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Abstract

Condensed suspension of live microalga cells, for example, Chlorella vulgaris, Nan-

nochloropsis oculata and Tetraselmis tetrathele is often utilized as diets for mass produc-

tion of live food resources, that is, rotifers, copepods, cladocerans and Artemia. These

live food resources are essential for fish larviculture in hatcheries. However, the pro-

duction of sufficient microalgae is costly, laborious and fragile, and thus require cost-

effective and stable production technologies, especially for the emerging countries.

Studies have shown that locally available biowastes such as fish wastes and chicken

manure provide substrates for generating billions of heterotrophic bacterial cells and

microparticles as well as growth hormones, which can be used in propagating live

food resources. The fish wastes contain essential nutrients that are important for the

growth of both live foods and fish larvae.With single feeding of fishwastes, the culture

condition of live foods may become unstable, and thus bacterial isolates and selected

probiotics, for example, genus Pseudomonas, Moraxella and Micrococcus are needed to

stabilize the culture conditions to increase reproduction capacity of the cultured live

foods. This article consolidates the results and conclusions of our recent studies on the

culture of live food resources, that is, Proales similis de Beauchamp, Brachionus rotun-

diformis Tschugunoff, Tigriopus japonicus Mori and Diaphanosoma celebensis Stingelin,

using waste-generated bacteria from fish waste diet (FWD) and selected probiotics.

The non-algal materials reviewed in this article are important to ensure constant sup-

ply of cheap live foods to improve aquaculture, especially in the developing countries,

which lack sophisticated technology for production of high-density microalgae.
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1 INTRODUCTION

Live food resources for larviculture are mainly small zooplankton of

phyla Rotifera (Brachionus plicatilis species complex) and Arthropoda

(small crustaceans, e.g., Artemia, copepods and cladocerans). These

zooplanktons constitute a major component of marine finfish larvae

and other large-sized crustacean diet (Hagiwara et al., 2001). However,

continuous supply of live food resources has been a major bottleneck

in marine hatcheries, leading to limited capacity to produce quality

fish seeds for aquaculture development. Overreliance of wild-sourced

live food materials is impeded by seasonal quantity variabilities and

possible transfer of pathogenic substances into the fish hatcheries

(Ogello, 2018). Therefore, continuous mass production of quality

live foods under controlled conditions is an indispensable need in

the aquaculture industry. The production of zooplanktons under ex

situ environment follows a classical marine trophic pyramid that

begins with production of fresh microalgae (primary energy source),

which are then used as a diet for the zooplanktons (Nagata & Whyte,

1992). Several advances have been made to enhance high-density

production of live foods since themid-19th centurywhen their usewas

pioneered by Japanese scientists (Ito, 1960; Yoshimatsu & Hossain,

2014). However, this system still suffers from a myriad of challenges

notably the instability of culture conditions, which result in decline

of zooplankton densities, thus affecting larviculture activities in

hatcheries.

Two types of food have been used to culture zooplanktons: (1) live

microalga and (2) inert foods, for example, condensed microalga prod-

ucts (Dhont et al., 2013; Navarro, 1999). Cultivation of sufficient live

microalgae is a heavy burden to most hatcheries because it is labori-

ous, fragile, time consuming, requires a lot of space and has complica-

tions in storage (Duerr et al., 1998; Ogello et al., 2017). Several inert

food products, for example, freeze-dried microalga, dried microalga

(stored at room temperature) and condensed microalga products such

as Chlorella product have been developed to enhance portability and

increase shelf-life (Navarro, 1999). However, the utilization of these

products in most aquaculture system is still a challenge because they

are sometimes unstable, require constant aeration to avoid particle

sedimentation and clogging of the culture system and high cost which

discourages their adoption by emergingmarkets (Fu et al., 1997; Dhert

et al., 2001; Yoshimatsu &Hussain, 2014). It is necessary to establish a

more cost-effective and stable live foodproduction systems toenhance

aquaculture development, especially for emerging countries. This may

involve the use of microbes such as bacteria.

