obtained by taking

cyclic derivatives on the potential of a quiver () with respect to the single

11
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arrows in that quiver. This section thus gives the definitions for potential,
a quiver with potential and an example illustrating cyclic derivatives.

Definition 2.19. A quiver with potential is a pair (Q,S) consisting
of a quiver @) and its potential S. A potential, S of a quiver @ is a linear

combination of cyclic paths of Q.

The quiver examples illustrating paths in section 2.3 have no potential
since there are no cycles associated with them. However, the qlﬁveré in
the two families introduced in section 2.2 have potentials. The potentials
for the quivers at the center of each family is known from geometry and

we give them as our examples of quivers with potential.

Example 2.20. Quiver:

T

with the potential:

S = aBa® B _ 0.0 @ 0 M) &)
= Ggrerybyy — Yprlrvivy — Yyrlrvvy

2) (3) (1 3) (1) (2 3) (@)
afrafleyy + agparyely, — aiparyaly (2.1)

and

Example 2.21. Quiver:




Y
2 L
T—'—>(/f (v
2T 12
V<2—VV
with the potential:
_ L @ @) 1) @ () (2) (1)
S = aywawylyrary + Ay dwyyrary +
(@ (1) (1) (2 @ (2 (2 (2)
avwowu ety T Ayw lwrAyTaTV (22)

Calculation of the mutated potentials for some of the other quivers in

these families is our main task in chapters 4 and 5.

Definition 2.22. The cyclic derivative on the potential S, is the partial
derivative §, of & with respect to an arrow a € ¢, on the potential. It is

given by the equation below,

d
da(ay....aq) = Z 0a(ar)rq1----0qay....a5_1 (2.3)

k=1
where
ar € Q1.Vk=1,....d

and

1 if ar=a
0 if ar#a

Example 2.23. Consider the quiver below;

da(ar) =

13




(T) =2~ (V) o

arv I l CWU

(V) 5— (W)

dyw

We choose the potential for the quiver as:

S = dywewvbyrary

We now proceed to find the cyclic derivative with respect to an arrow

of this quiver say, ary.

Using the formulae:

d
Sa(a1.-aa) = 8a(ak)ak41----8a01----x (2.4)
k=1
We have:
Sary (dywewrbvrary) = bapy (dvw)ewoburary + dory (cwu)burarvdyw
o= Sary (bur)arvdvwewt + dagy, (arv)dyvwewrbur

From the condition :

We get:

barv (dvwewvburary) = 0+ 0 + 0 + dyvwewrbyr

14




Thus:

(SGTV (dVWCWUbUTaTV) = dywewrbor

Giving the relation:

dvwewobyr =0

2.5 Literature review

In the 1970s, a theorem of Gabriel [8] changed the way algebra were
studied. The theorem states that every basic algebra over an algebraically
closed field is isomorphic to the path algebra of a quiver with relations.
This theorem led to a change in the way algebras can be visualized and

discussed, since many algebras could be represented using quivers.

Since then a number of connections of the representation theory of
quivers to other algebraic topics have come up, in particular to Lie algebra
[9, 11] , Hall algebras [1, 15, 17] and quantum groups [5, 12] and more

recently to cluster algebras [6, 7].

Mutation of quivers was first introduced as a case study in the study
of cluster algebras by Fomin and Zelevinsky in [6, 7]. Skew-symmetric
integer matrices encode quivers withoﬁt loops and oriented 2-cycles and
their procedure for mutating a quiver is a special case of the mutation of

matrices.

The idea of mutating -quivers was further extended to mutation of

quivers with special types of relations called potentials by Derksen, Wey-



man and Zelevinsky in [4]. Their work gives the definition for mutation
of a quiver with potential and the procedure involved provided the quiver

has no loops or oriented 2-cycles.

Defining mutation of quivers with potential raised a lot of interesting
questions, especially since the mutation was not an operation on .quivers
with potential. Questions include: When is mutation an operation? If
it i1s an operation, what happens to the potentials as we move from one
mutation to another? How does this concept relate to other algebraic

topics? What other ideas can be taken from related subjects like physics?

Studies have been done in attempt to provide partial solutions to
some of the above issues. For instance, Stern [18] with strong exceptional
co]lectiéns showed that tilting mutation is an operation on some families
of quivers corresponding to quiveré with potential. He used family tree
diagrams to represent his mutations. Based on Stern’s examples, Obiero
[13] related mutation of quivers with potential to R-charges in physics
and Owino [14] studied blocks of exceptional collections from geometry.
Both studies were done without knowing what the explicit potentials are

for these quivers, and this is the aim of our study.

2.6 Statement of the problem

Derksen, Weyman and Zelevinsky in [4] initiated the mutation theory of
a quiver with potential. Their study requires the quiver with potential to
have no loops or oriented 2-cycles. In Stern [18] we have a rich source of

families of quivers that correspond to quivers with potential which can be

16




mutated indefinitely. The potentials for these quivers can be useful in a
number of studies but we have not found any proyision(s'v for them in the
literature. Thus, our main task is to obtain and write these potentials
consistently, particularly for the cases that Stern [18] related to the P?
and P % P,

2.7 Objective of the study

In this study, we obtain the potentials for some of the quivers with poten-
tial related to P? and P! x P! found in Stern [18]. Through relabeling,
we write the potentials consistently so as to determine whether or not

prediction of the next mutated is possible using our notation.

2.8 Research methodology

An understanding of the mutated diagrams in Stern [18] is a guideline for
this work. An ability to effectively and carefully calculate the mutated
potential for a given quiver following the steps based on the work of Derk-
sen, Weyman and Zelevinsky in [4] and writing them in a brief manner is

the backbone of this study. These steps entail;

1. Obtaining an unreduced quiver through the first few steps of muta-

tion.

2. Reducing this quiver using relations.

17




3. Relabeling of the arrows so to write the reduced potential in a short

and a consistent way.

2.9 Significance of the study

Any result in the study of quivers with potential is important in the de-
velopment of this new and active area of study. Our calculations provide
explicit examples of quivers with potentials which can be worked on fur-
ther. This study is already of use to my colleagues working on related
areas. For instance, relabeling of arrows yielded patterns in which the
symmetry of potentials expected in blocked quivers was seen in the rele-

vant examples.

18




Chapter 3

Mutation of quivers with

potential

3.1 | Introduction

The key reference for this section is the paper by Derksen, Weyman and
Zelevinsky [4]. They defined mutation of a quiver with potential provided
the quiver has no loops or 2-cycles. A quiver is transformed to a mutated
one with aid of the rules governing the transformation. This transforma-
tion is reversible by repeating mutation at the same vertex to obtain the

original quiver.

