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ABSTRACT

Roan antelopes that were once abundant in the country in the 1880s have

been reduced to a remnant population of less than fifty individuals in the

last estimate,November 2009. Oksendal and Lungu developed population

growth model in a crowded environment by introducing randomness in

their differential equation via additional noise term. Magin and Kock in

their roan antelope recovery plan in the Ruma National Park considered

poaching as a major factor affecting population growth of roans which saw

a slight population growth before experiencing stagnation since the year

2003 to date. The Kenya Wildlife Service (KWS) has since taken neces-

sary measures to curb poaching. This reduced the risk of poaching as a

major factor that accelerated roans' population decay. Lambwe valley is

believed to have uranium deposits that could affect fertility. Inbreeding

in small populations is known to have substantial effects on population

growth rate. We have therefore incorporated in our model genetic defect

that was not incorporated by Magin and Kock. This was made possi-

ble by making appropriate adjustments to Vortex Version 9.99 which is

a computerized program for the simulation of the extinction processes.

We noted that there is a high correlation between inbreeding and popu-

lation growth in small populations. It is hoped that this study will help

The Kenya Wildlife Service (KWS) in the management of their complex

ecosystem.
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Chapter 1

Introduction

The main insitu measure enacted for the conservation of the

roan antelope in Kenya was the creation in 1966 of the Lambwe

Valley Game Reserve, later gazetted as Ruma National Park

in 1983 to provide a legally protected stronghold for the species

in Western Kenya [17]. The Park covers an area of 126 km2

and situated in Homa Bay County, approximately 30km South-

West of Homa Bay Town [1]. Ruma has important surviving

population of herbivores such as the Oribi, Jackson's h?,rte-

beest, and Rothschild's giraffe.

In the 1880s, the roan antelope occupied large areas in-

cluding Mount Elgon, Cherangani and Chyulu Hills. By the

early 1960s, the distribution had reduced and the species was

declining further in most of the scattered localities [43].
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In the period, 1985-1993 inadequate levels of protection
\

and high level poaching caused a dramatic decline in roans'

population. Consequently, by December 1995, there were

only 27 known individuals left [34].

Kenya Wildlife Service recognized the need to protect

roan antelopes.In October 1995, IUCN, Antelope Specialist

Group funded a three-week recovery plan of another ante-

lope hirola (the hunter's antelope). During this session, KWS

scientists dedicated a small amount of time to consider the

situation of roan antelopes in Kenya. They came up with a

detailed document on key aspects of roan antelopes' ecology

and biology based on data from Ruma and set a strategy

for its conservation. They emphasized need for insitu mea-

sures as opposed to translocation to better-protected areas

given that roans are sedentary, terrestrial species and selec-

tive feeders that are likely to lose out in competition with

more generalist grazers [28].

Today, their range in Kenya is highly restricted with a

remnant population of less than fifty individuals in the last

estimate in November 2009 at Ruma National Park.
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Mature female roans usually calve each year, though there
\

is no strictly defined calving season. First conception occurs

at around two years old, and with the gestation period of ap-

proximately 270 days [50]. Females leave the herd to calve,

leaving the calf in hiding as the mother joins the rest. This

hiding may last approximately six weeks before joining the

herd .The young calves are almost odourless, thus decreasing

their chance of detection by predators [17]. The assumption

that there is the presence of uranium deposit could be asso-

ciated with sterility in the valley thus causing genetic drift.

According to Wilson & Hirst [50] adult roans are suscep-

tible to predation by lions, spotted hyenas, wild dogs,while

leopards may also prey upon calves. Although not so much of

a threat to wild populations, in the current circumstances in

Ruma, predation by spotted hyena and leopard, particularly

on young animals, may be limiting the roan population's nat-

ural recovery rate. Roans are susceptible to the diseases of

livestock and their water dependence brings them in regular

contact with livestock. Roans have had a stagnated popula-

tion growth of approximately 48 ± 3 since the year 2003 to

date.
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Other than drought, diseases, competition for resources,
\

the main cause of decline was believed to be < 'Poaching as

game meat was highly prized for both wedding and burial

ceremonies amongst the locals.

According to Magin & Cock [28] hundred wire snares were

located in a mere one kilometre transect of the park by Moi

University Survey [28]. The presence of higher ground outside

the park allowed the poachers to monitor activities of the

Kenya Wildlife Services (KWS) personnel. The high density

of agricultural settlements right up to the Park boundaries

provided large population of 'potential poachers.

The wire fence provided abundant supplies of wires for use

in snares. Flooding also made roads impassable thus difficul-

ties in control by KWS vehicles. The KWS has since taken

necessary measures to curb poaching. In the case of Ruma,

two factors that could be potentially targeted for the stag-

nating population growth are juvenile mortality (mainly pre-

dation) and inbreeding. Predator control is not advised due

to difficulty in implementation, unpredictable consequences

in the ecosystem and conflict with the general KWS manage-

ment policies of protected areas.

4



Realistically, the management has to continue to accept
\

juvenile mortality through predation. This therefore leaves

management of genetic defect as the only option.

1.1 Background of The Study

Many wildlife populations (like roans) that were once widespread

numerous and occupying contiguous habitat have been re-

duced to small isolated population. The causes of the original

decline could be habitat loss, competition for resources and

predation. Even if the original causes are removed small iso-

lated population are vulnerable to additional forces, intrinsic

to small population and may drive population to extinction

[41,42].

Of particular impact on small population are stochastic

processes. With exception of aging, virtually all events in

the life of an organism are stochastic. Genetic drift, mating,

reproduction and even gene transmission can be described by

probability distribution.
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(

Genetic drift is the cumulative and non-adaptive fluctu-
~

ation in allele frequencies resulting from random sampling

of genes in each generation. This can impede or accelerate

wildlife population [23]. Inbreeding is not strictly a compo-

nent of genetic drift but correlated with it. In small popula-

tions, inbreeding has been documented to cause loss of fitness

in a wide variety of species including virtually all sexually

producing animals [9, 51].

Even if the immediate loss of fitness of individual is not

large, the loss of genetic variation that results from genetic

drift may reduce the ability' of the population to adapt to

future changes in the environment -[11, 40].

