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ABSTRACT

{

Roan antelopes that were once abundant in the country in the 1880s have
been reduced to a remnant population of less than fifty individuals in the
last estimate,November 2009. Oksendal and Lungu developed population
growth model in a crowded environment by introducing randomness in
their differential equation via additional noise term. Magin and Kock in
their roan antelope recovery plan in the Ruma National Park considered
poaching as a major factor affecting population growth of roans which saw
a slight population growth before experiencing stagnation since the year
2003 to date. The Kenya Wildlife Service (KWS) has since taken neces-
sary measures to curb poaching. This reduced the risk of poaching as a
major factor that accelerated roans’ population decay. Lambwe valley is
believed to have uranium deposits‘that could affect fertility. Inbreeding
in small populations is known to have substantial effects on population
growth rate. We have therefore incorporated in our model genetic defect
that was not incorporated by Magin and Kock. This was made possi-
ble by making appropriate adjustments to Vortex Version 9.99 which is
a computerized program for the simulation of the extinction processes.
We noted that there is a high correlation between inbreeding and popu-
lation growth in small populations. It is hoped that this study will help
The Kenya Wildlife Service (KWS) in the management of their complex

ecosystem.
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Chapter 1

Introduction

The main insitu measure enacted for the conservation of the
roan antelope in Kenya was the creation in 1966 of the Lambwe
Valley Game Reserve, later gazetted as Ruma National Park
in 1983 to provide a legally prétected stronghold for the species
in Western Kenya [17]. The Park covers an area of 126 km?
and situated in Homa Bay County, approximately 30km South-
West of Homa Bay Town [1]. Ruma has important surviving
population of herbivores such as the Oribi, Jackson’s harte-

beest, and Rothschild’s giraffe.

In the 1880s, the roan antelope occupied large areas in-
cluding Mount Elgon, Cherangani and Chyulu Hills. By the
early 1960s, the distribution had reduced and the species was

declining further in most of the scattered localities [43].



In the period, 1985-1993 inadequate levels of protection
and high level poaching caused a dramatic declk‘i\ne in roans’
population. Consequently, by December 1995, there were
only 27 known individuals left [34].

Kenya Wildlife Service recognized the need to protect
roan antelopes.In October 1995, TUCN, Antelope Specialist
Group funded a three-week recovery plan of another ante-
lope hirola (the hunter’s antelope). During this session, KWS
scientists dedicated a small amount of time to consider the
situation of roan antelopes in Kenya. They came up with a
detailed document on key aspects of roan antelopes’ ecology
and biology based on data from Ruma and set a strategy
for its conservation. They emphasized need for insitu mea-
sures as opposed to translocation to better-protected areas
given that roaﬁs are sedentary, terrestrial species and selec-
tive feeders that are likely to lose out in competition with

more generalist grazers [28].

Today, their range in Kenya is highly restricted with a
remnant population of less than fifty individuals in the last

estimate in November 2009 at Ruma National Park.



Mature female roans usually calve each year, though there
is no strictly defined calving season. First concép’cion occurs
at around two years old, and with the gestaﬁion period of ap-
proximately 270 days [50]. Females leave the herd to calve,
yleaving the calf in hiding as the mother joins the rest. This
hiding may last approximately six weeks before joining the
herd .The young calves are almost odourless, thus decreasing
their chance of detection by predators [17]. The assumption
that there is the presence of uranium deposit could be asso-

ciated with sterility in the valley thus causing genetic drift.

According to Wilson & Hirst [50] adult roans are suscep-
tible to predation by lions, spotted hyenas, wild dogs,while
leopards may also prey upon calves. Although not so much of
a threat to wild populations, in the current circumstances in
Ruma, predatién by spotted hyena and leopard, particularly
on young animals, may be limiting the roan population’s nat-
ural recovery rate. Roans are susceptible to the diseases of
livestock and their water dependence brings them in regular
contact with livestock. Roans have had a stagnated popula-
tion growth of approximately 48 + 3 since the year 2003 to

date.



Other than drought, diseases, competition for resources,

[\
the main cause of decline was believed to be poaching as
game meat was highly prized for both wedding and burial

ceremonies amongst the locals.

According to Magin & Cock [28] hundred wire snares were
located in a mere one kilometre transect of the park by Moi
University Survey [28]. The presence bf higher ground outside
the park allowed the poachers to monitor activities of the
Kenya Wildlife Services (KWS) personnel. The high density
of agricultural settlements right up to the Park boundaries

provided large population of potential poachers.

The wire fence provided abundant supplies of wires for use‘
in snares. Flooding also made roads impassable thus difficul-
ties in control by KWS vehicles. The KWS has since taken
necessary measures to curb poaching. In the case of Ruma,
two factors that could be potentially targeted for the stag-
nating population growth are juvenile mortality (mainly pre-
dation) and inbreeding. Predator control is not advised due
to difficulty in implementation, unpredictable consequences
in the ecosystem and conflict with the general KWS manage-

ment policies of protected areas.



Realistically, the management has to continue to accept
N
juvenile mortality through predation. This therefore leaves

management of genetic defect as the only option.

1.1 Background of The Study

Many wildlife populations (like roans)' that were once widespread
numerous and occupying contiguous habitat have been re-
duced to small isolated populatio‘n. The causes of the original
decline, could be habitat loss, competition for resources and
predation. Even if the original causes are removed small iso-
lated population are vulnerable to additional forces, intrinsic
to small population and may drive population to extinction

41, 42].

Of particular impact on small population are stochastic
processes. With exception of aging, virtually all events in
the life of an organism are stochastic. Genetic drift, mating,
reproduction and even gene trans'mission can be described by

probability distribution.
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Genetic drift is the cumulative and non-adaptive fluctu-
ation in allele frequencies resulting from randsm sampling
of genes in each generation. This can impéde or accelerate
wildlife population [23]. Inbreeding is not strictly a compo-
‘nent of genetic drift but correlated with it. In small popula-
tions, inbreeding has been documented to cause loss of fitness
in a wide variety of species including virtually all sexually

producing animals [9, 51].

Even if the immediate loss of fitness of individual is not
large, the loss of genetic variation that results from genetic
drift may reduce the ability of the population to adapt to
future changes in the environment [11, 40].

The effect of genetic drift and consequent loss of genetic vari-
ation in individuals and population have negative impact on
demographic rafes and increases the susceptibility to environ-
mental perturbations and catastrophes. Reduced population
growth and greater fluctuations in numbers in turn accelerate
genetic drift [6]. Gilpin [14] described these synergistic desta-
bilizing effects of stochastic process on small wildlife popula-

tion as extinction vortices.



Most population growth processes are inherently stochas-
tic yet much theoretical analysis involves deterministic mod-
els with the assumption that biological systems consist of
large collection of individuals in the same ecological inter-
‘action. This assumption implies that dynamics of measure
(mean) is sufficient description and ignores the influence of

variance [49].