3.2 Mutation of a qui{/er with potential

In mutating a quiver with potential, it is a consequence of Proposition

2.16 in section 2.3 that no two cyclically equivalent paths appear in the

19
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expansion of S. However, it is also required that no cyclic path in this

expansion starts (and terminates) at the vertex of mutation.
Construction 1. (See [4]) Mutation of a QP (Q,S) at a vertex V € Qo

can be defined if ) satisfies the following conditions:

i) @ has no loops.
ii) @ has no oriented 2-cycles.

This construction involves seven steps which are described and illus-

trated by the example below:

Example 3.1. Consider the quiver :

RO)
1) —2— (V)

with the potential:

) (2 (3) (1) (3) (2) (2) (1) _(3)
S = appapyayy — apraryayvy — Applpyayy +
(2) (3) (1) (3) (1) (2) (3) (2) (1)
aprary Ay + appapy Gy — Applry Ay (3.1)

Let’s mutate it at vertex V,

1. The new quiver has the same vertices as the old one.

G NN ()

(V)

20




2. Arrows into vertex V become arrows out of V.

(T) ()
vy

3. Arrows out of V become arrows into V.

(T) )
V)

4. Arrows not into or from V remain unchanged.

(1)

ayT
{)—=——7—+{U)
X /
(2)* (i)*
arv ~ Ay
(V) .
5. All paths of length two through vertex V, denoted agi‘),ag.?,, give

AITOWS, (a%a%), from the start to the terminating vertex of the

original path.

(afyayy)
s
(T) )

4
#

3 44/i//
o o
)

In this case we have 9 paths through V' which give 9 new arrows

namely:

1 (1) 1) (2) 1) ((3)
(aryvayy): (aryayi): (aT‘)/a'g/U

2) (1 2) (2 2) (3
(af(l‘\)/a&/z,) (at(l‘\)/aV()})= (a'f(l’\)/a%/g}

3 : 3 2
(@20, (85t el 6l)

91



This quiver is the unreduced quiver whose potentifal is given in the

<

next step.

. To obtain the unreduced potential, we use the formula:

3= (S)+ av,  (32)

where (8) is obtained from & of the original quiver. We do not

have paths of the form a,(,i),ag.)_, in the unreduced quiver, but rather

compositions for arrows of the form (a(f‘),a%) We thus substitute
(a$)a9)) for each factor alhal?) with s(al)) = t(a9)) = V, for any

cyclic path occurring in the expansion of S.

This element in our case is:

) @ 3) 1) (3) (2 2) (1) (3
(8) = agr(arvavy) — apr(arveyy) — alr(abyaly) +

2) , (3) (1) (3) /. () (2 3 2) (1
aé"’}‘(a’TVaVU) + a'UT(a'g“)/a‘g/l)}) - aé_.% aga‘),ag,l);)—}-

and

Ay= > (ba)a*b* (3.3)

a,beQ:s(b)=t(a)=V

In this case this element is:

( (1) (1) )a(l)* (1)« ( (1) (2) )0(2)* (1)+

@ (3)y,3) ()
aryayy)eyy ety + (Gryyy Yol )alh ey +

ve ary + (arvayy)ay apy

(2) (1), ()* (2)= (2) (2)y (2 (2)* (2) _(3)y (3)x (2)+
(agyayp)ayy ary +(aTVa‘VU)a'VU apy + (apyayy)ayy ary +

(3) (1), (1)* (3)* 3) (2 2)x  (3)* 3) (3 3)« (3)
(apvayy)ayy apy + (aT‘)/a'Vl)})a'ﬁl()J a,f”)/ i (af(m)/a%')a% a".(T\)/

22




Thus combining the two, the unreduced potential vx(ill be:

<

5 1 2) _(3) 1), .3 (2 2 1) (3
S = aé’%‘(af(I‘VaVU - app(apyayy _agf’.)f‘(a'i(l“)/ag/l)})"'
(2) /() (1) (3) (1) (2) (3), (2) (1)
apr(apyayy) + aprplapyayy) — aprlaryayy) +
1) (1 Dx ()% 1) (2)y (2% (L)% 1) (3)y . (3)% (1)«
(S all)ald o) + (e all)al ol + (af)al))all ol +

(a2 a® W @ @ () ,@ @ (4@ @)y, @

aryayy)ayy apy + (appaye)avy apy + (appayy)ayp apy +

3) (1 1)* (3)« 3) (2 (2)% _(3)* 3) (3 (3)* (3)«
aga‘),a%,)a%r ary + (aT\)/a‘gll)])a'Vl);' ary + (aT\)/th)J)an; aﬁm)/

The next step is the reduction process where the 2-cycles in the

unreduced potential are removed using relations to give the reduced

~potential. This step is built on theorem 4.6 in [4] where we remove

the trivial part; the linear combination of 2-cyclic paths of the unre-
duced potential to remain with the reduced part; the part involving

only the n-cyclic paths, with n > 3.

. To obtain the reduced potential, we take the cyclic derivatives on

the unreduced potential with respect to the single arrows in the
2-cycles of the quiver appearing in the unreduced potential to get

relations. In this case we have:

¢ /G 2) (3 3) (2 2) (3
b, (8) = (afbayy) — (afayy) = 0,= (agdayy) = (afaiy)

= 3) (1) 1) _(3) 4 3). @ 1) @3
5, (8) = (agvayy) — (apyayy) = 0,= (afyayy) = (afyayy)

-~ 1 2 2 1 2 2
8 5 (8) = (efalf)) —(a5afl) = 0, (afalR) = (aFell))

a Oy rrr
), TV VU

Notice that each relation reduces a 2-cycle and we thus end up with

six arrows out of the initial nine arrows.

23




We relabel the arrows of the quiver for simplification and consistency

<

as follows:
4 o ol

() . Ll
bpy = ayp

1) 2) (3)y __ 3) (2
By = (oot b= (alhui

@ ._ (1) 3 @) 1)
bTU s (aTVa'VU = (aTV.a'eL"

B) . () @y _ (@) (1)
bry = (aryayy) = (apvayy

4 )
by = (appayy

5 2 2
by = (el

6) . (,3 6
by = (af(m)faw)}

The reduced quiver becomes:

(T) E )

with the reduced potential:

b 1 2 3 1 3 2 2 3 1
S = bOAbEybSY + bOYb by + by +
(2) 1.(1) 1,(3) (3) (1) 1(2) 3) 1(2) (1
by by by + brpbyybyr + bgrt),béx)/b% +

(4) p(1) 4.(1) (8) 1(2) 1(2) (6) 1(3) 1(3)
brpbyvbyr + brpbyybyr + brpbpybyr (3.4)

24



Chapter 4

Calculation of potentials for

quivers with potential related

to P?