The effect of genetic drift and consequent loss of genetic vari-

ation in individuals and population have negative impact on

demographic rates and increases the susceptibility to environ-

mental perturbations and catastrophes. Reduced population

growth and greater fluctuations in numbers in turn accelerate

genetic drift [6]. Gilpin [14] described these synergistic desta-

bilizing effects of stochastic process on small wildlife popula-

tion as extinction vortices.
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Most population growth processes are inherently stochas-
\

tic yet much theoretical analysis involves deterministic mod-

els with the assumption that biological systems consist of

large collection of individuals in the same ecological inter-

action. This assumption implies that dynamics of measure

(mean) is sufficient description and ignores the influence of

variance [49].

Oksendal & Lungu [35] proposed a stochastic logistic model

in estimating population growth at any time. We have worked

along this line and derived a mathematical model that esti-

mates population growth of roan antelopes by incorporating

genetic defect that was not considered by Magin & Kock [28].
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1.2 Statement Of the Problem

Robert Brown [36] observed that the path of a given particle

is very irregular having a tangent at no point and that the

-rnotion of the two distinct particles appear to be independent.

Randomness is an intrinsic property of biological observa-

tion which makes deterministic models incomplete.

(1.1)

where

A is the intrinsic growth rate,

P; is the population at any time t and

M is the carrying capacity.

Growth process is therefore subject to many random fac-

tors. This has the implication that a complete model should

incorporate randomness, to show more realistic results when

tested. To complete the deterministic model, inclusion of

measurement error (noise term) is necessary. Such models

will therefore have both deterministic and stochastic part.
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Kock a zoologist [22] estimated the growth of roans in
\

Ruma National Park using Vortex Version 7(a computer sim-

ulation of the extinction process), where he considered poach-

ing as a key factor accelerating roans' population decay. Fol-

'lowing his recommendations, KWS took necessary measures

thus reducing the risk of poaching as a potential factor. How-

ever, roans' population has stagnated since the year 2000 to

date, with no substantial increase in population.

We have to develop mathematical growth model for the

roan antelopes by incorporating genetic defect that was not

considered by Kock and Magin in their model.

1.3 Objective Of the Study

The aim of this study is to develop a mathematical model

that incorporates genetic defect in estimating the growth of

roan antelopes.
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1.4 Significance Of the study

It is evident from many ecological texts on species tending

towards extinction that their population decline due to a va-

-riety of factors including habitat loss, diseases, drought, for-

est fires, predation and genetic defects. It is hoped that this

study will help the Kenya Wildlife Service (KWS) manage-

ment to determine the urgency of action to take and evaluate

appropriate options to improve 'on its growth rate. Roans'

have enormous economic significance in the locality and the

nation at large.

1.5 Research Methodology

We have used Vortex Version 9.99, a stochastic simulation of

the extinction process software in the management of complex

ecological systems [24]. We have also collected related data

on roan antelopes from Ruma National Park which is the only

park with the remnant population of the roans in the country.

This data is used in analysing results on existing population

viability.
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Chapter 2

Review of Related Literature

Attempts to understand population process dates back to the

middle ages with Sir William who by 1300 A.D. composed a

table of how people might have doubled over several ages. In

his model he started with 8 people one year after the flood of

2700 B.C. and doubling at first every ten years but then at

successively longer intervals of time to arrive at 320 million

[48]. About the same period Fibonacci proposed a population

growth model for rabbits;

00

Yt = LYk:t,
k=l .

where

Yk,t is the number of k old pair of rabbits at a time t,

Yt is the total number of pairs of rabbits at a time t,
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resulting into the famous Fibonacci sequence

1, r, 2, 3, 5, 8,13,21,34,55,89 .

Modern research into population dynamics can be traced back

to over 200 years ago with Thomas Malthus [29] whose pub-

lication on Principle of population growth by stating that

"population when unchecked increases in geometric ratio"

(2.1)

where

A is the growth rate,

b is the birth rate,

d is the deathrate,

Po is the initial population at time zero,

P; is the population at time t and

t is time

Equation (2.1) is the Malthusian equation in continuous time

[8].This model predicted an exponential population growth.
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McArthur and Wilson [48] help found the field of popula-

tion Biology. They were proponents of natural equilibrium.

They felt that mathematical models should be developed to

describe the patterns found in nature instead of just provid-

ing simple textual description. They started their work with

analysis of ants and birds population data. Through the

analysis of population of experimental data, they observed

that population size remained steady even though the exact

species varied. After working with several species, they con-

cluded that nature has great tendency of balancing things out

and reaching a very harmonious equilibrium.

"If nature were left alone equilibrium would exist and pop-

ulation would remain close to them"

In 1838, a Belgium mathematician Pierre Francois Ver-

hulst [45] followed suggestions from his mentor Quentelet,

that the resistance to growth should be quadratic, with resis-

tance modeled to velocity. He therefore incorporated density

dependent effects in Malthus model. He recognized the fact

that populations encounter internal competition as they grow

within a closed environment.
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This competition as he noted, has the tendency to retard
\

the rate of growth. Verhulst modified Malthus equation (2.1)

and obtained

dPt =)..P, (1 _ Pt)
dt t M (2.2)

where

).. is the intrinsic growth rate,

M is the saturation leveltcarrying capacity), and

P; is the population size at the time t.

One of the first models to incorporate interaction between

two species in an ecosystem was Latka - Voltera named after

an American biophysist Alfred Lotka and an Italian mathe-

matician Vito Voltera. They assumed that predator prey is

the only determinant of population dynamics and came up

with the following model.

(2.3)
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where

fl, is the natural growth rate of prey in the absence of preda-

tor,

. T is the natural death rate of predator in the absence of prey,

ex is the function of interaction between prey and predator,

{3is the function of interaction between predator and prey

N, is the population of predators at a time t, and

Pt is the population of prey at time t.

According to Griensen [15] analysis of Voltera model IS

insightful but has no intra specific competition, i.e. natural

resource has no diminishing returns. He further asserts that

even two species models may not give realistic results like

those of single species. Several variations of Verhulst logistic

model have been modified to model population growth, which

is useful in resource management.

Oksendal and Lungu [35] developed population growth

modeled by introducing randomness in their differential equa-

tion via additional noise term. Genetic drift has strong im-

pact on the dynamics of small populations.

15
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However, the effects of genetic stochasticity on small wildlife
\

population is still challenging, important and open problem

in both Mathematical Biology and Ecology [14].