Oksendal & Lungu [35] proposed a stochastic logistic model
in estimating population growth at any time. We have worked
along this line and derived a mathematical model that esti-
mates population growth of roan antelopes by incorporating

genetic defect that was not considered by Magin & Kock [28].



o 2SR

1.2 Statement Of the Problem

| &
Robert Brown [36] observed that the path of a given particle
is very irregular having a tangent at no point and that the

‘motion of the two distinct particles appear to be independent.

Randomness is an intrinsic property of biological observa-

tion which makes deterministic models incomplete.

P
P, =)\Pt<1+ﬁ>dt (1.1)

where -

A is the intrinsic growth rate,
P, is the population at any time ¢ and

M is the carrying capacity.

Growth process is therefore subject to many random fac-
tors. This has the implication that a complete model should
incorporate randomness, to show' more realistic results when
tested. To complete the deterministic model, inclusion of
measurement error (noise term) is necessary. Such models

will therefore have both deterministic and stochastic part.



Kock a zoologist [22] estimated the growth of roans in
Ruma National Park using Vortex Version 7(a C(;mputer sim-
ulation of the extinction process),where he ckonsideréd poach-
ing as a key factor accelerating roans’ population decay. Fol-

"lowing his recommendations, KWS took necessary measures
thus reducing the risk of poaching as a potential factor. How-

ever, roans’ population has stagnated since the year 2000 to

date, with no substantial increase in population.

We have to develop mathematical growth model for the
roan antelopes by incorporating genetic defect that was not

considered by Kock and Magin in their model.

1.3 Objective Of the Study

The aim of this study is to develop a mathematical model
that incorporates genetic defect in estimating the growth of

roan antelopes.



1.4 Significance Of the study

(

It is evident from many ecological texts on species tending
towards extinction that their population decline due to a va-
riety of factors including habitat loss, diseases, drought, for-
est fires, predation and genetic defects. It is hoped that this
study will help the Kenya Wildlife Service (KWS) manage-
ment to determine the urgency of action to take and evaluate
appropriate options to improve on its growth rate. Roans’
have enormous economic significance in the locality and the

nation at large.

1.5 Research Methodology

We have used Vortex Version 9.99, a stochastic simulation of
the extinction process software in thé management of complex
ecological systems [24]. We have also collected related data
on roan antelopes from Ruma National Park which is the only
park with the remnant population of the roans in the country.
This data is used in analysing results on existing population

viability.
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Chapter 2

Review of Related Literature

Attempts to understand population process dates back to the
middle ages with Sir William who by 1300 A.D. composed a
table of how people might have doubled over several ages. In
his model he started with 8 people one year after the flood of
2700 B.C. and doubling at first e\;ery ten years but then at
successively longer intervals of time to arrive at 320 million
[48]. About the same period Fibonacci proposed a population

growth model for rabbits;

o0
Y = § Yk.ts
k=1

where

Y+ is the number of k old pair of rabbits at a time ¢,

y: is the total number of pairs of rabbits at a time ¢,

11
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resulting into the famous Fibonacci sequence
1,1,2,3,5,8,13,21, 34,55, 89...........

‘Modern research into population dynamics can be traced back
to over 200 years ago with Thomas Malthus [29] whose pub-
lication on Principle of population growth by stating that

”population when unchecked increases in geometric ratio”

P, = Poel™ 9" = Ry, (2.1)
where

A is the growth rate,

vb is the birth rate,

d is the death rate,

Py is the initial population at time zero,
P, is the population at time ¢ and

t is time

Equation (2.1) is the Malthusian equation in continuous time

[8].This model predicted an exponential population growth.

12
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McArthur and Wilson [48] help found the field of popula-

tion Biology. They were proponents of natural equilibrium.
They felt that mathematical models should be developed to
‘describe the patterns found in nature instead of just provid-
ing simple textual description. They started their work with
analysis of ants and birds populatién data. Through the
analysis of population of experi_mental data, they observed
that population size remained steady even though the exact
species varied. After working with several species, they con-
cluded that nature has great tendency of balancing things out

and reaching a very harmonious equilibrium.

”If nature were left alone equilibrium would exist and pop-

ulation would remain close to them”

In 1838, a Belgium mathematician Pierre Francois Ver-
hulst [45] followed suggestions from his mentor Quentelet,
that the resistance to growth should be quadratic, with resis-
tance modeled to velocity. He therefore incorporated density
dependent effects in Malthus model. He recognized the fact
that populations encounter internal competition as they grovs}

within a closed environment.

g
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This competition as he noted, has the tendency to retard
the rate of growth. Verhulst modified Malthus eé‘]ﬂation (2.1)

and obtained

dP, _ P,
— = AP, (1 ‘M) (2.2)

where

A is the intrinsic growth rate,
M is the saturation level(carrying capacity), and

P, is the population size at the time .

One of the first models to incorporate interaction between
two species in an ecosystem was ’LOtka‘ - Voltera named after
an American biophysist Alfred Lotka and an Italian mathe-
matician Vito Voltera. They assumed that predator prey is
the only determinant of population dynamics and came up

with the following model.

dP,
T = FRoRN.

dN,

-—dtt = —7N,+ BBN, (23)

14



where
L

k is the natural growth rate of prey in the absence of preda-

tor,

- 7 is the natural death rate of predator in the absence of prey,
o is the function of interaction between prey and predator,
0 is the function of interaction between predatorr and prey

N, is the population of predators at a time ¢, and

) is the population of prey at time ¢.

According to Griensen [15] analysis of Voltera model is
insightful but has no intra specific\ cofnpetition, i.e. natural
resource has no diminishing returns. He further asserts that
even two species models may not give realistic results like
those of single species. Several variations of Verhulst logistic
model have been modified to model population growth, which

is useful in resource management.

Oksendal and Lungu [35] developed population growth
modeled by introducing randomness in their differential equa-
tion via additional noise term. Genetic drift has strong im-
pact on the dynamics of small populations.

15
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However, the effects of genetic stochasticity on small wildlife

{
population is still challenging, important and open problem

in both Mathematical Biology and Ecology [14].