4.1 Introduction

In this chapter, we deal with a family of quivers corresponding to quivers

with potential given in the tree diagram that Stern in [18] related to P2

The tree diagram is:




@ FIGURE BY BCN ELDRIDGE

The quivers corresponding to each of these points are:

FIGURE BY BEN ELDRIDGE

The quiver at the center of the tree diagram, called A was introduced in
section 2.2 and its potential stated in section 2.4. It is a consequence of
Stern [18] that this quiver together with all its mutants can be mutated

indefinitely without giving loops or 2-cycles, and so the tree diagram

26



shows how one quiver is related to another through mutation. However,
there is no attempt in the literature to write the potex\;tials for these

mutations.

In section 4.2 we work out the potential for quiver C, and then provide
the calculated potentials for the quivers D and E. Since these potentials
are too big to write, section 4.3 provides the notation used to write them

briefly.

4.2 Calculations

In this section we mutate quiver B using the steps discussed in section
3.2 to obtain quiver C' and its potential. We then provide the mutated
potentials for the quivers D and E.

Thus consider the quiver B:

whose potential is:

1 2 3 1 3 2 2) . (3 1
S = Dpbpybiy + brobpybuy + bbby +
@) (1) 1), (3 (1) 12 3),(2) (1
brpbyy by + bbby + bbby +

4) (1 1 5) ;. (2 2 6),(3 3
bbby T + bbby + BribEybn

- 27




If we mutate it at U the unreduced quiver will be: !

(T) & (U)

&(V)/

with the unreduced potential:

S = (BSRIBEY + (Behbi by + (BEbE Y +
(ST + (BSLB BT + (BB )b +
(BSobE b + (BB b, + (brarbisn )by +
(bR Gy b5 + (BELbT By b5 + (b,

(2) (1) \2(1)" 1 (2)" (2) 1(2) \2(2)" 1 (2)" (2) 1(3)
(brgbuy)boy bre + (broboy)bry bro + (breboy

() (1)
L.'V bTL' +

(3)"7(2)"

b
b(3)' b(3)’

3) 5 (1) v 2.(1)* 1. (3)" (3) 1(2) \1.(2)* . (3)" 3) (3
(bgr*g'bé'x)/)b(m)/ brr + (brpbey )by b:(r(z-' + (bgr(),bg,\)/ vv oy +

)

)

)

(Bebe )by b, + (Brobgy )by b, + (BRobg Oy b +

(BOBEY I by -+ (BFUDE Y BE + (BRI B+
)

6) 1(1) ()" 1 (6)" (6) 1(2) \7(2)*1(6)* (6) 1.(3) \(3)" 1 (6)"
(bgr‘t);bm)/)buv brg + (brobypy)bpy bry + (brpbiy)bpy bTI);
Taking the cyclic derivatives with respect to the single arrows in the
2-cycles-of the unreduced potential we obtain the relations below:

o 1 2 2 1 6) (3 2
B, (8) = (B ) +(OTLb )+ (brbey) = 0= (bpb) = —(Briby )~ (Briby)

8,00 (8) = (Brpb ) +(OrybE ) +HOrdby) = 0= (bgdbey) = —(Bgibiy)— (b))

-~ ) 3 ~
By () = (b )+ (BB )+ ) = 0= (Bg0b) = —(brybiny )~ (B5biry)
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¢ _;}mvﬂ N ‘é

3 arrows out of the 18 have been reduced. We are left with 15 new
L
arrows. ©

We rename the arrows as follows:

o =i o =y

oy = by 9 = (652
o = E ) , Epp =)
) = ) 42— 0)
= (i) ‘ iy =)
e = (B ey =i{Bala)
s e=gitny &7 =0
o) = B L — ) = (b))
gt = Rt —cf) - & = (EbE)
oot i [Hrpbier) iy~ iy = (Bt b )

Thus the resulting quiver is C:

(T) . )

N A

V)

S 29




with the potential:

< Q) (2 3) 1) (3) .(2) 2) (3) (1
S = crytvpCur ~ CrvoCor T Cgrvcgzc'cgfz)r -

(2 (1) (3) @) (1) (2) 3) (2) (1)
CrvlyyCor t CrvevuCur — Crvivytpr T+

(4) (1) (1) (5) (2) (2) 6) (3) (3
CryCyyCur T CrvevpCyr T vy +

(1) (1) (4) (8) (1) (5) 9) (1) (6)
CryCyipCur t CrvlvipCur t CryCypCur +

(10) (2) (4) (11) (2) (5 12) (2) (6
cry CypCur T OV CVUCU%‘ +chpeiychr +

(13) (3) .(4) (14) (3) (5) (15) (3) (6) -
Cry CyyCyr T Cpy CypCor t+ Crv CypCur —

(1) (3) (2) (11) (1) (3) 15) (2) (1
CrvCyuCur ~ Crv Cveur T f’ffrv "%/(),"(Li)" (4.1)

It is worth noting mutation of quiver A at any of its three vertices
yields fhe same quiver B, that is why there are three lines from A that
rejoin before entering B. Mutation of B at U and T gives quiver C and
C’ respectively. The difference between the primed and the unprimed

quivers is that the arrows of one are reversed in the other.

We now give the worked out potentials for the other quivers with

potentials obtained by mutations of quiver C.

e Mutation of quiver C above at V' gives D:

(T) . )
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with the potential: ¢

S = ddRdS) + db)ddl) + dYdG)dFy + dFYdS)dD) +
dd3y d) + dd3 dP + dSydGdGy + dSYdDd3) +
dSyd) Aoy + iy i+ degdhdSh + dEhat) do) +
dog diydiy + dogd)d0) + d5Dddbh + a5 i, dY) +
SR d0) + iR, df) + i dR G + deDdidl) +
A9 a2 + a8 dR al + 2D dR ) + DALY dD +
AR diyd9p + dip d, a0 + dpd,dGR + dipdR,d0R +
dipdRyd07 + d00dR, a0 + depdS) dP + dipdl by +
S O S S SR SR S W G S O
AR dly dly — diP i, dS) — diDdR, %) — dSPdl dY) —
450 diydivy — dig doydPy — dag gy i) — 52 i db) -
dog iy dvy + e didUh + dip a0y + di di) dS) +
digy dSyd0h. + dR iy diy. + dog dSy dn. + dSg dn,dh. +