16



Chapter 3

Classic Models

3.1 Malthusian Equation

From the Malthusian equation

dPt = AP;
dt t,

where

A is the intrinsic growth rate,

P; is the population at time t,

it implies

17
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Integrating equation (3.1) with respect to t ,we obtain

j (A = ~t d:t) dt = A j dt (3.2)

Let

dfJ = dPt
dt '

then equation (3.2) becomes

j fJ-1dfJ =.j Xd:

this gives

where 771 and 772 are constants of integration. Making In IfJl
the subject of the formula, we obtain

Since P; > 0, we have In P; = At + W

By taking exponentials of both sides, we obtain
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Since w is an abitrary constant, we write Po = eWso that

(3.3)

~rom equation (3.3)at t = 0, we obtain Po and trace as under

/' ),->0
//// .,'

P(O)

,././

._.._.--_.-' ---_ ..._-----//

Figure 3.1.1: Exponential Curves
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3.2 Verhulst Logistic Model

Consider the population Pt with every member of the pop-

ulation P; viewing (Pt - 1) as a competitor. Therefore the

maximum possible encounter is (Pt)(Pt - 1). Since all inter-

actions are not really for resources, it is only logical to take

some small multiples of (Pt)(Pt - 1) say

(3.4)

Combining rate of change equation in Malthus single species

and competition in the above expression (3.4) we obtain

(3.5)

This on expansion gives

dPt v 2 v
- = A.Pt - - p + - Ptdt 'p t p'

(3.6)

dPt 2
- = IIPt - aPdt fA" t (3.7)

20



Equation (3.7) is the model equation.

Assuming growth rate of roans follows the Verhulst Logis-

tic Model. Then from equation (3.7)

d.P; 2
- = lIP,t - aPdt ,...-, t

If we assume fL A and a ~, then on substitution we

obtain

dPt = AP' _ ~p2
dt t M t

where

A is the intrinsic growth rate coefficient,

Pt is the population size at time t,

t is time, and

M is the maximum sustainable population limit.

Equation (3.8) may be written as

dPt =AP,(l- Pt)
dt t M

21
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The solution of equation (3.9) is given by

MPoPt = --------~----(M - Po)e-)"t + Po : P(O) = Po (3.10)

3.2.1 Stability Analysis For Verhulst Logistic

Models

The equilibrium is stable if in displacing the system from

its equilibrium position by infinitesimal amount and giving

each one some small initial velocity [48]. The displacement

of different points of the equilibrium remains throughout the

course of motion contained within small-prescribed limits. It

is important to note that this definition only fits steady state

solutions and may not be applicable to chaotic systems as

those in turbulent models.

Stability analysis in mathematical modeling implies test-

ing the modeled equation for steadiness (constancy) to disre-

gard those that fail the test and to subject those models that

survive for further test.
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The major methods for stability analysis are a~lifica-
\

tion (Neumann) stability analysis, which is based on normal

models and often Fourier superposition. It looks at decay,

may be implemented using standard linear algebra, and gen-

'erally applies to linear systems but apply to nonlinear sys-

tems through linearization. The second method is the energy

method used in control theory. It looks at variation of furrc-

tions and normally measures motion amplitude. Consider a

general autonomous vector field

,
x = f(x) x E IRn (3.11)

An equilibrium solution of (3.11) is a point x E IRn such that

f(x) = 0 is a solution that does not change with time, but

considering a non-autonomous vector field

x = f(x, t) x E IRTI, and in freezing time, t and looking at

equilibria of frozen time,vector field(always in fluid mechan-

ics with vector field interpreted as velocity field) the instan-

taneous fixed points are given by f(x, t) = 0

23



If we find a point, (x, t) such that j(x, t) = 0 and D:cj(x, t) -=I-
\o then by implicit function theorem, we find a function x(t)

with x(t) = x such thatj(x(t), t) = 0 for some small interval

I: If we let x(t) be any solution of equation (3.11) then, x(t)

is stable if the solution starting close to x(t) at a given time

remain close to x(t) for all times. It is asymptotically stable

if nearby solutions not only stay close but also converge to

x(t) as t -+ 00.

x(t) is said to be Lyapunov stable if given e > 0, then

there exist a J = J(c) > 0 such that for any other solution

y(t) of equation (3.11) satisfying Ix(to - y(to))1 < J

where 1.1 is a norm on IRn Then, 'Ix(t) - y(t)1 < e for t >

0, to E IR [48].

We remark that a solution which is not stable is unstable.

x(t) is said to be asymptotically stable if it is Lyapunov stable

and for any other solution y(t) of equation (3.11) there exist

a constant b ;» 0 such that if Ix(to) - y(to)1 < b

lim Ix(t) - y(t) I = 0
t=cc

24



And considering a differential equation of the form

(3.12)

If we let Pt be any solution of equation (3.12), then P; is Lya-

punov stable if the solution starting close to P; at any given

time remain close to P; for all later times. It is asymptotically

stable if nearby solutions not only stay close but also converge

to P; as t -+ 00. An equilibrium solution of equation(3.12) is

a point P; E IR such that f'(pt) = 0

Example 1.

dPt = ,\(1 _ Pt) P-
dt M t

(3.13)

We obtain the equilibrium levels by setting

This gives x (1 - ;;;) P, = a and solving for P" we obtain

the solution P, = 0 and P; = M. An equilibrium level R for

the differential equation (~~t = f Pt is stable if there exist a

neighborhood N of R with the property that whenever Po >

N then the solution P; .with the initial condition Pt = Po

25
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1. Is finite Vt > to

2. Has

lim P, = JR, N is the neighborhood of stability.
t->oo

Figure (3.3.1) below illustrates the notion of equilibrium level

Rand (a, b) is the neighborhood of JR .. If the population graph

P; finds itself between the lines a or b i.e. a < P; < b then

Figure 3.2.1: Population curve attracted to equilibrium R
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We now carry out the stability analysis for the Verhulst

logistic differential equation

We observe that 0 and M are the equilibrium levels of the

equation and letting Po be the initial value corresponding to

to, the solution to the differential equation becomes

(3.14)

:::} (M - Po) + PoeA(t.-tO) = 0

whenever i, is a point of jump discontinuity with t; > t

Since Po > M and Po i- 0 the RHS > 0 therefore a positive

logarithm (raising to the log).