Organic wastes such as fish processing wastes, animal and plant

manure have been used for several decades in semi-intensive aqua-

culture to augment the ponds biological activities (Faid et al., 1997;

Elsaidy et al., 2015). The organic wastes influence the carbon seques-

tration in the aquaculture system, thus leading to increased popula-

tions of planktons (Mo et al., 2018). Fish wastes are known for their

richness in nutrients especially fatty acids and amino acids (Schneider,

Sereti, Eding, et al., 2006). Animal manures such as chicken droppings

have been shown to contain hormones that can influence reproduc-

tion of zooplankton (Kikuchi et al., 2019; Ogello & Hagiwara, 2015;).

These organic wastes also provide a suitable substrate for prolifera-

tionof bacteria that play important trophic roles in aquatic ecosystems.

The most obvious one being the heterotrophic degradation of organic

matter, and they are also grazed upon by zooplankton communities

(Arndt, 1993; Kang’ombe et al., 2006). Despite the numerous advan-

tages of organic wastes, limited focus has been given to their exploita-

tion as source of nutrients, bacteria and hormones that can be used to

promote nutrient cycling, improve reproduction, and water quality in

live food cultures. Our review focuses on utilizing organic biowastes

as nutrient source for live foods and the role of probiotics in improv-

ing the culture conditions. Specifically, we reviewed some of the recent

studies on the effect of fish waste diet (FWD) and probiotic products

(PB) on population growth and culture conditions of specific live food

cultures. At first, we reviewed literature on conventional methods of

live food production using microalgae, yeast and biofloc accentuating

the chronology of usage, their unique advantages, and limitations. Sec-

ond, we reviewed studies focusing on the use of FWD and chicken

manure extract (CME) for culturing live foods and the role of probiotics

in improving culture stability and reproduction of live foods. Finally, we

have consolidated the key conclusions and future perspective for live

food culture using organic biowastes and probiotics in the aquaculture

sector.

2 MICROALGAE AS DIET FOR ZOOPLANKTON
LIVE PREYS

Phytoplankton occupies the primary level of the aquatic food chain,

contributing to the production of tons of aquatic resources (Wik-

fors & Ohno, 2001). Live food culture, especially of rotifers has been

achieved by the use of various forms of microalga (live, dried or

frozen microalgae), yeast and bacterial concentrates. Among these

food sources, microalga are the most preferred because they con-

stitute proteins with essential amino acids, sterols, pigments and

polyunsaturated fatty acids (PUFA) (Ghafoor et al., 2020). Several

studies have been done to demonstrate the efficiency of different

species of microalgae in the production of live foods. The use of

live microalgae is frequently employed in outdoor ponds and out-

grower systems to produce zooplanktons (Wikfors & Ohno, 2001).

In the early years in Japan, only Nannochloropsis oculata was found

to be suitable diet for live food culture, especially rotifers. However,

the production of N. oculata was sometimes insufficient for rotifer

especially during winter and the rainy season in summer. Due to

the inconsistent supply of N. oculata, Tetraselmis tetrathele was intro-

duced in 1981 from Singapore, but its production suffered similar

constraints as those of N. oculata. In addition to seasonal variations,

other challenges to consistent microalga production include; the need

for large culture space and a lot of fertigation (Maruyama et al.,

1997; da Silva & Reis, 2015). Also, the production process is tedious

and laborious. In the mid-1980s, the use of condensed Chlorella and

other dried or frozen microalga products as a diet for live food cul-

ture was started to lengthen the shelf-life of microalga-based diets

(Yoshimura et al., 1997).
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F IGURE 1 Comparative sizes and ingestion amounts of various zooplankton species used in fish larvae culture (L, large; S, small; SS, super
small)

Apart from the microalga culture challenges, deficiencies in essen-

tial nutrients for the targeted fish larvae such as fatty acids, vita-

mins and amino acids are a major drawback to utilization of some

microalgae (Thépot et al., 2016). The nutritional quality of microalgae

is often assayed based on the levels of highly unsaturated fatty acids

(HUFAs), especially eicosapentaenoic acid (EPA; 20:5n-3) and docosa-

hexaenoic acid (DHA; 22:6n-3) as well as the concentration of essen-

tial amino acids (EAAs). Naturally, the different species of microalgae

have varying concentrations of HUFAs. The levels of proteins, amino

acids and phospholipids are largely dependent on the metabolism of

feed by individual species. N. oculata has zero or little amounts of DHA

but tends to be rich in EPA with some moderate amount of arachi-

donic acids (ARA) (Lubzens et al., 1997; Zittelli et al., 1999). On the

other hand, DHA enriched C. vulgaris is low in EPA and has no ARA

(Thépot et al., 2016). Enrichment with HUFAs and vitamins has been

used to alleviate nutritional deficiencies for heterotrophically grown

microalgae.