16



Chapter 3

Classic Models

,1 Malthusian Equation

~ From the Malthusian equation

dp; :
@~ M

where

A is the intrinsic growth rate,

P, is the population at time ¢,

it implies

1 /dP;
A== =2
H(ﬁ)

17



Integrating equation (3.1) with respect to ¢ ,we obtain

{

<

1 dP, |
=——1ldt= 9
/(A Ptdt)dt ,\/dt (3.2)

P,
dt’

Let
df =

then equation (3.2) becomes
/0—1d0 =_/ Adt

In|0] +m = At +m

this gives

where 7; and 7, are constants of integration. Making In ||

the subject of the formula, we obtain

gl =X+ (m+mn)=AX+tw

Since P, > 0, we have In P, = A\t + w

By taking exponentials of both sides, we obtain

g



s ‘%

Since w is an abitrary constant, we write Py = e“so that

{

<

P, = Pye™ | - (3.3)

From equation (3.3)at ¢ = 0, we obtain % and trace as under

& s Al
.
e ¢
P
o
»/_',.M..
e o
p,- RS ....1_-;-'--"'""”" % ;} = !‘}
k! U} N -
.
S
e
e ) £ 0
Reasasate "N e v—————
<
Fo

Yiaw

Figure 3.1.1: Exponentié,l Curves
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3.2 Verhulst Logistic Model

4

Consider the population P, with every member of the pop-
ulation P, viewing (P, — 1) as a competitor. Therefore the
‘maximum possible encounter is (P;)(P, — 1). Since all inter-
actions are not really for resources, it is only logical to take

some small multiples of (P,)(P; — 1) say
v
;(Pt)(Pt -1 (3-4)

Combining rate of change equation in Malthus single species

and competition in the above expression (3.4) we obtain

dP, v
d—t" = AP, — ;(Pt)(Pt -1) (3.5)

This on expansion gives

adb, Voo U
AP —ZP24+ 2
dt t p t+th

= (,\ + 5) p,-Zp? (3.6)
p p
Let (A+%) = pand % = o then

dP,
d_tt = uP, — aP? (3.7

20
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Equation (3.7) is the model equation.
{

Assuming growth rate of roans follows the Verhulst Logis-

“tic Model. Then from equation (3.7)

dP,
g =HRel

If we assume ¢ = A and o = %, then on substitution we

obtain

dP, Ao,
e AP, — M})t (3.8)

where |

A is the intrinsic growth rate coefficient,
P, is the population size at time ¢,

t is time, and

M is the maximum sustainable population limit.

Equation (3.8) may be written as

dp, _ P\

"9



The solution of equation (3.9) is given by

M P,
(M e P())G“)‘t + PO

I =

3.2.1 Stability Analysis For Verhulst Logistic
Models '

The equilibrium is stable if in displacing the system from
its equilibrium position by infinitesimal amount and giving
each one some small initial velocity [48]. The displacement
of different points of the equilibrium remains throughout the
course of motion contained within small-prescribed limits. It
is important to note that this definition only fits steady state
solutions and may not be applicable to chaotic systems as

those in turbulent models.

Stability analysis in mathematical modeling implies test-
ing the modeled equation for steadiness (constancy) to disre-
gard those that fail the test and to subject those models that

survive for further test.

B



The major methods for stability analysis are amplifica-
tion (Neumann) stability analysis, which is baséd on normal
models and often Fourier superposition. Iﬁ looks at decay,
may be implemented using standard linear algebra, and gen-
erally applies to linear systems but apply to nonlinear sys-
tems through linearization. The second method is the energy
method used in control theory. It looks at variation of func-
tions and normally measures motion amplitude. Consider a

general autonomous vector field ‘
& = f(z) r eR" (3.11)

An equilibrium solution of (3.11)' is a point £ € R" such that
f(z) = 0 is a solution that does not change with time, but
considering a non-autonomous vector field

2= f{2,1) :r: € R" and in freezing time, ¢ and looking at
equilibria of frozen time,vector field(always in fluid mechan-
ics with vector field interpreted as velocity field) the instan-

taneous fixed points are given by f(z,t) =0

23




If we find a point, (Z,?) such that f(z,t) = 0 and D, f(Z,t) #

0 then by implicit function theorem, we find a %&nction z(t)
with Z(t) = Z such thatf(Z(t),¢) = 0 for sofne small interval
| 7 If we let Z(t) be any solution of equation (3.11) then, Z(t)
‘is stable if the solution starting close to Z(t) at a given time
remain close to Z(t) for all times. It is asymptotically stable
if nearby solutions not only stay close but also converge to

z(t) as t — oo.

E(t) is said to be Lyapunov stable if given € > 0, then
there exist a § = d(¢) > 0 such that for any other solution
y(t) of equation (3.11) satisfying |Z(ty — y(to))| < o0

where |.| is a norm on R” Then, |Z(t) — y(t)] < € for ¢t >

0, treRrR [48]

We remark that a solution which is not stable is unstable.
Z(t) is said to be asymptotically stable if it is Lyapunov stable
and for any other solution y(t) of equation (3.11) there exist
a constant b > 0 such that if |Z(tp) — y(to)| < b

lim |Z(¢) —y(t)] = 0

t—00

4



And considering a differential equation of the form

{
‘e

ar .

= f(t, 5 3.12

&t 6 R) (312
1If we let P, be any solution of equation (3.12), then P, is Lya-
~ punov stable if the solution starting close to P, at any given
time remain close to P, for all later times. It is asymptotically
stable if nearby solutions not only stay close but also converge

to P, as t — oo. An equilibrium solution of equation(3.12) is

a point P; € R such that f'(P") =0

Example 1.

dP, _ P,
— )\(1 = H) P, (3.13)

We obtain the equilibrium levels by setting

dP,
=
dt

This gives )\(1 - —)P, = 0 and solving for P,, we obtain
the solution P, = 0 and P, = M. An equilibrium level R for
the differential equation = 2 =+ = fP, is stable if there exist a
neighborhood N of R with the property that whenever Py >

N then the solution P, with the initial condition P, = B

25
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1. Is finite Vt > t,

2. Has

lim P, =R, N is the neighborhood of stability.

t—00

Figure (3.3.1) below illustrates the notion of equilibrium level
R and (a, b) is the neighborhood of R. 'If the population graph
P, finds itself between the lines a or bi.e. a < P, < b then

P,—Rast— oo

& /— h

\

i

Figure 3.2.1: Population curve attracted to equilibrium R

2



We now carry out the stability analysis for the Verhulst
[
logistic differential equation <

db; B
— =fP=AP|(1—-—
LBy ( M)
We observe that 0 and M are the equilibrium levels of the
equation and letting P, be the initial value corresponding to
to, the solution to the differential equation becomes

M Pye™

P =
"7 (M = By) + Pyelth)

Py £ M (3.14)

= (M — Py) + Pye*t=0) =

whenever t, is a point of jump discontinuity with ¢, > ¢

e”A(t*»t(,) _ PO - M
Ry

Since Py > M and Py # 0 the RHS > 0 therefore a positive

logarithm (raising to the log).

Mm—m%ﬂnc%_M>>O

/ 1 P()—M )
u—uy_xm< 7 >>0 (3.15)

s

97



When ¢ty = 0 then

1 Po—M _
*=—l
t /\n( 2) >>O

<

Now solving for t we obtain a value say t, > tp and if we
let Py > 0,P) # M then equation (3.14) is the form of the
solution. We look for singularity of the denominator by at-
tempting to solve this algebraically and this leads to equatibn
(3.15). However if Py > 0, > M then (’-’gﬂ> < 0 has
no algorithm and therefore equation (3.15) has no solution

for real t. However since <P¢1§Uﬁ> <1, In (P(’,%OM) < 0 and
since A > 0 the solution of ¢, in equation (3.15) will be such

that ¢, < tg.