(
Po - M))..(t* - to) = In Po > 0

. 1 (Po - M)t; - to = ":\In Po > 0 (3.15)

27



When to = 0 then

1 (Po - M)
i; = ~ In Po > 0

Now solving for t we obtain a value say t; > to and if we

let Po > 0, Po i- M then equation (3.14) is the form of the

solution. We look for singularity of the denominator by at-

tempting to solve this algebraically and this leads to equation

(3.15). However if Po > 0, Po > M then (l1';"M) < ° has

no algorithm and therefore equation (3.15) has no solution

for real t. However since (PO-M) < 1 In (PO-M) < 0 and
Po ' Po

since A > 0 the solution of t; in equation (3.15) will be such

that t; < to.

Given our main concern is time values after initial condi-

tion and finding singularities fail. Thus Lyapunov stability

holds for any solution corresponding to the initial condition

Po where Po > 0, Po > M since asymptotic stability holds in

relation to the equilibrium M. The set of all positive numbers

forms neighborhood of stability of M and the point M is the

stable equilibrium level and the neighborhood for stability is

(0, oo) [48]
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Figure 3.2.2: Two types of solutions to the Logistic differential equation.

Case (i) Equilibrium Solution P; = 0, P; = M

Case ii) Equilibrium solution with +ve initial value Po > 0

The logistic growth equation has proved useful in popula-

tion ecology despite simplified assumptions in its derivative

assumption. Verhulst logistic equation has been used to de-

scribe the population growth model for Peruvian anchovies.

Morgan [31] also used the same equation to describe the herd-

ing behavior of African elephants.
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Chapter 4

Formulation of Model

Equation

4.1 Stochastic Processes

A dynamical system is a mathematical structure used to

model the deterministic evolution of some physical phenom-

ena (system) in time. Ordinary differential equations (ODE)

normally interpreted as describing evolution in time and hence

deterministic dynamical system. Dynamical systems are de-

terministic since their future is (in principle) completely pre-

dictable from knowledge of present state. However, for Pivato

if some intrinsic randomness in the system which makes per-

fect prediction of the future impossible but strong trends or

correlation exists, the mathematical structure used to model

30



this phenomenon is stochastic process [37]. Stochastic process
\

consist of space, time and probability measure .'-'

Definition 4.1. If n is a given set, then a a algebra F on n
is a family F of subset of n with the following properties.

(i)<I>E F

(ii)f E F =;. I" E F

where i' = n/F is the compliment of F in n

(iii)
00

A1,A2 : E F =;. UAi E F
'i=l

The pair (n, F) is called a measurable space.

A probability measure P on a measurable space (n, F) is

a function P : F -7 [0, 1] such that

(a) P(<I» = 0, p(n) = 1

(b) If AI, A2 : E F and

(Ai) 00 is a disjoint i.e. (AinAj = <I> : i =1= j)
,t=l

31



then

P(QAi) = t,P(Ail <;

The triple (r2, F, P) is called a probability space. It is called

a complete probability space if F contains all the subsets of

G of r2 with P outer measure zero.

P*(G) = inf{P(F) : f E F, G c F} = 0

Given any family fL of subsets of r2 there is a smallest o alge-

bra H/L containing fL namely

Hp. = n{H : H a 'algebra of r2, fL c H}

Let (r2, F, P) denote a complete given probability space, then

a random variable X is F measurable function X : r2 -+ ]Rn

Every random variable induces probability measure fL:E on ]Rn

defined by fL:AB) = P(x-1(B)), fL:E is the distribution of X.

32



If

In IX(w)ldP(w) < 00 0

then

E[X]. In X(w)dP(w) = In" xdu;

where x is called the expectation of X(w.r.t.P)

Definition 4.2. A stochastic process is a parameterized col-

lection of random variables {XthET and defined on probabil-

ity space (0, F, P) and assuming values in JRrL [50].

The parameter space T is usually half line [0, (0) but may

belong to [a, b] the non-negative integers and even subsets of

RTL for n ~ 1 such that for each t E T fixed we have a random

variable W -+ Xt(w) : w E ° and on fixing W E 0, t E T

which is called the path of X,

For clarity x, X (t).

A stochastic process X = {X (t), t E T} is a collection of

random variables. For each T in the index set T, X(t) is a

random variable with t interpreted as time and X, the state

of the process at a time t [38]. If we let X be some set, time

for some other set and we let W be some a-algebra on X the

W measurable stochastic process on the state space X over

33



time T is a probability measure W [37]

Stochastic processes are sequences of events governed by

probabilistic laws. These systems occupy one state at a given

time and could make transition probabilities from one state to

another. The set X of possible status may be finite or infinite

depending on application. X consist of discrete elements Xi

for i = 0,1,2 with element Xi being possible states

of the systems at any time t.

The probability Pij(t) of the system making transition from

the state i to j in the interval time t is the conditional prob-

ability defined as

(4.1)

where Xto is the state of the state of the system at the time

to. The index set T is a countable set and X discrete time

stochastic process or continuous time stochastic if it forms a

continuum.

Definition 4.3. A discrete time stochastic process is the

probability measure on (X+,Q9n E T),[31]. Discrete time

stochastic processes are ranked in increasing order of com-

plexity.
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This hierarchy follows either Bernoulli or Markov processes.
l

Discrete time processes can be demonstrated by random walks

with probability p of a particle moving to the right and prob-

ability [(p - 1) = q] of particle moving to the left.

Let Pi,j be the transition probability then

Pi,j+l = P = 1-Pij-1 : i = ±1, ±2, ±3 .

suppose for abitrary time i, x in ,a random variable Xi takes

p = ,1,q = -1 and X, are independent and identically dis-

tributed (iid) with identity function.

p5(x - 1) - (1 - q)d(x + 1)

E[X] = 2p-1

and

Var[X] = 4p(1 - p)

If the nth partial sum of the random variable

n

Y;'! = Xl + X2 + X; = LXi
. i=l

35
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Then the sequence for the random variable

{}1, Y2 Yn}

is the random walk with the probability distribution

E[YrI,] = n(2p - 1)

and

Var[YrJ ='4npq

at stage n. If we let fJ, and 0'2 be the mean and variance

respectively then

and

Definition 4.4. Let X be some set and time t be some open

set and closed interval in lR representing an interval of time

and W be some a algebra, then W be some measurable con-

tinuous time stochastic process on state space X over time

interval T is the probability measure W Continuous time

stochastic process {X (t), t > O} has independent increments

if
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Vta < tl < tn the random variables

are independent.