The nutritional quality of microalgae is informed by their physi-

cal properties. Various microalgal species are characterized by differ-

ent sizes (Figure 1), and as such, attract corresponding preference by

the zooplanktons. Rotifers especially the Brachionus plicatilis complex

ingest particles of less than 20 μm in diameter, with a preference of

particles in the range 2–12 μm (Starkweather & Gilbert, 1977; Vad-

stein et al., 1993). The foraging behaviour of larger zooplanktons such

as copepods and Artemia is dependent on the developmental stage

and can ingest a wider range of particle sizes microalgae regardless

of species. At nauplii stage, the clearance rate of smaller particles (4–

8 μm) is high, but at adult stage they show preference for much larger

particles (>14.5 μm) (Evjemo et al., 2000; Isari et al., 2013; Jagadeesan

et al., 2017;Makridis, 1999).

3 YEAST AS DIET FOR ZOOPLANKTON LIVE
PREYS

The potential of yeast as a suitable replacement for live microalga in

larviculturehasbeen studied for years. Yeast cells are small in size (2.5–

4.0 μm), high in protein content, relatively low production cost and are

not subject to seasonal variation in production (Coutteau et al., 1990;

Hirayama, 1987). These attributes made yeast a suitable microalgae

substitute. Culture experiments of rotifer using yeast as a diet have

resulted in high rotifer densities (>1000 indml−1). However, fish larvae

cultured with yeast fed rotifers had reduced survival rate compared

to those produced with rotifers fed on marine Chlorella. This has been

attributed to low nutritional value of yeast for fish larvae (Nagata &

Whyte, 1992; Hamre, 2016). The yeast cells have a thick cell envelope

which makes them difficult to digest, hence the low nutrient conver-

sion rate. It has been observed that mechanical disruption of yeast cell

envelope usingmethods such as autolysis and enzyme treatment could

improve its digestibility (Coutteau et al., 1990). These treatments facil-

itate solubility of cytoplasmatic contents of yeast cells, thus enhancing

their digestibility. However, these treatments lead to the loss of some

nutrients anddeteriorationofwater quality due to increasedwater sol-

ubility (Bertolo et al., 2019).

Nutritional deficiencies in yeast have also been assuaged through

enrichment processes. Yeast cell can be supplemented with small

amounts of HUFAs before being used in live food culture (Øie et al.,

1994). Also, supplementing yeast diet with microalga could provide an

extra source for the required nutrients. Several authors have observed

that mixed diets of microalgae and yeast produce higher population

growth of rotifer and other zooplanktons such as cladocerans and

Artemia (Peña-Aguado et al., 2005; Sarma et al., 2002). The efficiency
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of yeast as a diet depends on species, for example, marine yeast

(Candida sp.), baker’s yeast (Saccharomyces cerevisiae) and caked yeast

(Rhodotorula sp.) (Bett et al., 2021).

Microbes play a key role in the utilization of yeast as a diet. Appli-

cation of yeast to live food cultures induces the growth of microflora

which may improve the use of yeast in two ways; (1) providing a sup-

plementary source of nutrients and (2) improving digestibility of yeast

cells (Coutteau et al., 1990; Lim et al., 2003). Live food cultures with

yeast as diet favour the growth of facultative anaerobic bacteria such

as Pseudomonas sp., which have been shown to produce vitamin B12

(Hirayama, 1987). Vitamin B12 is responsible for enhancing sexual

reproduction in rotifers (Hagiwara et al., 1994; Le et al., 2017). The

exoenzymes secreted by the bacteria help in the degradation of the

thick yeast cell envelope which increases the digestibility by the live

foods (Coutteau et al., 1990).