Given our main concern is time values after initial condi-
tion and finding singularities fail. Thus Lyapunov stability
holds for any solution corresponding to the initial condition
Py where Py > 0, Fy > M since asymptotic stability holds in
relation to the equilibrium M. The set of all positive numbers
forms neighborhood of stability of M and the point M is the
stable equilibrium level and the neighborhood for stability is
(0, 00) [48] |

28
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Figure 3.2.2: Two types of solutions to the Logistic differential equation.

Case (i) Equilibrium Solution P, =0, P, = M

Case ii) Equilibrium solution with +ve initial value Py > 0

The logistic growth equation has proved useful in popula-
tion ecology despite simplified assumptions in its derivative
assumption. Verhulst logistic equation has been used to de-
scribe the population growth model for Peruvian anchovies.
Morgan [31] also used the same equation to describe the herd;

ing behavior of African elephants.
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Chapter 4

Formulation of Model

Equation

4.1 Stochastic Processes

A dynamical system is a mathematical structure used to
model the deterministic evolution of some physical phenom-
ena (system) in time. Ordinary differential equations (ODE)
normally interpreted as describing evolution in time and hence
deterministic dynamical system. Dynamical systems are de-
terministic since their future is (in principle) completely pre-
dictable from knowledge of presenf state. However, for Pivato
if some intrinsic randomness in the system which makes per-
fect prediction of the future impossible but strong trends or

correlation exists, the mathematical structure used to model

30




this phenomenon is stochastic process [37]. Stochastic process

4
consist of space, time and probability measure ‘<

Definition 4.1. If 2 is a given set, then a o algebra F' on Q2

is a family F' of subset of {2 with the following properties.

()@ e F
(i)fe F= fceF

where f¢ = Q/F is the compliment of F' in §

(iii)

The pair (2, F) is called a measurable space.

A probability measure P on a measurable space (2, F') is

a function P : F' — [0, 1] such that

31




then

(o.0]

P<¢L;J1Ai)=gP(Ai)- '

The triple (€2, F, P) is called a probability space. It is called

a complete probability space if F' contains all the subsets of

- @G of Q with P outer measure zero.
P*G)=inf{P(F) :feF,GCF}=0

Given any family p of subsets of ) there is a smallest o alge-

bra H,, containing p namely
Hy = ﬂ{H :Ho algebraof Q,uc H}

Let (2, F, P) denote a complete given probability space, then
a random variable X is F' measurable function X : 2 — R"
Every random variable induces probability measure y, on R"

defined by p,(B) = P(z 1(B)), i, is the distribution of X.

32



/ IX(W)dPW) <00 ‘o
A |
then

E[X] = /Q X (w)dP(w) = / e

T

where z is called the expectation of X (w.r.t.P)

Definition 4.2. A stochastic process is a parameterized col-
lection of random variables {X;}+er and defined on probabil-

ity space (0, F, P) and assuming values in R"™ [50].

The parameter space 7' is usually half line [0, 00) but may
belong to [a, b] the non-negative integers and even subsets of
R" for n > 1 such that for each ¢ € T fixed we have a random
variable W — X,(w) : w € Q and on fixing w € Q,t € T
which is called the path of X;

For clarity X; = X(t).

A stochastic process X = {X(t),t € T} is a collection of
random variables. For each T in the index set T, X (t) is a
random variable with ¢ interpreted as time and X, the state
of the process at a time ¢ [38]. If we let X be some set, time
for some other set and we let W be some o-algebra on X the

W measurable stochastic process on the state space X over

- 33



time T is a probability measure W [37]

Y

Stochastic processes are sequences of events governed by
probabilistic laws. These systems occupy one state at a given
‘time and could make transition probabilities from one state to
~ another. The set X of possible status may be finite or infinite
depending on application. X consist of discrete elements X;
fori=0,1,2............. with element X; being possible states
of the systems at any time t.

The probability P, ;(t) of the system making transition from
the state ¢ to 7 in the interval time ¢ is the conditional prob-

ability defined as
Fi;(t) = Pr{X,../ Xy, = Xi} (4.1)

where X, is the state of the state of the system at the time
to. The index set T' is a countable set and X discrete time
stochastic process or continuous time stochastic if it forms a

continuum.

Definition 4.3. A discrete time stochastic process is the
probability measure on (X, ), € T),[31]. Discrete time
stochastic processes are ranked in increasing order of com-

plexity.

34



This hierarchy follows either Bernoulli or Markov processes.
Discrete time processes can be demonstrated »by rt;t'ndom walks
with probability p of a particle moving to the right and prob-
ability [(p — 1) = ¢| of particle moving to the left.

v ﬂLet P; ; be the transition probability then
Pi.,j—H = P = ].—}Df,;’j_l 79 = :i:l, :I:2, :i'_'3 .................. EERETRERPIRREP T

suppose for abitrary time ¢,z in a random variable X; takes
p =1, = —1 and X, are independent and identically dis-

tributed (iid) with identity function.

po(z —1) — (1 —q)d(z + 1)

EX]=2p-1

and

VarlX] = 4p(1 - p)

If the n'* partial sum of the random variable

| 'BS
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Then the sequence for the random variable

L

<

{Y1, Yoo b
‘is the random walk with the probability distribution
E[Y,] =n(2p-1)

and

VarlY,] = 4npq

at sﬁage n. If we let i and o2 be the mean and variance

respectively then

EY,] =np

and

VarlY,] = no?

Definition 4.4. Let X be some set and time ¢ be some open
set and closed interval in R representing an interval of time
and W be some o algebra, then ¥ be some measurable con-
tinuous time stochastic process on state space X over time
interval T is the probability measure W Continuous time
stochastic process {X (t),t > 0} has independent increments
if
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are independent.
~ They may make stationary increments if X (¢4 s) — X(t) has
distribution values V¢ i.e. the distribution only depends on s.

This implies that for n time points the random variables set

(X (t1), X (a)errorrereeenenee. X ()
and
{X(t1+8), X2+ 8), ccvenne. (RPN X(tn+9)}
has the same joint probability distribution thus
E[E(t)] = E[X(t+ )]

Markov process is a continuous time X = {X(¢),t > 0} with

the

Pr{X(t) < z|X(n), p € [0, s] = Pr[X(?)] < z|X(s)}
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Markov processes are stochastic processes for which all
its future knowledge is summarized in current value. Exam-
ples of these processes are Brownian motion, stable processes,
Poisson processes and even Levy processes. We can therefore

ascertain that stochastic processes are variable with both the
expected variable term (drift term) and random term (diffu-
sion term).
The drift-coefficient term, models dominant actions while
diffusion-coefficients represents randomness along the dom-
inant curve. Roan antelope population growth varies in ran-

dom number and represents stochastic process.