They may make stationary increments if X (t + s) - X (t) has

distribution values Vt i.e. the distribution only depends on s.

This implies that for n time points the random variables set

{X(t1), X(t2) X(tn)}

and

{X(tl + s), X(t2 + s), : X(tn + s)}

has the same joint probability distribution thus

E[E(t)] = E[X(t + s)]

Markov process is a continuous time X = {X(t), t > O} with

the

Pr{X(t) < xIX(p,), u E [0,s] = Pr[X(t)] ~ xIX(s)}
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Markov processes are stochastic processes for which all
l

its future knowledge is summarized in current val-ue. Exam-

ples of these processes are Brownian motion, stable processes,

Poisson processes and even Levy processes. We can therefore

ascertain that stochastic processes are variable with both the

expected variable term (drift term) and random term (diffu-

sion term).

The drift-coefficient term, models dominant actions while

diffusion-coefficients represents randomness along the dom-

inant curve. Roan antelope population growth varies in ran-

dom number and represents stochastic process.

4.2 Brownian Motion and Stochastic Dif-

ferential Equations

An irregular movement of pollen grains suspended in water

as was observed by a botanist Robert Brown in 1828 has

a wide range of application. Nobert Weiner came up with

a concise and rigorous mathematical definition of Brownian

motion, sometimes called Weiner Process.
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Definition 4.5. A Brownian motion or Weiner process is a

stochastic process ~(t) > 0 satisfying

(i)~(O) = 0

(ii) For any 0 < to < t, < tn the random variables

~(tk), -x(tk)(l < k < n) are independent

(iii) If 0 < s < t, x(t) - x(s) is normally distributed with

E(P(t) - P(s)) = (t - s)f-LE(~(t) - ~(S)2) = (t - S)0-2,

where f-Land 0- are constants, 0- I: 0

If ~(t) is a Brownian motion.then f-L is the drift and 0-2

is the variance. Brownian motion can be a Weiner process

dW = cJ([i : e is a random drawn from standard normal-

ized if f-L = 0 and 0-2 = 1 any continuous time process with

stationary independent increments and can be proved to be

Brownian motion. Brownian motions are used in models that

resemble random movements of particles. A (f-L,0-) Brownian

motion ~ = {~(t), t 2 O}can be expressed as a Weiner process

l.e

~(t) = f-Lt+ o-Wt
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and a normal variable with mean of zero and a variance of one.,
The values of dW for any two intervals are independent such

that small infinite change can be written as .6.Wt = ~v-&i

adding up each of those intervals, we obtain

Wt - W(O) = lim { t E;'i.j/Sj}
t---+O

'i=1

One dimensional Weiner process has ~(t) determined by the

stochastic differential equation(SDE) of the form of

d~(t) = iui: + adWt : P(O) = Pi, (4.2)

where f-t (drift rate) and a standard deviation.

Thus d~(t) is the sum of the deterministic term dt and the

stochastic term (dWt)and in the short term interval [ti-I, t]

and the increase may be given by

With a general solution of the form

and in particular if the interval is [0,1] the equation (4.3)

40



becomes

W) = eo + I" 11dt + a 11dW, 0 (4.5)

whose solution is

(4.6)

with ~(O) = 0 and AW(O) = 0

A generalized Weiner process with non-constant coefficient

(4.7)

where J.L(~,t) and O"(~, t) are functions of variable ~ and time

t is called Ito's process if it solves the equation

W) = Eo + l' I"(E(t), t)dt +l'a(W), t)dW, : t > 0 (4.8)

where ~o is the initial value, J.L(~(t), t) is the drift terrri and

O"(~(t), t) is the diffusion term. A special type of Ito's with

linear coefficient is the geometric Brownian motion (gBm)

and has the stochastic differential equation of the form

d~(t) = J.L~(t)dt + O"~(t)dWt : J.L> 0,0" > 0, (4.9)
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where f-L is the mean growth rate and (J" is the rate of diffusion.,
Equation (4.9) can be expressed as a growth function

d~(t)
~(t) = ud: + (J"dWt, ~(O) = ~t (4.10)

over infinitely short time interval (t, t + 6.t).

Solutions to equation (4.10) can not be obtained from stan-

dard Reinman Calculus formula for total derivative. If we let

f(x, t) be a continuous function with (x, t) E IR x [0,00) to-

gether with its derivatives ft, L; fxx then the process f(~(t), t)

has the SDE (4.11). Ito achieved a rigorous treatment for in-

tegrating such Weiner like differential equation,thus Ito cal-

culus,[13].

The solution to equation (4.10) is the stochastic differential

equation

df(~(t), t)
1

[It (~ (t ), t) + fE ( ~ ( t ), t) f-L ( t) + 2(~(t), t) b2
( t ) ]dt +

fE ( ~ ( t ), t) (J" ( t ) dWt (4.11 )

This is called Ito's formula. It is noticeable that if W(t) were

continuously differentiable in t then by Reinman calculus the'

term ~fEXb2dt would not appear.
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Proof. This will be divided into several steps.

Step 1

For any m ~ 2

. 1
d(W(t))m = m(m(t)m-l) + -m(m -1)(w(t))m-2dt (4.12)

2

Theorem 4.6. If

then

d(6(t)6(t)) = 6(t)d6(t) + 6(t)~6(t) + 0"1 (t)0"2(t) (4.13)

The integrated form of equation(4.13) for any 0 < tl < t2 > T

'/,s
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~

6(t,)6(t,) - 6(tl)6(£,) - [' 6(t)/l,(t)~ +

[' 6 (t)o-,(t)dW, +

[' 6(t)/lI(t)dt +

[' 6(t)0-1(t)dW, +

[' 0-1 (t)o-, (t)dt (4.14)

and by linearity of the stochastic differentials we obtain

1
dQ(w(t)) = Q'(w(t))dW(t) ~ 2Q"(w(t))dt (4.15)

for any polynomial Q

Step 2

Let G(x, t) = Q(x)g(t) where Q(x) a polynomial and g(t)

is continuously differentiable for t > 0 By Theorem (4.6) and
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~Ol~ - 01-66

equation (4.15) ,we have

dG( w( t)) - f( w( t) )dg(t) + g( t)df( w( t))

- [1(w( t))y' (t) + ~g( t)J" (w(t)) 1dt +

g( t)f' (w( t) )dW( t)

and

. G(w(t,), t,) - G(w(tl), tl) - 1:' [G,(W(t), t) +

~Gxx(W(t), i)l dt +

, (2 GX(W(t), t)dWtitl

(4.16)
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Step 3

Formula (4.16)remains valid if

Tn

G(x, t) = L !i(X)g.i(t)
'i=l

where !i(X) are polynomials and g'i(t) are continuously differ-

entiable.