4 USE OF BIOFLOC AND INDUSTRIAL SLUDGE
IN LIVE FOOD CULTURE

Biofloc technology (BFT) has been used in aquaculture for over 3

decades. BFT combines the removal of excess nutrients from culture

media with the production of microbial biomass, which can be used

by the culture species as an additional food source (Schryver et al.,

2008). This system is basedon theknowledgeof conventional domestic

wastewater treatment system (sludge) which is then applied in aqua-

culture environments. It involves the variation of carbon and nitrogen

ratio that leads to a shift in microbial community within the culture

media. When carbon and nitrogen are well balanced, excess ammonia

and other nitrogenous wastes in the culture media are converted into

bacterial biomass, also called singe cell proteins (SCP) (Ahmad et al.,

2017; Avnimelech, 1999). OptimumC:N ratio favours the proliferation

of heterotrophic bacteria in a fish culture system.Theproliferatingbac-

teria consumes organic carbon, that is, it is estimated that 1 g of carbo-

hydrate carbon (C) yields about 0.4 g of bacteria dry weight carbon (C)

dependingon theC/Nratio, thus immobilizingmineral nitrogen.Avnim-

elech (1999) estimated that 20 g of carbohydrates is required to immo-

bilize 1 g of nitrogen based on a microbial C/N ratio of 4 and 50 % C

in dry carbohydrate. Factors such as dissolved oxygen (DO) concentra-

tion, the choice of organic carbon source and the organic loading rate

have a significant impact on the floc growth.

Most intensive live food culture systems experience a decline in pro-

duction due to accumulation of particulate organic matter and other

nutrients (Dauda et al., 2019; Yoshimura et al., 1997). These discharged

nutrientsmainly contain organic carbon, nitrogen and phosphorus, and

this could result in significantly elevated concentrations which can

eventually lead to the collapse of the culture. In most of these systems,

the removal of particulate matter and excess nutrients extends till the

harvesting period (Schneider, Sereti, Machiels, et al., 2006). Therefore,

a bacterially mediated mechanism for improving the culture condition

and efficient utilization of nutrients could be the solution to the con-

stant collapse of live food cultures (De Araujo et al., 2000). Carbon

supplementation in such system can restore proper C:N ratio enabling

solidwaste conversion into bacteria biomass. BFT technology has been

applied in the management of water quality and enhancing growth

of zooplankton species in outdoor ponds and out-grower systems. In

both BFT and activated sludge systems, the choice of a suitable carbon

source to facilitate the proliferation of beneficial bacteria is still a chal-

lenge, and supplementation with probiotic products such as yeast, lac-

tic bacteria and bifidobacteria could be a possible solution.

5 USE OF ORGANIC WASTE AS A DIET FOR
LIVE FEEDS

5.1 Effect of FWD on population growth of
rotifers

Organic wastes such as food wastes, fish wastes and plant or ani-

mal manures have been employed as a diet in aquaculture systems to

enhance zooplankton population (Faid et al., 1997; Mo et al., 2018).

The use of fish processingwastes in fishmeal production in aquaculture

is also widespread. However, its use in intensive live food production

is still limited. It is estimated that more than 40% of the annual global

fish captured (about 80million tons) are discarded as wastes (Kristins-

son & Rasco, 2000). Fish wastes are great sources of proteins, amino

acids, minerals and fats, with abundant mono-unsaturated oleic acids

(Faid et al., 1997; Rebah & Miled, 2013; Schneider, Sereti, Machiels,

et al., 2006). Since fish wastes are considered as low value materials,

the successful application of these wastes as a diet source for live food

could significantly lower theproduction cost and canbea substitute for

microalgae in larviculture.

Some recent studies have demonstrated the suitability of fish pro-

cessingwaste (FWD) as diet of rotifer (Ogello et al., 2018). In one of the

studies, Brachionus rotundiformis cultured on fish waste with the addi-

tion wheat flour as a carbon source showed significantly high densi-

ties compared to microalgae-fed rotifers during the second and third

harvesting phases but declined at the last harvest (Ogello et al., 2018).

Higher growth peaks and specific growth rate (0.342 day−1) were

observed in cultures of Proales similis with fish waste as a diet (Kagali

et al., 2018). The increase in rotifer densitywith the addition of FWD in

these studies can be attributed to (1) direct feeding by the rotifers on

fishwastemicroparticles and bacteria as result of degradation of FWD,

(2) production of enzymes and other nutritional factors such as vitamin

B12, (Zinket al., 2013) and (3) shift ofmicrobial community composition

that favours culture stability (Qi et al., 2009; Planas et al., 2004).