4.2 Brownian Motion and Stochastic Dif-

ferential Equations

An irregular movement of pollen grains suspended in water
as was observed by a botanist Robert Brown in 1828 has
a wide range of application. Nobert Weiner came up with
a concise and rigorous mathematical definition of Brownian

motion, sometimes called Weiner Process.
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Definition 4.5. A Brownian motion or Weiner process is a

(

stochastic process £(¢) > 0 satisfying ‘o
(1)£(0) =0
(i) For any 0 < ¢, < t1eeveveinenen. < t,, the random variables

E(ty), —x(ty)(1 < k < n) are independent

(iii) If 0 < s < t,z(t) — x(s) is normally distributed with

B(P(t) = P(s)) = (t = s)uB(E(D) ~ £6)7) = (¢~ 5)o”
where p and o are constants, o # 0

If £(t) is a Brownian motion,then p is the drift and o2
is the variance. Brownian motion can be a Weiner process
dW =evdt :¢is arandom drawn from standard normal-
ized if 4 = 0 and 0% = 1 any continuous time process with
stationary independent increments and can be proved to be
Brownian motion. Brownian motions are used in models that
resemble random movements of particles. A (u,o) Brownian
motion £ = {£(t),t > 0} can be expressed as a Weiner process
1LE

f(t) = ut+ oW,
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and a normal variable with mean of zero and a variance of one.
&

The values of dW for any two intervals are independent such

that small infinite change can be written as AW; = £V At

~ adding up each of those intervals, we obtain

W, = W(0) = lim { ;a,,;\/m}

One dimensional Weiner process has £(¢) determined by the

stochastic differential equation(SDE) of the form of
dé(t) = pdt + odW, : P(0) = P, (4.2)

where  (drift rate) and o standard deviation.

Thus d€(t) is the sum of the deterministic term dt and the
stochastic term (dW;)and in the short term interval [t;_q,1]

and the increase may be given by

i

&i(t) — &i(t) = ,UJ/‘ dt + 0‘/; dWy (4.3)

1—=1

With a general solution of the form
€(t) = &im1(tiz1) + plti — tic) + o(W (k) — W(ti1)) (4.4)

and in particular if the interval is [0,1] the equation (4.3)
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o - A

becomes
1 1 )
§(t)=£o—|—,u/ dt—l—cr/ daw, ‘< (4.5)
0 0 -

whose solution is

G=&+ut+oW, (4.6)
with £(0) = 0 and AW (0) =0

A generalized Weiner process with non-constant coefficient

d§ = p(€,t)dt + o (€, 1)dW; (4.7)

where p(€,t) and o(&,t) are functions of variable ¢ and time

t is called Ito’s process if it solves the equation

£(t) =&+ /0 L€, Dt + /0 G(E(), )W, £ >0 (4.8)

where & is the initial value, p(€(t),t) is the drift term and
o(&(t),t) is the diffusion term. A special type of Ito’s with
linear coeflicient is the geometric Brownian motion (gBm)

and has the stochastic differential equation of the form

dé(t) = pé(t)dt + o€(t)dW, :p>0,0 >0, (4.9)
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where y is the mean growth rate and o is the rate of diffusion.

Equation (4.9) can be expressed as a growth function
dé(t
# = pdt + odW;, €(0) =& (4.10)

- over infinitely short time interval (t,t + At).

Solutions to equation (4.10) can not be obtained from stan-
dard Reinman Calculus formula for total derivative. If we let
f(z,t) be a continuous function with (z,t) € R x [0, 00) to-
gether with its derivatives f;, f, fzr then the process f(&(t),t)
has the SDE (4.11). Ito achieved a rigorous treatment for in-
tegrating such Weiner like differential equation,thus Ito cal-

culus,[13].

The solution to equation (4.10) is the stochastic differential

equation

GED.D) = LW, 1)+ FLE), Hu(d) + 50, D 0ldt +
fz(f(t),t)d(t)th . (4'11)

This is called Ito’s formula. It is noticeable that if W (t) were
continuously differentiable in ¢ then by Reinman calculus the

term 1 f,,b%dt would not appear.
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|
1

Proof. This will be divided into several steps.
Step 1

Bor sy m > 2
AW = m(m)™ ) + Smm - D)y (@12)
Theorem 4.6. If
dE(t) = p(t)dt + ou()dW,  i=1,2
thenA
HE0B) = 600 + 60D + ol (413

The integrated form of equation(4.13) for any0 < t; <ty > T

18

43




8

<

&1(t2)6a(ta) — &i(t1)&a(t2) = j 2 E1() pa(t)dt +

’ & (t)UQ(t)th +

121

f ’ fg(t),ul (t)dt -

ta
| £Q(t)0'1 (t)daW, +

t1

| / " o (Ooa(Ddt (4.14)

t1

and‘ by linearity of the stochastic differentials we obtain
‘ 1
dQ() = Qw(®)dW (1) + Q" (w(®)d  (415)
for any polynomial Q

Step 2

Let G(z,t) = Q(x)g(t) where Q(z) a polynomial and g(t)

is continuously differentiable for ¢ > 0 By Theorem (4.6) and
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= s

Qe - 0166

equation (4.15),we have
(

dG(u(t)) = Jw(®)dg(t) + 9 (w(?)
= |F@®)g(0) + 590" (w(w) | db +
9O (w(t)aw (1)

0§t1<t2§T

and

_G('lU(tQ),tQ) - G(’U)(tl),tl) = /’2 [Gt(w(t),t) I

t1

]

5 Gaalw(t) t)] dt +

| / ? G (w(t), AW,

'1 (4.16)
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Step 3

Formula (4.16)remains valid if

m

Gz,t) = 3 Fil@)ailt)

=1

* where fi(x) are polynomials and g¢;(¢) are continuously differ-

entiable.