38) /(3) (8 39) 1(3) 4(9
drg dirydyy + dig diy iy (4.2)

e Mutation of quiver C at T gives quiver FE:
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whose potential is: ¢

v R 1) _(2) ,(3) 1) (3) (2 @ (v 3 2) (8),1 3) (1) (2
S = egf'\)/eVi)(‘eTU + epveyrery T epvevreéry t eé-'VBVTe(Tg' + eg/'t)/eglgre;()f +

(3) (2) (1) (4) (1) (1) (58) (2) (2) 6) ) (3) (1) (4) (1)
epvevrery t epvevrery T epvevreéry t euvevréry T epveyrery T

@) (5) (1) @ (6) (1) 10) (1) (1 1) (8) (1Y . (12) (9) (1
epvevrery tepvevréry + eé»'v) e%/%’eg“(); + 65;‘;)6%@6%' + ey 6VT€TI)J +

(13) _(10) (1) (14) (11) (1) (15) (12) (1) (16) (13) (1) (17) _(14) (1)
Epy €yt €ry T €ypy €yt ey t €pv eyt erp T €py ey Epp t+ €py €y Epp T

(18) (15) (1) (19) (4) (2) (20) _(5) _(2) 21) (6) (2) (22) (7) (2)
epv eyt vy T €y evréry T ey eVTegl‘U * eé’v 2vrery + ey 6V)TeTU i

(23) (8) (2) (24) (9) (2) (25) _(10) (2) (26)_(11) (2) (27 _(12) (2)
eyy evrery T Cyv eyrery T Cuy vt ey T Epy ey érp T Cuy Cyr erp T

(28) (13) (2) (29) (14) (2) (30) (15) (2) (31) (4) _(3) (32) _(5) (3)
epyv evr Ty T epy evr ey t €pv eyt Erp T €y Cvréry t €pv eyrery t

(33) ,(6) (3) (34) (7) (3) (35) ,(8) ,(3) (36) ,(9) (3) (37) ,(10) (3)
euv evrery T eyv evrery + epv evreéry + €uv evréru t euv évr eru t

(38) _(11) (3) (39) (12) (3) (40) (13) (3) (41) (14) (3) (42) (15) (3)
epy evr ey T ey vt erp Tt ey eyt ery T €py evr ey T+ dyy ey erp +

(43) (1) (3) (44) (2) (4) (45) (3) _(4) (46) (4) (4) 47) (5) (4)
epy evrery T epv evrery T €uv evréry t+ €uv evréry T €uv evrérr T

(48) (6) (4) (49) (1) (4) (50) (8) (4) (51) (9) (4) (52) ,(10) (4)
eyv evrlry T epv eyrery t Cyv eyrery t pv evréry T euv vy erp T

(63) (11) (4) (54) (12) (4) (55) (13) (4) (56) ,(14) (4) (57) ,(15) (4)
epy evr €y T €pv €yt e T epv eyt Ery T ey eyt €yt €y €yt e T

(58) (1) _(5) (59) (2) _(5) (60) _(3) _(5) (61) (4) (5) (62) (5) (5)
epy eyrery T ey Cyrery T €pv Eyrery T €py Cyrery tepy Cyrery T

(63) (6) _(5) (64) (7) _(5) (65) (8) (5) (66) (9) () (67) (10) (5)
epy eyrery T eyy evrery t €y €yrery T €y evrery T E€uv eyt ey T

(68) _(11) (5) (69) (12) (5) (70) (13) (5) (71) (14) (5) (72) (15) (5)
eyv eyt €rp T €y ey e T €y vt Erp T €y Evr €T T Epv Eyr e T

(73) (1) (6) (74) ,(2) (6) (75) (3) _(6) (76) (4) (6) (77) (58) _(6)
eyy eyrery T epv eyréry t epv eyrery T epv evrery T epy eyrery T

(78) (6) (6) (79) () _(8) (80) _(8) _(6) (81) (9) (6) (82) (10) (6)
epy evréry T epv evrery T epv eyréry T epv eyrery T epy Gy epp T

(83) (11) (6) (84) (12) (6)° (85) (13) (6) (86) (14) (6) (87) (15) (6)
epv eyt vy T €pv eyt € T €pv eyt Ery T €y €vr éry T €pv eyt e T

(38) (3) _(2) (18) (1) (3) (22) (2) () (1) (3 (2) (20) (1) (3)
euy evrery t epy Cyrery t epy Cyrlry — Cuveyrlry — Cuyv Cyrlry —

(33) (2) (1) (49) (3) _(2) (52) (1) (3) (65) (2) (1) (65) (3) (2)
€uv Eyrlery — Cpv eyrlry — €uv Cvrery — €pv Cyvreru T Cuv Cvrery T

(68) (1) (3) (71) (2) (1) (81) ,(3) ,(2) (84) (1) _(3)
euv evrery — €y bvrlry T €uv Cvreru T €uv Cvrlrr

(871 _(2) (1)
Cov Cvrton (4.3)
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4.3 Notation introduced k

The potentials in 4.2 are too big, this section writes down the calculated
potentials for quivers: A, B,C,D and F into sums using two notations
namely: sum notation and the grouped sum notation. In the former,
we label the arrows in a way that all the cycles in the potentials can
be summed together, while in the latter, the arrows are labeled in a
manner that similar arrows between any two vertices appearing in given

summation can be put together. The grouped sum notation follows from

the sum notation.

e For the original quiver A:

(T) . )

N,

the potential 3.1 can be written as:

- - 01 G2 ~T3
S= E sgn(o)agirati avy
g€l : :

Where o is denoted by (010903):

oeQ | (123) | (132) | (231) | (213) | (312) | (321)

sgn(o) |+ - + ‘- 2 -

This notation can be found in [21] where the sign of a permutation
o denoted sgn(o) is defined as +1 if o is even and —1 if ¢ is odd.

It can be explicitly expressed as

sgn(o) = (~1)4©)
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where p(o) is the number of inversions of o. ¢

e The potential 3.4 for quiver B

obtained through mutating A at V can be written:

3
. a o o; (i+3) (7)) _(3)
S= E :aTanL-?VaV%T"— E ,a'TL apyayr
oeQ i=1

We relabel the arrows:
5 6 1) .(2) .3
G, Gty 1Y Bty B e

and the potential becomes:

. 3

_ o1 02 _03 (3 (@) (1)

S= E :aTUa'UVaVT + E :bTUaUVa‘VT
g€ =]

Note that while we had the sign of permutation in the original
quiver A, after mutation at vertex V the sign of permutation is not
there. We see this behavior every time we move from one mutation
to ‘another. We can thus say that our sign of permutation in the

potential of a quiver alternates between + and — with successive

mutations of that quiver.