The rapid increase in the density of heterotrophic bacteria biomass

because of disintegration of fish waste depends on the carbon

(C):nitrogen (N) ratio. The optimal C:N ratio for heterotrophic bacteria

production is about 12–15 C:N (Avnimelech, 1999; Schneider, Sereti,

Eding, et al., 2006). TheC:N ratio in a culturemedia can bemanipulated

by using low protein diets or supplying additional carbon sources (Hu

et al., 2017). Sodiumacetate has been used effectively as a suitable car-

bon source for experimental purposes. However, due to its high cost,

applying it in large scale cultures is not recommended. Optimal C:N

ratio aids in the biotransformation of excess NH3, thus stabilizing the
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water quality (Schneider, Sereti, Machiels, et al., 2006). In our studies,

we used wheat flour as a carbon source for the outdoor tank cultures

(C:N ratio of 16) and lowFWDconcentration of 0.5 and 0.75 g/L for the

glass bottle cultures (Kagali et al., 2018; Ogello et al., 2018).

5.1.1 Bacterivory among zooplankton species
other than rotifers

The suitability of bacteria as a nutrient source for culturing zooplank-

ton can vary depending on the taxa and size. Literature is replete with

evidence that effectivenessof bacteria as adiet for live foodsdecreases

with increase in the size of zooplankton (Ogata et al., 2011; Vadstein

et al., 1993). Macro-zooplankton especially crustaceans have been

shown to feed on bacteria in the wild (Agasild & Nõges, 2005). Also,

there are evidence of increase in population of macro-zooplankton

in fishponds with addition of bioflocs, which are a source of bacteria

(Muthoka et al., 2021). However, there is insufficient studies on the

potential of culturing macro-zooplankton using bacteria as a sole diet.

To evaluate the effect of FWD on macro-zooplankton in our recent

experiments, we cultured copepod: Tigriopus japonicus and cladoceran:

DiaphanosomacelebensiswhileutilizingmicroalgaeTetraselmis tetrathele

and fish waste as diets. Highest density of copepods was observed

with cofeeding T. tetrathele and FWD. However, FWD alone resulted in

unstable growth curve. On the other hand, density of cladocerans was

lowest with all FWD compared tomicroalgae diet.

Macro-zooplanktons play an important role in marine fish culture.

Given their wide size range: T. japonicus 250–1000 μm and D. celeben-

sis 450–1200 μm (Figure 1), they can be used at various stages of fish

larva development. Even though monodiets of FWD did not enhance

population growth of these macro-zooplanktons, FWD can be co-fed

withmicroalga diets which could improve their nutritional value due to

high contents of essential nutrients in FWD. Jung andHagiwara (2001)

reported an increase population of T. japonicus in synxenic bacteria cul-

tures. They further postulated that bacteria couldmodify the interspe-

cific relationship between zooplankton leading to variations in popula-

tion growth. Other studies also confirm the existence of interspecific

relationship in composite culture of various zooplanktons (Han, 2019;

Gao et al., 2021). Further exploitation of this mechanism could result

in enhanced production. T. japonicus nauplii efficiently feed on bacteria,

however,maybe insufficient as a diet for copepodites and adults (Wang

et al., 2015). Supplementation of microalga and bacteria could reduce

the amount and cost of high-densitymicroalga used in zooplankton cul-

ture.

5.2 Effects of chicken manure extract on live
foods

Organic manure both from animal and plant materials have been used

in aquaculture as a source of humic matter to accelerate primary pro-

duction (Elsaidy et al., 2015). Humic matter influences the lacustrine

planktonic food web by supplying the necessary nutrients as well as,

adjusting the physical and chemical environment. Despite their long

use, employment of manure in high density zooplankton production

systems is still not well developed. Chicken manure has been shown to

contain 1–904 ng⋅g−1 of 17β-estradiol and 0.05–254 ng⋅g−1 of testos-
terone (Bevacqua et al., 2011; Jenkins et al., 2006). These sex hor-