Now letting G,(z,t) be a polynomial in z and ¢ such that

Gn(z,t) — f(z,1) | %Gn(a:, t) — fi(z,t)

%G"(x’ t) - fz(.’lf,t) B%Gn(xa t) - f(IIT(xa t)

Uniformly on compact subset of (z,t) € R x [0, 00) We have,

[8 Gn(w(t),t) +

Gol(tw(ta), ) — Gulw(ts), 1) = / 12

t1

19° |
551—8—2G_,,,(w(t), t)] dt +

tza

t 8:13

Goa(w(t), t)dW,
(4.17)
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It is clear that

{

10 1 6 )
/t1 [aGn(’w(t), t) + Eﬁ_aciG”(w(t)’ t):| dt =%

/: [ft(w(t),t) = %fm(w(t),t)] dt

/ tg
t

a.s, hence taking n — oo in equation (4.17)we get the relation

a.s
2

g dt — 0

5=Gnl(w(t). 1) = fa(w(t),1)

Sl ) - ) = [ [ft(w(tm n

1
| §fzm(w(t); t)] dt +

fz(w(t), t)dW,

(4.18)

Step 4

Formula (4.18) extends to the process

S(w(t),t) = f(& + pat + o1 (w(t), 1)),

where &, i1, o1 are random variables measurable with respect
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to fi, ,we have

{

D(w(ta), t2) — P(w(ts), t1) = /f'z [ft(f_(t)i) + fz(E(t), t)u +

where

£(t) = & + pat + orw(t)

The proof of equation (4.19) is equivalent to that of equation
(4.0.18) with changes resulting from the formula (3.9), we

have‘
OED)" = m(E®)™ di-+ordu(t)}+3m(m—1) EO)"™ ot

This replaces equation (4.12)
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Step 5

If 11 and o(t) are step functions, then

ﬂﬂ@i»—ﬂﬂMJﬂ==ZQ%QWJHﬁudmﬂMQ
3 lE0), )0 a
+/5mamwwmm

t1

(4.20)

Indeed, by denoting Ii.............. I,, the successive interval in
[t1,t2] in which 4, o are constants. If we apply equation (4.19)
with ¢4, t5 replaced by the end points of /; and sum over [ the

formula (4.20) follows
Step 6

Let pq, 01 be a non-anticipative step function such that

A|mm—mma~o (4.21)

a.s

loi(t) — o(t)[>dt — 0 (4.22)

49



and letting

8

<

&(t) =€(0) + /0 pi(s)ds + /0 oi(s)dW,
Then sup [&;(t) — &£(t)| — 0 hence the subsequence {7’}

sup |&(t) =€) —0 as ifi=i — o0 (4.23)

0<t<T

This and equation (4.22) imply that

T .
. A Iff(g'(t)a t)a U’i(t) = fr(ﬁ(t), t)O'(t)Ith — 0

If : = ¢ — oo it follows that

[ C (), DodW, — / " (@), Do (B)aw,
If i = ¢ — oo then from equations (4.21 - 4.23)
ftﬁz [ff(gl(t)’ t) L3 fr(g(t)’ t)“i(t) + %fu:(gz(t)a t) (Ut(t)) dt —
Ik [ft(ﬁ(t), 1)+ Fol€(8), Olt) + L fualE(2), 1)0%(0)| dt

If i =4 — oo If writing equation (4.0.20) and taking p =
pi,o = 0;,€ =&,1 =1 — oo then formula (4.20) follows the

general 1, o and this completes the proof for the theorem. 0
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Theorem 4.7. Let d¢;(x) = pi(t)dt +o;(t)dé :1<i<m

{

and let f(z,............ Tm,t) be a continuous funcﬁon in (z,t)
where £ = (Zi.oooun.e.. T,m) € R™ t > 0 together with its first
t derivative and second x derivative then f(&(t)........... Emyt)

stochastic differential given by [13]

GO0 = (O + D IO, 0m0 4

T Z Fra, (X (8), 8 gz(t)aj(t)] gt

’L]"l

Z fe (X (1), )0 (t)dW,

(4.24)

where X (t) = (&(t).oevvrreenn. Enlt))
Equation (4.24) is the Ito’s formula. From theorem (4.7),

equation (4.24) the geometric Brownian motion (gBm) is given
by

d§(t) = p€(t)dt + o€(t)dw,, (4.25)
where p&(t)dt is the drift and o€(t)dW; is the diffusion term
dW, = eV/dt
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Dividing both sides of equation (4.25) by £(t), we obtain

{
‘v

elt) _ pdt + odW, (4.26)

£(t)

and in order to get the strong solution of equation (4.26) we
let f(&(t),t) be a function of ¢ and ¢ twice differentiable in ¢

and once in ¢ such that
fE(1),1) = In&(t)
Note

de(t
LW _ gt + vaw,

30
suggests the nature of f(£(t),t) differentiating f(£(t),t) twice

with respect to £ and once with respect to t gives

dew,y _1 REw _ -1 8w,y _,
¢ ¢ iz & o
and by equation (4.11) we have integral in the form

0.2
df(£(1),1) = d(In£(t)) = (,L - 7) dt +oeVi  (4.27)

Equation (4.27) follows a generalized Weiner process with

52



the drift rate (u - ”72> and diffusion coefﬁcientka,which are

<

constants. The distribution of this process is given by

df (€(t),t) ~ N ( (u — %2) dt, a@)

or
2
8<ln£(t) ~ N(/L - %) dt,m/c%)
whose solution over the interval (¢;_1,¢;) is given by
2

In f(t) = Ini &(ti_l)—f- (M-%) (t,;_l, ti)-l-Ofi(\/ tz’—l, ti) (428)

Moreover, on putting like terms together, we obtain

In ( gft(t_)l)> - (;L - 5'2—2) (ti1, ;) + oe(+/(ticy, i) (4.29)

And in considering the interval (0,1) then equation (4.27)

becomes

2

lnE(t)zln&)—i— (M—%)t-l-O'c?\/Z 5(0)=£0>0 (430)

Thus Iné(t) is normally distributed for any time ¢ with the
mean given by In & + (,u - ";) and variance by ¢t and the

change in logarithm of the population size in the interval 0, 1
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W

results in

S

Iné(t) —Ing = (p, - %2>t +oevt  (4.31)

with the corresponding distribution given by

Iné(t) —Ing&y ~ N((u —%i>t, ax/%)

From equation (4.31) the strong solution becomes

)

£(t) = &y exp [(u - %)t + ae\/Z] (4.32)

which has the log-normal distribution given by

&(t) ~ log-normal <§0 exp ut, & Vexp(2ut), exp(aQt)—1>

such that if o = 0 then equation (4.31) becomes

£(8) =y explut)

Thus &(¢) has the exponential growth with the expectation

& exp(ut) and variance zero.
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4.3 Model Equation

{

In addition to competition for resources and predation. We
consider the genetic defect on the population growth rate for
the roan antelopes. From the Verhulst logistic growth rate
equation (1.1) and adding genetic growth component to the

logistic growth model we have
B

where

A is the growth ratio
P, is the population at time ¢
M is the carrying capacity

U(P,) is the function of P, representing genetic defect

Letting U(P,) = « a constant then equation (4.33) becomes

dPt_ lPt '
7 AP (1 M) - (4.34)

And equating equation (4.34) to zero we obtain

AP2 — AMP, +yM =0 (4.35)
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whose solution is given by

AM + /(M2 — 4\yM) -
B, = —~ L P(0)=PR  (4.36)

The nature of solution of equation (4.36) depends on the ge-

netic defect v such that

4 > ’\ﬂ there is no real valued function implying genetic

defect rate leads to extinction,

v = 1\—4M has unique solution thus absolute growth rate in the

absence of genetic defect and

v < M has positive growth rate with genetic defect.