Another outcome is that all the composites of length two through

: the vertex of mutation appear in the potential. like in the case

E above, all paths of length 2 through V are in this potential. This
is also a phenomenon encountered in all the potentials obtained in

this case of P2.
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e The potential 4.1 for quiver C' below

T) - )
A
(V)

which was obtained after mutation of B at vertex U can be written

as:

f +3) (2
Z sgn(0)azyavyapy + Z a(l ) V)L 91‘

aeQ
3 3
+ Zza(l+39+3) (1) (%';3) (41+3)a82—2)1 8;1%
i=1 j=1 i=1

Where (a), is the mapping of a € Z into the equivalence classes la]

in {[1], .., [n]} under the equivalence mod n.

For instance;

al’® is the arrow ).,
1)

(4)3 «.
ayp is the arrow ay;, and

al®? is the arrow a2 et.c

We relabel the arrows:

o® o) o) 1y bD 2 1)

ary; Qpy; Ay

7 (15 1 (@ (9
af(n), aT 4 by cpys Crvs ...,cT)
(4) §J5%‘ O'L) by b(l) b(z) b(3)

The potential thus becomes:




S = Y sen(o)afyafyafy + » byalyaph
=1

agef)
33 3
(i4+35-3) _(7) 1.(9) (49-3) (i+2)3 (i+1)3
+ E E Cry ayybyr — Cry Oy Opr
i=1 j=1 i=1

We now make observe that the component E?Zl bg,f)vag)vaggp which is

equivalent to Zle bf(ri%;ag%,ag% already encountered in the grouped
potential for the underlying quiver, B features here! From now
onwards, this element is recognizable in all the grouped potentials

for the quivers in this chapter.

Mutation of quiver C' at V gave the quiver D:

(1) ~—2— ()

whose potential 4.2 can be written in the sum notation as:
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_ (1+3) () (1)
S = Zai“ll,'ab'vaVT+ agyayr

6 3
(i4+65+9) (9) (z+9)
+ZZ ary ~ 'apyayr

JEQ

(1+3J+3) atl) alits)
BB
i=1 4=1
3
(41+3) (1+2)3 (1+1);
ary

=1

3

B Z( (1+21)+ %’30)

=%
3
(+436) (3) _(i+6)
+ ary Oy ayr
=1

We relabel these arrows as follows:

a%); ag,?g aT) by b(l) b(z) b(3)

TU>
7 15 (1) )
a’Ert), 15 a'g‘U) by crgs - Crp

ag}if)p a&f} aV) by b(l) .b(2) .b(3)

M 4 4@ by D 2 O

Gyp; Gy Gy DY Cyr:Cyr: Cyr
o N BT S
089, ol by d) 42 . 449
Bt s By BT BB s S

and the potential now becomes:
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Z lOz+7) (1.+1);
(z+6)+z (‘L+33)

(2
Ay

@ ,(+6)
gy Gy




& = ZG’T[ Ay Ay + Zb(ll a(L’%,a‘,T

aGQ
6 3
+ ZZ (HSJ 3) (J) b(z) +sz(1+6j 6) (J) d(l
=1 j=1 i=1 j=1
3 3
N Z(’f([l‘ié agz‘tQ aas;l)a +Zd(101 8) (1+1); z)
3 3
(+6) | 1+15) a () @) @ ()
- Z(dTU Jagicyr + eT[ (V(’VT
=1 =1
- (3 (
(i4+3) _(3) (%)
+ éry Apveyr
7=1
In this potential, we recognize elements ., a7y;a7%av, bg,f% g%, &%

21~ ZJ =1 113{33 % (j) bi) and 21 1 ;(z, A g‘tz)%a(zﬂ)%eqmvﬂent to
B O3 3 +37 -3 7

Y sea sgn(o)aryavyagn,d i 1bTVa’VL ag?r T 121 1 (TV =0 (j) b()

and Z (.(41 3) (1+2)3a(l+1)x % Tha 1 notential of th d

@ =1 Crv Qyp Qpr grouped potential of the under-

lying quiver C.

Lets find out these elements in the next mutation potential.

e The potential for the quiver £

V)
after mutating C' at vertex T' given in 4.3 can be written in the sum

notation as:
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3
. gy o2 03 (i+3) (2) _(3)
S = E :aUVaVTaTU+ E :%v a'VTaTL

o'EQ
(z+129 6),(£+3) () (z+153+27) ;79 043)
+ ZZ ayr aT[’+EZ ay 10Ty
i=1 j=1 . t=1 j=I1
3 3
_ Z a§?€/+16]+30) (1+2)3 (1-{—1)1 Z (131 6) (z+2)a gz;l);;
=1 i=1

18) (1) (3 (22) (2) (1
+ agy alraf + agy afral)

(38 3) (2)
+ a’LV) E/TG’TL

- We relabel the arrows as follows:

(4) (5) (?) by b(}) ) b(?) . b(‘{')

ayy.apy.a

7 2 1 36
aé‘), . (4) by c() c(LV)
aEfT,....ag,ls) by b(l) ....b(p)

agi‘?}) aés‘? by d(}) s d('fs)

3
o8 a8 o9, by 1), 62, 163,

Giving the potential:
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_ gy o2 o3 (2) (3)
S = ZG’UVG‘VTU‘TL + E :b VaVTaTL

o€l
12 3 3
(i+12j-12) () (i+155-15) (i) 1 (5)
+ Z oy bVT azy "‘Z(Zd T ayrpbrr
i=1 j=1 J=1 =1
3 3 o ) _
- AT - 3 S g
i=1 i=1

(13i-12) (i+2)s (i+1)a , ,(12) (1) (3)
- Z"va ayr gy §"’dLVaV% arg

16 2 i 32 3 2
+ dév) v%affri +dl(f,v)a$v)Ta§rr)J

In this potential, we recognize three elements:)’ . a7, ai2ra7y;,

S, 0 iy and 3L, a1l oquivalen to those

3 (14+125— 12)b(1 )]

discovered in quiver C. However, the element 32, 33 =1 C0v O

is different from that in the underlying quiver C, in terms of the

number of arrows ¢ and b and hence posing a threat to our notation!.