mones are linked to influencing reproduction and survival of various

zooplankton (Hagiwara et al., 2016; Kikuchi et al., 2019; Nakamoto,

2008; Ogello & Hagiwara, 2015). The method of preparing CME was

developedbyFukuokaFisheries andMarineTechnologyResearchCen-

ter (Fukuoka city, Japan) and has been in use for over 20 years in the

production of Daphinia sp. (Nakamoto, 2008). In brief, chicken manure

and fossil coral powder are mixed with pond water then boiled for

about 1 h. The mixture is left to settle overnight at room temperature

and then the supernatant is filtered using a nylon net (100 μm). Ogello

and Hagiwara (2015) observed that addition of 2.0 ml L−1 of CME on

rotifer cultures enhanced their population growth, mixis and body size.

They further postulated that, CME acted as hormone that synergisti-

cally augmentedwith rotifer diet, thus increasing bothmictic and amic-

tic reproduction.

Another study by Kikuchi et al. (2019) showed that addition of CME

to copepod T. japonicus cultures induced their reproduction by 1.5–1.7

times and showed 7.4 times higher survival rate. Several studies have

shown that sex hormones such as 17β-estradiol, testosterone, oestro-
gens and androgens can influence reproduction of zooplankton as a

result of endocrine disruption (Gallardo et al., 1997; Marcial & Hagi-

wara, 2007; Preston et al., 2000). Addition of chicken dropping to fish-

pond also leads to production of heterotrophic bacteria that can be uti-

lized by rotifer and other zooplanktons as a diet (Jenkins et al., 2006).

Ogello et al. (2019) blended CME and FWD to culture zooplankton in

outdoor culture tanks. In this study, there was significantly higher pro-

duction of zooplankton in CME + FWD cultures (SGR of 0.42–0.62

day−1) than in control cultures (SGR of 0.35–0.48 day−1). The CME

probably facilitated phytoplankton growth in the tanks, thus expand-

ing forage base (i.e. bacteria and phytoplankton) for the zooplankton

growth and reproduction. This demonstrated the importance of the

synergy of FWD and CME for zooplankton growth and reproduction

(Ogello et al., 2019).

5.3 Limitations of organic waste-based diets

Rotifer culture using organic waste diet is often conducted in agnoto-

biotic conditions, and therefore it is difficult to regulate the diversity of

bacteria that proliferate. Given the specific nature of bacterial action

on live foods, it would be important to regulate the bacteria strains

used. Also, pre-treatment of waste to eliminate pathogenic microbes

involves temperature manipulation either through heat treatment

(Esteban et al., 2007) or freezing, which could further denature the

nutrients in these wastes (Mo et al., 2018). In our study, FWD was

stored at −40◦C before being used in the experiments. Freeze treat-

ment could be effective to eliminate majority of pathogenic bacte-

ria, but it might not effectively eliminate psychrophilic bacteria and

other cyst forming pathogens. Other limitations on the use of these
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ensiled products include quick deterioration of water quality at high

concentration (Kagali et al., 2018; Liao et al., 1997) and highly offensive

odours, which may be a restrictive factor for indoor utilization (Coello

et al., 2000; Faid et al., 1997).

6 EFFECT OF PROBIOTICS ON LIVE FOOD
CULTURES

Bacteria play a key role in nutrient cycling of dissolved organic carbon

and transfer of these energy to primary and secondary trophic levels

in aquatic food webs (Natrah et al., 2014). Various ecological studies

have accentuated the significance of the processes within planktonic-

microbial web in the functioning of the marine and limnetic ecosystem

(Fermani et al., 2013;Work &Havens, 2003). Under ex situ conditions,

bacteria have been shown to play a major role in variability and insta-

bility of live food cultures as well as that of marine predator larvae

(Verschuere et al., 2000). A lot of focus has been placed on manipula-

tion of the microbial community composition to enhance culture sta-

bility and reduce proliferation of harmful bacteria (Bentzon-Tilia et al.,

2016). However, the utilization of bacteria as sole nutrient source for

live foods is still debatable.

Some of the early studies show that bacteria communities can be

used to influence live food culture conditions and population growth.