Suppose we have a genetic defect at the rate proportional to
P, and if we let U = yP;dt then equation (4.33) becomes

ar P '
—= = AP, (1 - M) — P, (4.37)

Integrating equation (4.37) and solving for P, we obtain the
solution

(AM — )Py

P =
T IAM = By) — 4le- AWM=t 4 AR,

P(0) = Py
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Ast — 00,P, — Py and t — oo, P, — Q20M with the
By

{

following steady states o

(A=v)M

A
Stochastic models afe probabilistic in structure. This helps in
solving the effects of uncertainty in ecological models. Hence,
analysis of systems with white noise gives better results. .If
we consider population growth process

14dP(1)

P a MM — F)

adding noise to the continuous growth process above, we ob-

tain

1 dP, .
- = 4.
B —P) d Adt + noise (4.38)

If noise= odW, = oeVdt, e ~ N(0,1)., equation (4.38) can

be written as

1 dP,
TS At + ocdW,, M # P, (4.39)
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On making dP, the subject of the formula, we obtain the

logistic stochastic differential equation s

dP, = AP, (M — P,)dt + o P,(M — P,)dW, (4.40)
with the distribution

On using the variable

and simplifying equation (4.39) we obtain
dY = AMdt + o MdW, (4.41)

Equation (4.41) is the generalised Weiner process with AM dt
as drift and o Mdt as variance. Equation (4.41) has the ex-

plicit solution

Y(t) = Y(0) + AM(t —to) + o MW,, Wo=0  (4.42)
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If we let

{
<

Y (t) = log (M—LtP(tQ and Y(0) = (’M%)

Equation (4.41) becomes

P@t) \ _ P(0)
log (M) = log (M——P(O)> + AM(t —t) + 0'(MV;/;
4.4

and making P, the subject of the formula we have the Verhulst

Logistic Brownian motion

MP,
(M — Py)e DMt toMW,} { Py

P, = L P(0) =Py (4.44)
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Figure 4.3.1: Trajectory of logistic Brownian motion.
Considering roans resources whose population P, varies
randomly due to natural factors (e.g predation, diseases) ac-

cording to autonomous diffusion process
dP, = AP,(M — P,)dt + o P,(M — P,)dW, (4.45)

Equation (4.45) is an Ito process called logistic geometric
Brownian motion, and can be solved by use of Ito’s lemma.
Let F(P;,t) be function of P, and ¢ be twice differentiable in

P, and once in t , we have

OF . OF . 10°F
—a—tdt + 8_P,dB + 5'5?

dF(P;,t) = dP?
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But
dP, = AP,(M — P)dt + oP,(M — B)dW,

Hence dP? = 02 P?(M — P,)?dt and by Ito’s calculus we obtain

oF OF
F(P,t) = Zldt + ZAB(M —P
dF(P;,t) 7 dt+dP,,)‘ A ) )dt +
oF
t ’ :
———0 P (M — P,)~dt
2de2 f,( f)

We can rewrite equation (4.46) in the form

oF OF
dF(P,t) = {E + d—R/\Pf(M —PB)+

10F
2dP?
OF

d—PtUPt(M - Pt)th

o?P}(M — P,,)2}dt + (447

If we use the variable F' = In (Hféﬁ) then

OF _, OF _ M dF _ 2M(P,— M)
it~ 9P, PB(M-P) 0P} PXM- P}

Substituting this in equation (4.46), we obtain

1
dF (P, t) = {)\M - 502(M2 - 2MP,,)}dt + oMdW, (4.48)
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Equation (4.48) is similar to to the Brownian motion in equa-

tion (4.40). Its solution is got by integration.Thﬁs
1
dF(P;,t) ~ AM — §(;Q(M — 2MP,)dt, o MdW,

It can be solved by Ito calculus.When ¢ = 0 then equation

(4.48) is a deterministic differential equation given by

M
dF (P, t) = A\Mdt = | ———— |dP;
(Ft) (Pt(M—Pr,)> :

and making dP, the subject of the subject of the formula, we
obtain

dP, = AP,(M — P,)dt

If we let

F(P,t)=In <(MP+B)> then dF (P, t) = (E(—J\f——ﬂ))da

and rewriting equation (4.45)
dP, = A\P,(M — P,)dt + o P,(M — P,)dW,

we obtain
dP,
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But
dF(P,t)P(M — P) = MdP, ‘<

hence
dF (P, t)P,(M — P,)

dP; = %

and when substituted in equation (4.0.49) we obtain

dF (P, t)P,(M — P)
MP,(M - P)

= \dt + o MdW,

dF (P, t) = AMdt + odW, (4.50)

This is a generalised Weiner process with AMdt as the drift

and oM dt as the variance. It has the explicit solution
F(Pf,t) = F(P(),O) + )\Mf + O'Mth

which is equivalent to

P, Py
=1 W
1n(M—B> n(M—,P0>+/\Mt+0M f

Solving for P, we obtain

MPO ) ’

B =
T M- Py)eAMi—oMW: | Py

63



When ¢ = 0 in equation (4.51) we obtain the deterministic

logistic differential equation given by b

M Py —AM,—o MW,
Bz(M—PO)e”’\Aft+P0 as t—o0; e —0

To take care of fluctuations in the roan antelopes population
growth rate due to genetic defect at the rate proportional to
P,(M — P,) so as to ensure positive population growth rai;e,

we add genetic defect in equation (4.45) to obtain
dP, = (A= )P(M — P)dt + cP,(M — P,)dW,  (4.52)
where

P, roan antelopes population at time ¢,
A roan antelope growth ratio,

~ genetic defect,

M carrying capacity,

o diffusion rate and

W, random variable.
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Suppose F(P,,t) = F is twice differentiable function in P,

and once in ¢, then by Ito’s lemma b

2
ar(pt) = L 4 2 gp 4 1O

il 2
-~ ot oP, 20P? ar;

which is equivalent 0

ar(Pot) = {Spd+ (=P - PYTE +
%cﬂ P2(M — RQ)?;;; }dt + (4.53)
UPt(M - Pt)g—gth
Using the variable
F(P,t)=In (M]i Pt) (4.54)
where,
OF  OF M OF  2M(P - M)

=0 - —
ot ' 0P, P(M-P) 0P2 PXM-P)

We substitute the above results in equation (4.53) to obtain

M
1, 2P, — M?, 2 2
2(PE(M - Pf))"P" (M — P,)dt
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1
= dP, = M{(/\ ~ ) 5ot (2R ~ M)}dt + o MdW, (4.55)

<

with
1
dP, ~ N{M(/\ — )+ 502(2Pt — M)dt, UM\/a}
On rewriting equation (4.52) as
dP, | |
———— = (A—7)dt + cdW, 4.56

and using the variable in equation (4.53) we can rewrite equa-

tion (4.55) as
OF (P, t) = (A —y)Mdt + odW, (4.57)
Integrating equation (4.57) with respect to ¢, we obtain

F(P,t) = F(Py,0) + (A= 7)M; + c MW,, (4.58)

which on substitution with the variable in equation (4.54),yields

P\ _ B\
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Solving equation (4.59), we obtain

{

<

MF : P(0)= P, (4.60)

(M _ po)e—(,\—y)Mt—aMWt + PO

P =

From equation (4.60) when A = v ,we have

MP,

P =

. P(0) = P (4.61)

Equation (4.61) is a function of random variable W; only.