NB With the trend observed above, it is clear that we are able
to recognize only part of the elements in the new potential. This
means, with this notation, we are not able to predict fully the next

mutated potential.
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Chapter 5

Calculation of potentials for

quivers with potential related

to Pl >< pl

5.1 Introduction

This chapter deals with the family of quivers corresponding to quivers
with potential in the tree diagram by Stern [18] which he related to P! x
Pt

The tree diagram is:
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@ FIGURE BY BEN ELDRIDGE

The quivers corresponding to each of these points are:

Again, the potential for the central quiver in tree diagram A, is known
from geometry and was stated in section 2.4. Mutation of this quiver
and its mutants at various vertices yielded the tree diagram above. In
other words, the tree diagram shows how one quiver is related to another
through mutation. In section 5.2, we calculate the mutated potential for
the quiver B, and then provide the worked out potentials for the quivers

C, D, E, F and G. In section 5.3 we write all these potentials into sums.
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5.2 Calculations

We calculate the potential for B using the steps in 3.2.

Consider the quiver A below:

(@) 2~ ()
QT |2
(V)<= (W)

with the potential:

_ om0 O 0 ;1 @ @ 0
S = aywayypaprory + avwag)v)b'agf%a(T\)/ +

2 © 1) (2 2 2 (2 (2
Ay w Owrayrary + Cyw Gy Ay ary (

Mutating it at W we get:

(T) —(U)
| A |
(V) —~ (W)

Using the formula given in 3.2 for the unreduced potential we get:

5 _ ) (1) \ (1) () 1 @ 4. @ . @ (2 1)y (1) (2)
S = (aywoyy)oprary + (ayyawy)agrary + (aywawes)aprary +

2) (2) 2) (2) (1) (1) (D)% _(1)* 1 (2) (2)x ()=
(O'VWa’WU)aé'Ta'C(PV + (ayiwawy aW)Uag/’l)/V + (a’g/t)vaWL')aW)L'a€’l)/If' +

(2) (1) y, Q)+ (2)« (2) _(2) \ (2 (2)+
(avwatfvu)awuavw + (G’VWU’WU)G‘WUG‘VW

Note that we do not have 2-cycles in this expression, thus no reduction
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1s needed.

Renaming the arrows:

1 . 1
byy = (aywawy)

3 ) (2
b% = (a%va(w)u)

3 2) (1
by = (ayivaliy)

(4) . 2) (2)
byy = (agfwawu)

We get the quiver B:

(T) 2= (U)

| A

(V) —> (W)

having the potential:

= 1) ,(1) .0 %) +(8) 200 3) 1 (1) (2
S = bULbGRHG) + BULBIREGY + B0 brbiy +

(4) 1.(2) 1.(2) (1) p(1) (1) (2) 1(2) 2(1)
byLbErbry + bytbow by + bt by +

(3) 2(1) 1(2) (4) 1(2) 4(2)
byvbuwbwy + bvibuw by

2)

Note that this resultant quiver B can be obtained by mutating A at

the other three vertices except to see this as the same quiver some rotation

of the resulting quivers will be required. There are four lines from A that

rejoin before connecting to B. This shows that there are four ways of
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obtaining B from A.

(

The following are the worked out potentials for the other quivers ob-

tained from mutations of B and some of its mutants.

e When we mutate the quiver B above at U we get the quiver C:

(T) <2 ()

|
(V) #smiW)

with the potential:

< 1 (1) (1) (2 (1) (3) (1) (2) (2)
S = cyrerpCyv t CvrlroCov + CyrCruCoy +

(2 (2) (1) (3) (1) (2 4) (2 @)
CyrlryCyyv T CyvrlriCoy t Cyrlrplpy +

5) (1) (4) 6) (2) (3) n 1 (1
C&/%*CTUCUV + cyrlrplry t+ CVWCE'VUCU\)/ +

(2 (1) 3 n 2 (2 2 2 4
CvwlwuCov T CywlwuCov T CvwlwrCov T

(3) (1) (2) (4 2 @ () (1) (4
CvwlwurCov T ywlwrCov + CvwlwuCoy

6) (2 3
CE/%;ch,V)UCU\)/ (5.3)

Note that mutating the same quiver B at V gives a quiver C’. The
difference between the primed and unprimed quivers is as explained

in the P? case.

e When we again mutate the resulting quiver C' above at T we get

the quiver D:



(T) = (U) i
|
(V)= (W)
With the potential:
5 = ddd®) + a9 ad®) + i) d%d$) + ddd2) +
a2 ) + A + a8l + dl) dh ) +
a5 d0a®) + A a2 + ddGhdS) + dS s +
Ay A, ) + Ay dD A + B dD, A +
02 A2 B2 + Sy D) + B d D, d D) +

5) (1) (1) 45) . 4(6) (2) (2) 46
d%/!)/VdgV)Udg’T v T dgfévdgv)cfdgf%d(ﬂ)f (5.4)

e If we mutate the quiver C at vertex V we get the quiver E:

(T) 2 (U)

| A |2

(V) —= W)
With the potential:
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&l

{

D1 (1) (2 () 1) 3) 1) (2 %) () (2
erervell + eresvey + eneRell + egrervevy +

(5) ,(3) (1) 6) _(4) (1) (1) () (1) (8) (6) (1)
eyrérveve T eurérvevy t eprérveyvy + eprervevy +

9 _3) (2 (10) (4) (2) (11) (5) (2 (12) (6) (2)
eUY)‘ef(F\)/eVU +epr epveyy teur eTVeV()J + epr erveyy T+

13) (8) (8) (14) (4) (3) (15) _(5) (3) (16) (6) (3)
8§,YT)3(TV6VU +eyr erveyy t eyt erveyy t+ epr ervevy +

(7) (3) (4) (18) (4) (4) (19) (5) ,(4) (20) ,(6) ,(4)

ey ervevy T €ur €rvevy T eyt ervevy + epr erveyy t+ _

1) 1) 8) . 22 1) (¢ , 1) 2 0B , 3 2 @
eyt ervevy T €ur ervevr T eprery ey T epreryveyy +

9) (2) (3) (19) (2) (3) (6) (2) (4) (16) (2) (4)
eyrérveyy t eyr érvevy T eprérvevy + epr epveyy +

M 0 0 0 @ M e M) @ @ 0 0

Eowewvevy T Cowewvevy T epwewvevry T erwewyvevr
oy eul + ey et + el el + el el el
eowewvent + oy el + efelyelh + el el
Com ey ert + o ey ent + eimeteby + el el
eg}:&eg)vegft)f + eg,?e%)vegfl); + 65,3336%6%}13; + 6(533653)‘/6(&‘3;
owewveul T+ eomewyent + e el esy + efeliy el
WV VY T ey ey T eomepy el +

ey eyt | (5

e Mutation of the quiver D above at W yields the quiver F:

() ——=@)

| I

(V) =~ (W)
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Whose potential is : )
1 2) £(2) 3) £(1) £(2 4
thfqu(“& f()lT TV f()((/l)"}\; f()LT TV