Now letting Gn(x, t) be a polynomial in x and t such that

Uniformly on compact subset of (x, t) E IR x [0, (0) We have,
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It is clear that

a.s

1t2 {) . 2
~ On (W (t ), t) - IE (W (t ), t) dt -+ 0

tl uX

a.s, hence taking n -+ (X) in equation (4.17)we get the relation

[' [f,(W(t), t) +

~fxxtw(t), tJ] dt +

1t2 IE(W(t), t)dWt
tl

(4.18)

Step 4

Formula (4.18) extends to the process

<I>(w(t), t) = 1(6 + J-Llt + O"l(W(t), t)),

where 6, J-Ll, 0"1 are random variables measurable with respect
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to it] ,we have
~-t [f,@), t) + f:@), t)1" +

lt2 f£(~(t), t)O"dWt, (4.19)
i,

where

The proof of equation (4.19) is equivalent to that of equation

(4.0.18) with changes resulting from the formula (3.9), we

have

This replaces equation (4.12)
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Step 5

If f-L1 and CJ( t) are step functions, then

f(E(t,), t,) - f(WIl, t,) = [' [ft(W) , l) + fx(E(t), t),,(t)

+~fxx(E(t), t)a'(t) 1dt

+ [' fx(W), t)a(t)dW,

(4.20)

Indeed, by denoting h .L, the successive interval in

[t1, t2] in which f-L, CJ are constants. If we apply equation (4.19)

with t1, t2 replaced by the end points of l.i and sum over l the

formula (4.20) follows

Step 6

Let f-L1, CJ1 be a non-anticipative step function such that

[ l/Li(t) - ,,(t)ldt ---> a (4.21)

a.s

llai(t) - a(t)12dt ---> a (4.22)
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and letting
\

Ei(t) = E(G) + l' I"i(s)ds +l' "i(S)d~

Then sup I~'i(t) - ~(t)1 --+ 0 hence the subsequence {if}

O<t<T

This and equation (4.22) imply that

If i = if --+ 00 it follows that

If i = if --+ 00 then from equations (4.21 - 4.23)

J.';' [ft(W), t) + JAW), t)I"i(t) + ~f,,(W), t)(u,(t)) dt.-«

J.'; [ft(W), t) + i,(W) ,t)I"(t) + ~fxAW), t),,'(t) dt

If i = if --+ 00 If writing equation (4.0.20) and taking /-L=
/-L'i, (J" = oi, ~ = ~'i' i = if --+ 00 then formula (4.20) follows the

general /-L, (J" and this completes the proof for the theorem. 0
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Theorem 4.7. Let d~i(X) = J.Li(t)dt + CJi(t)d~ : 1<i < m,
and let I (x i xm, t) be a continuous [unction in (x, t)

where x = (X,i xm) E RTn, t > 0 together with its first

t derivative and second x derivative then I (~'i(t) '~m' t)

stochastic differential given by [13j

df(X(t), t) = [ft(X(t), t) + t, fxJX(t), t)",(t) +

1 Tn 12 'i~ !:Ei:Ej(X(t), t)CJ'i(t)CJj(t) dt +
TnL IXi (X(t), t) CJ'i(t)dWt
i=l

(4.24)

where X(t) ~ (~'i(t)"""""""'~m(t))

Equation (4.24) is the Ito's formula. From theorem (4.7),

equation (4.24) the geometric Brownian motion (gBm) is given

by

d~(t) = J.L~(t)dt + CJ~(t)dWt, (4.25)

where J.L~(t)dt is the drift and CJ~(t)dWt is the diffusion term

dWt = E.JJi
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Dividing both sides of equation (4.25) by ~(t), we obtain

d~(t)
~(t) = udt. + (JdWt (4.26)

and in order to get the strong solution of equation (4.26) we

let f (~(t), t) be a function of ~ and t twice differentiable in ~

and once in t such that

f (~(t ), t) = In ~(t )

Note

d~(t)
~(t) = iid: +-(JdWt

suggests the nature of f (~(t), t) differentiating f (~(t), t) twice

with respect to ~ and once with respect to t gives

d(~(t), t) = ~ [P(~(t), t) = -1 a(~(t), t) = 0
d~ ~ d~2 e at

and by equation (4.11) we have integral in the form

Equation (4.27) follows a generalized Weiner process with
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th e drift rate (I' - ",,) and diffusion coeflicien t, (T, which are

constants. The distribution of this process is given by

or

whose solution over the interval (i,i-l, i,i) is given by

Moreover, on putting like terms together, we obtain

And in considering the interval (0,1) then equation (4.27)

becomes

Thus ln~(t) is normally distributed for any time t with the

mean given by In ~o + (I' - ",,) and variance by (T't and the

change in logarithm of-the population size in the interval 0, 1
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results in

with the corresponding distribution given by

From equation (4.31) the strong solution becomes

which has the log-normal distribution given by

such that if (J" = a then equation (4.31) becomes

~(t) = ~oexp(flt)

Thus ~(t) has the exponential growth with the expectation

~oexp(flt) and variance zero.
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4.3 Model Equation

In addition to competition for resources and predation. We

consider the genetic defect on the population growth rate for

the roan antelopes. From the Verhulst logistic growth rate

equation (1.1) and adding genetic growth component to the

logistic growth model we have

(4.33)

where

A is the growth ratio

P; is the population at time t

M is the carrying capacity

'lr (Pt) is the function of P; representing genetic defect

Letting 'lr(Pt) = I a constant then equation (4.33) becomes

(4.34)

And equating equation (4.34) to zero we obtain

APl- AMPt + 1M = 0 (4.35)
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whose solution is given by

G

P, _ AM ± I(I2 M2 - 4A, M)
t - 2A : P (0) = Po (4.36)

The nature of solution of equation (4.36) depends on the ge-

netic defect, such that

, > A~I there is no real valued function implying genetic

defect rate leads to extinction,

, = A~1 has unique solution thus absolute growth rate in the

absence of genetic defect and

, < A~1 has positive growth rate with genetic defect.