This implies that the population may approach extinction.
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Chapter 5

Population Viability Analysis

Population viability analysis is the estimation of extinction
probabilities and other measures of population performance
by analysis that incorporate identifiable threats to population

survival into models of the extinction process [14].

For most sexually reproducing species, the ultimate bi-
ological extinction is assured whenever the population has
declined to a point that it no longer has individuals of both
sexes. Extinction is simply defined as the absence of at least
one sex. The second option of defining extinction involves
assessing the probability of population dropping below user
defined minimum viable population-termed as quasi extinc-

tion.

68



Minimum Viable Population (MVP) is the size at which a
population has 99 percent probability of persisténce for 1000
years,[42]. Extinction could simply be defined as decline in
population size. Given the small and stagnated population
growth of the roans in the last estimate despite the manage-
ment policies adopted by the KWS, it is clear that the con-
servation measures targeting species population increase may
be inadequate. Wilson & Hirst ascertains that even small
populations of roans can rapidly project positive population
grthh given favorable conditions,[50]. It is at this point that
we want apply the PVA tools to evaluate the probability of
extinction and the likely management interventions. Simu-
lations of different scenarios of the Ruma roans’ populations

were run and their implications discussed.
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5.1 Simulations

We have used Vortex version 9.99, which is a stochastic sim-
ulation of the extinction process [24]. Vortex is the most
appropriate PVA tool to use for this thesis since roans have
low fecundity, long lifespan, have change in genetic variation
with polygynous breeding system and a local population .of

approximately less than 50 individuals [24].

We entered biological populaﬁon parameters of the Ruma
roans’ in Vortex model. Female roans (heifers) attain ma-
turity at approximately 2 years with 270-320 days gestation
period. We therefore set the age of first birth at 3 years.
Male roans (bachelors) age of first reproduction was set at 5
years even though they mature slightly earlier approximately
3years but they take time to establish their territories and

secure breeding access to females [52].

The maximum reproductive age was set at 12 years for
females while that of males was’set 10 years. According to
Wilson & Hirst, roans have established social structures with
a polygynous breeding system [49]. Given that we had six

calves with eight adulﬁ bulls we estimated, a 75% successful
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sire. Roans calve once a year, we set the litter size at 1. Since
there were 25 adult cows with only 6 calves, we estimated the
proportion of adult females calving annually at 25%. Juve-
nile mortality is usually as high as (30 — 60%) during the
hiding period with a standard deviation of 10 percent due to
environmental variation. The birth sex ratio was set at 1:1.
Bachelor roans’ mortality rates were set 10% slightly higher
than their female counter parts (heifers) since they are usually
driven out of the herds by adult bulls. Heifers, adult bulls,
and adult cows mortality rate was set at 5% which is the

default value for large ungulates with a deviation of 3%,[24]

The effect of genetic drift due to inbreeding was included
in the simulation model at three different levels. The first
simulation represented natural genetic drift due to inbreed-
ing with defauit lethal equivalent of 3.14, the median value
from the study of 40 mammalian species [24]. Secondly we
made a more optimistic assumption of 0.09 lethal equivalents
(lower quartile). Similarly in the third level we opted to be
pessimistic in our assumption 5.62 lethal equivalent (upper

quartile).
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Neither drought nor diseases related catastrophes were set
since none had been recorded in the last two decades. KWS
had constructed water points that supplemented water sup-
ply during dry seasons. KWS management also set up a vet-
erinary unit that was responsible for preventing and curing

wildlife diseases in the park.

Each simulation was run 200 timés in a span of 50 yeafs.
The carrying capacity was set at ‘250 individuals. The default
carrying capacity is 20 individuals per 1000ha [52]. The ini-
tial population size and structure were as at June 2010 from

Ruma National Park.
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Chapter 6

Results and Conclusions

6.1 Results

It was not possible to model every aspect of potential vari-
ation in vortex parameters But instead concentrated on the
inbreeding and supplementation. This is to guide the man-
agement in their conservation strategy. We set the parame-
ters as in Appendix A with an inbreeding coeflicient of 3.14
default lethal equivalents. Environment Variation (EV) in re-
production is left to be concordant. We run the simulations
for Lambwe 1(scenario 1) 50 years with 200 iterations each of

365 days without supplementation.

We noted that inbreeding has high-level impact on popu-

lation survival. The population started dropping drastically
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after the 20th year before going extinct in the 43rd year.
(

We created scenario two (Lambwe 1 supplerﬁénted) with
the parameters in Appendix A but incorporated juvenile and
adult supplementation. We started our initial supplementa-
tion from year 5 and Year 40 as our last year of supplemen-

tation.

We noted a decrease in the mean inbreeding éoefﬁcients
in the supplemented scenario (Lambwe 1 supplemented). We
further detected a steady population in almost 50 years as
compared to the non-supplemented scenario (Lambwe 1) which
showed a drop in the mean survival after only 20 years. Also
noted is the fact that over supplementation of both the juve-
nile and adult roans increased inbreeding in the later years,

thus slow rate of population growth.

However, supplementation ensured population survival for
a long time. In all the above simulations, we maintained adult

death rate at 5% default value for large ungulates.
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6.2 Conclusion and Recommendation

Long-term probability of extinction and ensuring high pop-
ulation growth rate are usually the major reasons for inter-
vention by Conservationist groups in supporting the small-
threatened species populations. In Ruma, the major factor
for consideration is genetic drift caused by inbreeding in con-

trolling juvenile mortality.

Predator control is not advised due to difﬁcﬁlty in imple-
mentation, unpredictable consequences to the ecosystem and
is in conflict with the general KWS management policies in
protected areas. The management is left with the options for

controlling juvenile mortality through supplementation.

Supplementation involves importing juveniles from parks
like Akagera in Uganda or any other park at intervals of 5
years to curb inbreeding, which is a major threat to popula-
tion growth in small populations. Severe inbreeding after a

decade or so may have deleterious effects.
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We therefore recommend that genetic studies be carried

E S
out to ascertain the extent to which inbreeding affects popula-
tion growth. This should be done without causing disruption

of the social groups.

We further recommend that juvenile supplementation of
two-year-old heifers and three-year-old bachelors. This seems
to be a reasonable age for supplemeﬁta‘cion compared to one
year old who are usually vulnerable to predation and other

factors relating to increase in their mortality rates.
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