() (1) £(2) (4) ) ) | )
VLfLT TV +fVU UT + fut flT T VLfLT TV

i TV Sk RS = PR IS )+ o F Iy +
oo Soa oo + o0 Toadey + Fog fin 1o + £ Foa i +
e f 00y + £y Fr Iy + Fog foa i + Fog Joad i +
fVl o v(é%/ +f(2) IE2V)V R L éI%)V +f(4)fLW W+
fV[ f(l) f f(l) fé?y (4) +f(4) f(l) fIEIE;)V e f(3) f(z) f(ﬁ)
L Fa T (2) vk Lo T B + Foo Fowe B+
]c(13)f(1) fx(/;)v +f(14)f(1) f(G) f(15)f(2) f(l) f f f(’)
(17 f(2) WV £ f(18)f£23vf(4) f(l‘?)f@) 53%} +

20) (2)
x</z, Uw WV \ (0-6)

e Further mutating the resulting quiver D above at U we get the

quiver G:

(T) <2 (U)

o) 3 |

(V) =—5— (W)
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Whose potential has been found to be: ?

<

< 1) (1) (1) 3) (1) (2 (2) (1) (3) 5) (1) (4
S = gg/%th,rgt;'v + 9vr9rv9cv T Gvrdrudrv t+ Qx(m)"gg*r);gé'\)/ +

(4) (1) (5) () (1) (6) 6) (1) (1) 9 (1) (8)
Ivr9rv9vv T 9vr9re9ev t Ivr9rc vy T vrdredov T+

4 (2 (1 1) (2) (2) 6) (2) (3 2) (2) (4
FoRGoha + gorad gy + g aheSy + goneibaly +

8) (2) (5) (3) (2) (6) (10) (2) (7) (5) £(2) (8
géfi)‘gTUgl(fV + 9vr9rv9vv t 9vr 9rv9uv T 9y TUQU\)/ +

T G B T (2) (2) (1) 3) (1) (2 4) (2) (2
g%g:(rgvgér@v + gWTgTUgl(JW + g%géﬂgrgﬁr%/ + g%g(n)rgﬁvav +

(1) @ (1 (1) (1) (4) (2) (2) (2 (1) (i) (3)
gvx)/VgWTgTUQUV + 9vwIwr9rc 9oy + 9vwIwr9rv9uv +

2 @ (2 @) 3) 1) 1) (2 (4) (4) (2) (1)
IywI9wr9rvIvv T 9vwIwrdrvIvv + dvwIwr9reIoy +

5 1) (1) (4) (6) (4) (2) (3) -
leevgt(/ngTL)»'gL-'v + gvwIwrIri 9uv (5.7)

5.3 Notation introduced

These potentials as the case was in 4.3 are very huge and as a result we

use the notation introduced in the same section to write them briefly.

e The potential for the quiver A:

(@)——={T)

| ]
(V) =5— (W)

in 5.1 can be written in both notation as:

2
N @ G G, 6
S= Z v Ay apraTy
i,j=1

e Mutation of quiver A at the vertex W yielded the quiver B:
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<

(V—={)

whose potential 5.2 can be written:

(21+ 2) _(4) (%) (2 + 2) _(5) (@)
S= E agragy + E , AL A Oy
|.] =1 ,j =1

Note the symmetry between 7' and W displayed by this potentiél.
This is a very crucial behavior which is studied comprehensively by

Owino in [14]. We find it in the potentials for quivers: C, F and F.

' The potential for the quiver C:

(T) {5

| 7
(V) <5 (W)

in 5.3 can be written in the sum notation as:

2 2
- G) () (2i+i—2) (2i+5) _(3) (2i—j+1)
s = > appafpapy” P + > apr ey
',.'i 1 ',j‘l
i) (4)  (2+5-2) (2i+4) ) (2i—5+1)
ZGVWQWI agy +Z ayw" Awrapy
1,j=1 t,j=1

We rename the arrows as follows:

ot ool by Btk 60606

(3) (4) (5) (6) 1) (2) (2) (2)
Qyw:yw:Ayw: Ayw by Qyw: Qyw: Qyw: Qyw

and the potential now reads:



L
‘o

2
: (2 (2i4+5—-2 2i+5—2) ( 2i—j+1)
SRR ZGV)T c )+Zb( Tl ot

}j 1 i,J=1

(8) () (2i+j— 2) (21+J 2, (21 J+1)

+ Z VW ATy Z by Gyylpy
1,j=1. 17=1

e The potential for Mutation of C' at T gives the quiver D:

(V) == (W)

~ whose potential 5.4 can be written in the sum notation as:

2 2
- (21+J 2) (J) (1) (2i—3+1) _(5) (2¢+3)
S = ayy ~ Agrory T Z ayy~ Gprary
ij=1 ij=1
2
(21+J+2) (9) (21 7+3) @ & ) _©)
i Z ayy " Oprlry + Z ayw Sy ApTary
i,j=1 1,7=1
2

b Y e el

ij=1
Relabehng the arrows:

3) 4 (5) 1 (2) 1.3 4
agrv aﬁf\)f ary; aT) by bf(l“)/=bTVrbrV?b(T\)/
(5) (6) (7) (8) (1) 1(2) 1(3) (4
Ay avz ayp, ayy bY byp, by by byp

(3 (4 5 @ (2) 3 (4)
th)}V av%v a%/r)}v GVW by bVI)/vaVW‘rbg/I)/WbVW

We thus write the potential as:




S =

(
e

2 2
(21+ 2) (4) () 2i—j+1) (§) 5 (2i+5—2
Z agragy + Z QE/U ! )a((fgrbg“xlf =

':.’l' 1 1,j=1

(21+J 2) (j) (2‘l+3 2) 0 (@) ) 6
Z by b7 + Z VWa’V?/LaLT v
1,j=1 - t,j=1
2 . -
3 b Dal), a0
i

Note that the symmetry we had in the original quiver C' is lost but

we have created paths of length 4.

e Mutation of quiver C' at V gave the quiver E:

(T) == (V)

| A |2

(V) —= )

whose potential 5.5 can be written in the sum notation as:

2 2
- Ciri=2) () (0 (1449 4 542) ,6) (1+20) (1) _(i+2)
§ = Z "‘Z Yaryayy + ) apr aryayy
i5=1 $ =1 i=1
2
(2i-1) (2) (1+2) 9) (19) (2) (3) (6) (26)y _(2) (4)
+ agy ‘arvayy + (apr +agy Jappayy + (apr + apr )appayy
1=1
2 2
(2i+5-2) (J) (1) (i+47) (1+2) ( (1+20) (1) (i+2)
+ Z Guw” Gwyvayy t Z Ay ayy + vw AWy Ay
1,4=1 ij=1 Tt
2
(2i-1) (2) (1+2) (9) (19) (3) 6) (16)y (2) _(4)
+ Z apw awvayy t+ (apw +a )awv ayy t+ (%W + apw ) awvayy

=1

Renaming the arrows of this potential:



)., a0, %2 by b, ... b

agr: Ayrs

(3) 4) _(5) (6) 1) (2 1.8 ;4 L
ary, aTV apy,ary by by, bry, by, bry <
(21) 1) (2

apr aL b’ Y Cyr:Cur

Since the potential is symmetrical, we apply the same relabeling to
the other arrows in this potential where vertex T is replaced with

w.