Suppose we have a genetic defect at the rate proportional to

P, and if we let W = ,Ptdt then equation (4.33) becomes

(4.37)

Integrating equation (4.37) and solving for P; we obtain the

solution

P, - (AM - ,)Po P(O) R
t - [A(M _ Po) - ,]e-(AM-,)t + APo: = 0
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As t ----+ 00, P; ----+ Po and t ----+ 00, P; ----+ (>"-;)M with the
~

following steady states

P, = 0, P, _ ().. -,)M
t - )..

Stochastic models are probabilistic in structure. This helps in

solving the effects of uncertainty in ecological models. Hence,

analysis of systems with white noise gives better results. If

we consider population growth process

~ dP(t) = )"(M - P,)
p, dt tt

adding noise to the continuous growth process above, we ob-

tain
1 dPt .

Pt(M - Pt) dt = )"dt + noise

If noise= CTdWt = CTcvdt, e rv N(O, 1)., equation (4.38) can

(4.38)

be written as

1 dPt
P, (M _ P,) = )"dt + CTdWt, M =I- r;

t t
(4.39)
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On making d.P, the subject of the formula, we obtain the

logistic stochastic differential equation <:..,.

with the distribution

On using the variable

(
P(t) )

Y(t) = log 1M _ P(t)1

and simplifying equation (4.39) we, obtain

dY = )"'Mdt + aMdWt (4.41 )

Equation (4.41) is the generalised Weiner process with )"'Mdt

as drift and oM' dt as variance. Equation (4.41) has the ex-

plicit solution

Y(t) = Y(O) + )...M(t - to) + aMWt, Wo = 0 (4.42)
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If we let
\

( P,) ( P(O) )
Y(t) = log M _ ~(t) and Y(O) = M _ P(O)

Equation (4.41) becomes

(
P(t)) (P(O))log M _ P(t) = log M _ P(O) + AM(t - to) + uMWt

(4.43)

and making P; the subject of the formula we have the Verhulst

Logistic Brownian motion

r; = M Po : P (0) = Po (4.44), (M - Po)e-{AM(t-to)+O'MWd + Po
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Figure 4.3.1: Trajectory of logistic I3rownian motion.

Considering roans resources whose population Pt vanes

randomly due to natural factors (e.g predation, diseases) ac-

cording to autonomous diffusion process

(4.45)

Equation (4.45) is an Ito process called logistic geometric

Brownian motion, and can be solved by use of Ito's lemma.

Let F(Pt, t) be function of P; and t be twice differentiable in

P; and once in t , we have
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But
\

d.P; = )"Pt(M - Pt)dt + aPt(M - Pt)dWt

Hence dP? = 0'2P?(M - Pt)2dt and by Ita's calculus we obtain

dF(Pt, t) =

(4.46)

We can rewrite equation (4.46) in the form

dF(Pt1 t) = {
8F 8F- + -)"P't(M - P't) +di' dP,' .t

18F 2 2 2}--a P (M - P't) dt +2 dp2 t .
t

8F
dP, aPt(M - Pt)dWt

t

(4.47)

If we use the variable F = In ( MP,P,) then

8F = 0 8F = M 8F
dt 1 8Pt Pt(M - Pt)' 8P?

2M(Pt - M)
P?(M - P?)

Substituting this in equation (4.46) 1 we obtain

erir; t) = { AM - ~u2(M2 - 2MPt) }dt + uMdW, (4.48)
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Equation (4.48) is similar to to the Brownian motion in equa-
\

tion (4.40). Its solution is got by integration.Thus

It can be solved by Ito calculus. When o = 0 then equation

(4.48) is a deterministic differential equation given by

and making d.P, the subject of the subject of the formula, we

obtain

If we let

and rewriting equation (4.45)

we obtain
dPt

P, (M'- P,) = )"dt + udWt
t t

(4.49)
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But

hence
d.I? = dF(Pt, t)Pt(M - Pt)

t M

and when substituted in equation (4.0.49) we obtain

dF(Pt, t) = AM dt + CTdWt (4.50)

This is a generalised Weiner 'process with AM dt as the drift

and CT M dt as the variance. It has the explicit solution

which is equivalent to

Solving for P; we obtain

P, = M Po : P(O) = Po (4.51), (M - Po)e->.Mt-rT1\IIWt + Po
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When CJ = 0 in equation (4.51) we obtain the deterministic

logistic differential equation given by

To take care of fluctuations in the roan antelopes population

growth rate due to genetic defect at the rate proportional to

Pt(M - Pt) so as to ensure positive population growth rate,

we add genetic defect in equation (4.45) to obtain

(4.52)

where

P; roan antelopes population at time t,

A roan antelope growth ratio,

I genetic defect,

M carrying capacity,

CJ diffusion rate and

Wt random variable.
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Suppose F(Pt, t) = F is twice differentiable function in P;

and once in t, then by Ito's lemma

which is equivalent to

dF(Pt, t) =

(4.53)

Using the variable

( r; )F (Pt, t) = In M _ P
t

(4.54)

where,

of of
ot = 0, OPt

M o2F 2M(Pt - M)
Pt(M - Pt)' op? - P?(M - Pt)2

We substitute the above results in equation (4.53) to obtain

ar; = Pt(~ PI) [(A - 'Y)P,(M - Pt)dt + "Pt(M - Pt)dWt] +
1 2Pt - M2, 2 2
"2 ( P? (M _ Pl) ) (7t; (M - Pt) dt
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'* ar; = M { (A - "() + ~0"2(2P, - M) }dt + 0" {\'f dW, (4.55)
<>

with

dP, ~ N {M(A - "()+ ~0"2(2P, - M)dt, O"MVdt}

On rewriting equation (4.52) as

and using the variable in equation (4.53) we can rewrite equa-

tion (4.55) as

8F(Pt, t) = (.\ - I')M dt + O"dWt (4.57)

Integrating equation (4.57) with respect to t, we obtain

F(Pt, t) = F(Po, 0) + (.\-1')Mt + O"MWt, (4.58)

which on substitution with the variable in equation (4.54),yields
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Solving equation (4.59), we obtain

P; = MPo : P(O) = Po (4.60), (M - Po)e-()..-,)Mt-rTMWt + Po

From equation (4.60) when), = 'Y ,we have

MPoPt = : P(O) = Po (4.61), (M - Po)e-rTMWt + Po

Equation (4.61) is a function of random variable Wt only.