Bdelloidea rotifers such as Leane inermis and Philodina acuticornis are

bacteriophagus and can be cultured successfully with bacteria alone as

a diet (Moreira et al., 2016; Ricci, 1984). Monogonont rotifers on the

other hand show more specificity in type of bacteria that can be uti-

lized as diet. Much smaller rotifer like P. similis and Keratella cochlearis

can indiscriminately utilize bacteria as a diet source (Bogdan et al.,

1980; Lopez et al., 2007). However, for the larger rotifers, the combi-

nation of bacteria and microalgae results in much higher population

growth unlike bacteria monodiets. For the much larger live foods, sin-

gle cells of bacteria can be insufficient diet and flocculation can be used

to enhance the growth of these species (Hwang & Heath, 1999; Ritala

et al., 2017).

Probiotics have been used in terrestrial animals for decades; how-

ever, there has been growing interest in their use in aquaculture pro-

duction in recent years. The expert panel convened by the Food Agri-

cultural Organization (FAO) of the United Nations and supported by

the World Health Organization (WHO) described probiotics as live

organisms that confer benefits to the host organism when adminis-

tered in adequate amounts (FAO &WHO, 2002; Hill et al., 2014; Reid

et al., 2019). Understanding the effects of various probionts is com-

plex, and the effective understanding of their working mechanisms is

a daunting task (Vdastein et al., 2018). Several authors have attempted

to accentuate the significance of probiotics on live food cultures, but

it has been limited to the effects on growth, survival, feed conversion

and controlling pathogenic microbes (Douillet, 2000; Grotkjaek et al.,

2016; Hauville et al., 2016; Lamari et al., 2014); see Table>S1.

From our recent studies, it is evident that probiotics containing lac-

tic acid bacteria (LAB) enhance parthenogenic reproduction which is

responsible for population density increase while on the other hand

repressed mictic reproduction that results in resting egg formation

(Kagali et al., 2019). The high-amictic reproduction in probiotic-fed

rotifers leads to high population growth rate. Bacteria have been

shown to influence rotifer population growth in various ways: (1)

nutritional effect through direct bacterivory by rotifers, enhancing

digestibility ofmicroalga and secretionof other nutritional factors such

as Vitamin B12 and EPA (Le et al., 2017;Nichols et al., 1996) and (2) sta-

bilization of culture environment through shifting microbial commu-

nity diversity and recycling nitrogenous wastes.

Reproduction of rotifers is internally regulated by factors such as

rotifer strain and molecular action or externally by environmental

stressors such as temperature, hormones, salinity, food type, food con-

centration andbacteria (Gilbert, 2016; Kogane et al., 1997; Snell, 2017;

Suga et al., 2011). In our recent experiments, we observed that themic-

tic reproduction of rotifers was repressed by the addition of probiotics

(Kagali et al., 2019). Probiotics are livemicrobial supplementwhich are

intended to benefit the host by improving its microbial balance (Cruz

et al., 2012).However, other studieson rotifermixis inductionbybacte-

ria have reportedmixed outcomes. For instance, Hagiwara et al. (1994)

observed that the effect of bacterial strains on rotifer mixis induction

is quite specific. Out of 17 bacteria strains employed in their study,

only five strains in the genus Pseudomonas, Moraxella and Micrococcus

induced higher sexual reproduction.

Higher mixis can result in decreased rotifer density due to

decreased birth rate of amictic females which are responsible for

rotifer population growth (Spencer et al., 2001). On the other hand,

lower mixis means higher population growth, which is the desired out-

come for aquaculturistswho aremore concernedwith intensive rotifer

production, but it compromises on the longevity of rotifers. Bacterial

effects canbe attributed to three factors: (1) utilization ofmicroalgae is

increased due to enhanced digestibility by bacteria action. This can be

as a result of secretionof extracellular enzymesbybacteriawhichhelps

in degrading microalgae (Hauville et al., 2016; Sun et al., 2010). This

increases food availability which favours amictic reproduction. (2) Bac-

teria secreted enzymes and bacteriocins which aggravate the rotifer

environment, thus leading to less investment in sexual reproduction. (3)

The shift in microbial community structure in the rotifer culture due to

the influence probiotics. Several authors have posited that probionts

dominate growth in culture mediums, thus decreasing growth of other

microbes (Lalloo et al., 2010; Le et al., 2017; Qi et al., 2009).