The potential in the grouped sum notation becomes:

2 2
(2i4+5-2) _(3) (4) (i+45—4); (1) (1) (1) 1 (2)
gt = Z agp " apyayy + Zb ” bzv VL+ curary by
ij=1 ij=1 i=1
2
21—1 2 7 15 2 1 2 12 2 2
+ Z ag e ) ( )b() £ (b bé’T))a'Er\)/bg/) b( ) b( )) ( )bs/[)}
=1
2
(2i+35-2) (5) (%) (i+45-4)1.(3) _(4) (1) 3()
+ Z A + Z bow’ bwvayy + Z ’L'WaWVb VU
i,5=1 t,5=1 )

2
(2i-1) (2) (@) (5) (15) (2) (1) (2) (12)\ (2) 1(2)
+ Z apw awybyry + (bpw + byw)awybyy + (0w + bpw)awyv by

e Quiver F' was obtained by mutating D at W:

(V) —= W)

its potential 5.6 can be written inthe sum notation as:



t
2

£ = Z agzﬂ 2)a§,TaTV+ Z (21 J+1) (]) 21+9)

ij=1 ij=1
2
(2i+7+2) (_]) (21 _7+3) (21+]+10 J) (
o+ Oy~ Caprlpy ayy agpary
1,j=1 1,j=1 ¢
2
(21 J+17) (2i+7) (QH‘J 2) (J) (1)
o5 E Ay a‘l TaT i E agw awy
i,j=1 z,j=1
2 2
(21 gekL) () ) @) g ¢ (2i+5+2) (5) (2i—5+3) |
+ E ayy agwagyt + Ayt ApwOwy
2,7=1 ',j_l
2
(27.+J+10) (z) 21*3+17) (g) (2i+7)
+ E ayy LW Ay + E agw Gy
t,7=1 ig=1

Renaming the arrows of this potential:

), by 100,60,
agfz ..... aV[)J by b(l) ..... b(4)

ayg -y by ey, - r(v“%

Ay, avgayg ayy by dyy,dyy, diy, diy

Because of the symmetry between U and V' of this quiver, we apply
the renaming above to the remaining arrows of this potential where

V is substituted with U.

The potential in the grouped sum notation as:



(
9 N

2 <
%+§-2) (§) () (2i—~j+1) _(§) p(2i+5—2
Z ‘1% agragy + Z ayy )Q(ngrbgrv =

’,j 1 ij=1
2
Z b2z+1 2) (J) b(2z J+1) (21+J 2) (J) (1)
Cyr agrary

1,5=1 ,j 1

(2i—j+41 2i45—2) 2452 i
Zd1j )(J)b(lj +Z:(zj )a%(w)v
1,j=1 i,j=1
2 . o
Z (21 3+1) (z) b(21+1 2) + Z b(2t+3 2) () b%‘;ﬁl) .
ij=1 ‘ ig=1

2

(2i+7-2) (J) (1) (2i—3+1) (7) (21+ 2)
vy agpa WV+Zd agy by’

=1 nj=1

e The potential for Mutation of D at U gave the quiver G:

(T) <> (U)

o) 3|

[V = (W)

with potential 5.7 which can be written in the sum notation as:

2

2i4j-2) (2i4j—2

Z a(WTﬂ w T Z aVTaflzl)J ayy Y

19=1 =1

2 2

5 af el 4 Y oSO o

ij=1 ’ ‘,j 1

2

Z a(2i+1 (J) (21 J+1)+ z (@) (39 2) 9’) a(21'+j72)
(% Qywlwr "Gryapy

Q=1 ij=1

D

Z a(2i+9') (35-2) (J) (21 g1
vw Qwr Grplpy

4,j=1

(3
<t



Relabeling the arrows:

Ay, ayr. apy, V’T by bk, by by b =
U(LS\)/ a(L6€/ §7V by b 2 b(g) b£4\)/
ayr. ayr. apr, a€ P by rE}T-cé?%-c%‘?’%.c%‘%
Ay, 8y agy agy bY bt b, b, b

AP Ay Ay S“?A,b b0 b2, b3 bl

We thus write the potential in the grouped sum notation as:

2 2
_ (2i4+5-2) (5) () (&) _(3) (2i+5-2)
G = Z ayr aiI{La‘LW"‘L‘Z ayrafyagy
',j*l 1,5=1
2
(2i—j+1 2i+7—2 2i+j5—-2 2i—j+1
I B S
=1 ',j 1
2
(2i+5—-2) (J) (21 J+1) (B _(35-2) () (2i+j—2)
& ZbVT 4 "”Z aywyr Oty Oy
>7j41 N !.} 1
+ Z b(°l+J 2) g%/JT” a(}) (21 J+1)
3,J=1



Chapter 6

Summary and

recommendations

In this work, we have calculated potentials for some quivers that Stern
[18] related to P? and P! x P'. The number of terms in these potentials
get too big with mutations. Even if an applet were to be used in do-
ing the calculations, the potentials would still be big and thus difficult
to understand. Our study has introduced some notation to write them

briefly.

In using this notation, we discovered some interesting patterns in the
potentials of the quivers in these families. For the P? family, certain
patterns repeatedly occurred in the mutated potentials giving an idea of
what the next mutated potential can be for a given quiver. This means
that the notation used here is not the right one to use to fully predict
the mutated potentials. We thus recommend that a study be done on
a better notation to write these potentials. There is a relevant ongoing

study by Crew and Velez in'[2] which hopefully, might yield results that

(S5
~l



offer a better notation to write potentials.

(

The two families dealt with in this study are the sim‘pTest of the ten
known del pezzo quivers. The fact that our notation has failed for these
simple cases implies that there is much more work in studying the poten-
tials for the other families namely: P? blown up to 1 point, P? blewn up
to 2 points, P2 blown up to 3 points, P? blown up to 4 points, P? blown
up to 5 points, P2 blown up to 6 points, P? blown up to 7 points and P2

blown up to 8 points.
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