This implies that the population may approach extinction.
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Chapter 5

Population Viability Analysis

Population viability analysis is the estimation of extinction

probabilities and other measures of population performance

by analysis that incorporate identifiable threats to population

survival into models of the extinction process [14].

For most sexually reproducing species, the ultimate bi-

ological extinction is assured whenever the population has

declined to a point that it no longer has individuals of both

sexes. Extinction is simply defined as the absence of at least

one sex. The second option of defining extinction involves

assessing the probability of population dropping below user

defined minimum viable population-termed as quasi extinc-

tion.
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Minimum Viable Population (MVP) is the size at which a
,

population has 99 percent probability of persistence for 1000

years,[42j. Extinction could simply be defined as decline in

population size. Given the small and stagnated population

growth of the roans in the last estimate despite the manage-

ment policies adopted by the KWS, it is clear that the con-

servation measures targeting species population increase may

be inadequate. Wilson & Hirst ascertains that even small

populations of roans can rapidly project positive population

growth given favorable conditions,[50j. It is at this point that

we want apply the PVA tools to evaluate the probability of

extinction and the likely management interventions. Simu-

lations of different scenarios of the Ruma roans' populations

were run and their implications discussed.
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5.1 Simulations

We have used Vortex version 9.99, which is a stochastic sim-

ulation of the extinction process [24]. Vortex is the most

appropriate PVA tool to use for this thesis since roans have

low fecundity, long lifespan, have change in genetic variation

with polygynous breeding system and a local population .of

approximately less than 50 individuals [24].

We entered biological population parameters of the Ruma

roans' in Vortex model. Female roans (heifers) attain ma-

turity at approximately 2 years with 270-320 days gestation

period. We therefore set the age of first birth at 3 years.

Male roans (bachelors) age of first reproduction was set at 5

years even though they mature slightly earlier approximately

3years but they take time to establish their territories and

secure breeding access to females [52].

The maximum reproductive age was set at 12 years for

females while that of males was set 10 years. According to

Wilson & Hirst, roans have established social structures with

a polygynous breeding system [49]. Given that we had six

calves with eight adult bulls we estimated, a 75% successful
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sire. Roans calve once a year, we set the litter size at l. Since
\

there were 25 adult cows with only 6 calves, we estimated the

proportion of adult females calving annually at 25%. Juve-

nile mortality is usually as high as (30 - 60%) during the

hiding period with a standard deviation of 10 percent due to

environmental variation. The birth sex ratio was set at 1:1.

Bachelor roans' mortality rates were set 10% slightly higher

than their female counter parts (heifers) since they are usually

driven out of the herds by adult bulls. Heifers, adult bulls,

and adult cows mortality rate was set at 5% which is the

default value for large ungulates with a deviation of 3%,[24]

The effect of genetic drift due to inbreeding was included

in the simulation model at three different levels. The first

simulation represented natural genetic drift due to inbreed-

ing with default lethal equivalent of 3.14, the median value

from the study of 40 mammalian species [24]. Secondly we

made a more optimistic assumption of 0.09 lethal equivalents

(lower quartile). Similarly in the third level we opted to be

pessimistic in our assumption 5.62 lethal equivalent (upper

quartile) .
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Neither drought nor diseases related catastrophes were set
,

since none had been recorded in the last two decades. KWS

had constructed water points that supplemented water sup-

ply during dry seasons. KWS management also set up a vet-

erinary unit that was responsible for preventing and curing

wildlife diseases in the park.

Each simulation was run 200 times in a span of 50 years.

The carrying capacity was set at 250 individuals. The default

carrying capacity is 20 individuals per 1000ha [52]. The ini-

tial population size and structure were as at June 2010 from

Ruma National Park.
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Chapter 6

Results and Conclusions

6.1 Results

It was not possible to model every aspect of potential vari-

ation in vortex parameters but instead concentrated on the

inbreeding and supplementation. This is to guide the man-

agement in their conservation strategy. We set the parame-

ters as in Appendix A with an inbreeding coefficient of 3.14

default lethal equivalents. Environment Variation (EV) in re-

production is left to be concordant. We run the simulations

for Lambwe l(scenario 1) 50 years with 200 iterations each of

365 days without supplementation.

We noted that inbreeding has high-level impact on popu-

lation survival. The population started dropping drastically
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after the 20th year before going extinct in the 43rd year.

We created scenario two (Lambwe 1 supplemented) with

the parameters in Appendix A but incorporated juvenile and

adult supplementation. We started our initial supplementa-

tion from year 5 and Year 40 as our last year of supplemen-

tation.

We noted a decrease in the mean inbreeding coefficients

in the supplemented scenario (Lambwe 1 supplemented). We

further detected a steady population in almost 50 years as

compared to the non-supplemented scenario (Lambwe 1) which

showed a drop in the mean survival after only 20 years. Also

noted is the fact that over supplementation of both the juve-

nile and adult roans increased inbreeding in the later years,

thus slow rate of population growth.

However, supplementation ensured population survival for

a long time. In all the above simulations, we maintained adult

death rate at 5% default value for large ungulates.
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6.2 Conclusion and Recommendation

Long-term probability of extinction and ensuring high pop-

ulation growth rate are usually the major reasons for inter-

vention by Conservationist groups in supporting the small-

threatened species populations. In Ruma, the major factor

for consideration is genetic drift caused by inbreeding in con-

trolling juvenile mortality.

Predator control is not advised due to difficulty in imple-

mentation, unpredictable consequences to the ecosystem and

is in conflict with the general. KWS management policies in

protected areas. The management is left with the options for

controlling juvenile mortality through supplementation.

Supplementation involves importing juveniles from parks

like Akagera in Uganda or any other park at intervals of 5

years to curb inbreeding, which is a major threat to popula-

tion growth in small populations. Severe inbreeding after a

decade or so may have deleterious effects.
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We therefore recommend that genetic studies be carried
- \

out to ascertain the extent to which inbreeding affects popula-

tion growth. This should be done without causing disruption

of the social groups.

We further recommend that juvenile supplementation of

two-year-old heifers and three-year-old bachelors. This seems

to be a reasonable age for supplementation compared to one

year old who are usually vulnerable to predation and other

factors relating to increase in their mortality rates.
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