7 DIETARY VALUE OF WASTE-FED ROTIFERS
TO FISH LARVAE

Rotifers have broad nutritional requirements that must be met to

produce stable cultures. Ogello et al. (2019) conducted a preliminary

study on the dietary value of FWD-fed rotifer B. rotundiformis (SS-type)

for larval rearing of marine fish larvae Silago japonica under labora-

tory conditions. Even though the study recorded a low survival rate

of 9.7%, which is expected in most marine fish species, the value was

comparable to the control experiment in which supplementedmicroal-

gae, C. vulgaris, was used to culture the rotifers (Ogello et al., 2019).
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F IGURE 2 A schematic representation of diverse workingmechanisms involved during the culture of live foods using fish processing waste
(FWD). The arrows indicate the flow of energy in an aquaculture system using FWD

Also, the larval fish development parameters between the test and con-

trol diet were similar, thus suggesting a possibility of FWD for the lar-

viculture of S. japonica.

The success of larval fish rearing strongly depends on the amount

of DHA and ARA present in the diet (Sargent et al., 1999). Since most

marine fish larvae cannot synthesize DHA from precursor molecules,

for example, EPA or α-linolenic acid (ALA), supplying DHA-rich feeds

to fish larvae is important (Masuda et al., 1998). Ogello et al. (2019)

obtained DHA/ARA ratio of 2.4 in the waste-fed rotifers, which is a

positive step towards culturing marine larval fishes without supple-

mentation with expensive emulsions. However, the optimal DHA/ARA

ratio required for proper larval fish development is 10.0 (Sargent et al.,

1999).

8 CONCLUSION AND FUTURE PERSPECTIVES

A suitable diet for live food culture is not only a factor of nutritional

content but rather a combined result of the nutritional value of the

diet, the cost associated with obtaining and maintaining the diet and

the foraging preference of the diet by the live food species. Based

on the findings in our studies, FWD offers a suitable alternative to

microalgae-based diets for culture of small zooplanktons especially

rotifers (Kagali et al., 2018;Ogello et al., 2019). The action of FWDdiet

can be attributed to its degradation into microparticles and prolifera-

tion of bacteria (Kagali et al., 2018) which are utilized by the zooplank-

tons as a diet (Figure 2). This could lower the overall cost of production

by reducing the investment in microalga production.

Waste-generated bacteria have been produced traditionally in

aquaculture ponds through the application of animalmanure and other

waste products which enhance population of zooplanktons. However,

the utilization of these bacteria in high density live food production

system has not yet gained prominence. This article provides insights in

the potential of fish processing waste as a diet for culturing rotifer and

other zooplanktons. The findings in some of our research also demon-

strates some of the mechanism of action for FWD. However, there are

still some gaps in characterization of bacteria strains involved and vari-

ous influences on rotifer behaviour. Future research will centre on elu-

cidating thesemechanisms.

Probiotic products can be combined with FWD or microalga diets

and used in stabilization of the live food cultures. Given the mediation

role played by the probiotics on themicrobial community as well as the

influence on rotifer reproduction, we can therefore infer the impor-

tant role probiotics can play in enhancing high density rotifer produc-

tion. Probiotics are prolific and domineering in their growth and there-

fore can be used to shift themicrobial community distribution in axenic

rotifer cultures using FWD to favour the growth of beneficial bacte-

ria. Also, the ability of bacteria to enhance degradation of microalgae

and other organic particulates could lower the amount of feed used by

increasingnutrient efficiency aswell as lowering the cost of filtration to
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clear the excess sediments. There are a number of probiotic products

in the market, and due to the specificity in the action more research

should focus on identification of suitable probiotics for live food cul-

ture and the elucidation of various mechanisms of action.

Therefore, the non-microalgal diet offers an opportunity to (1)

reduce environmental pollution sources by reusing poorly discarded

fish wastes; (2) reduce or eliminate direct dependence on the imme-

diately cultured or the expensive on-site microalgae production; (3)

to lower the cost of rotifer enrichment, thus making it convenient

for aquaculture production, especially in the less developed countries,

where malnutrition is prevalent and (4) makes it possible for year

round production of live food resources, which are valuable inputs for

enhancing aquaculture activities.
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