
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/338427306

An Algorithm for Estimating Resistance Magnitude of Plants Against

Disease Establishment and Pathogen Virulence Levels

Article · December 2019

DOI: 10.3923/ppj.2020.16.21

CITATIONS

0
READS

75

1 author:

Some of the authors of this publication are also working on these related projects:

DNA barcoding View project

LEGUMES RESEARCH View project

Dennis O. Omayio

Masinde Muliro University of Science and Technology

19 PUBLICATIONS   47 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Dennis O. Omayio on 07 January 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/338427306_An_Algorithm_for_Estimating_Resistance_Magnitude_of_Plants_Against_Disease_Establishment_and_Pathogen_Virulence_Levels?enrichId=rgreq-d1acb2eaf9988019ec5a1ddd6014210c-XXX&enrichSource=Y292ZXJQYWdlOzMzODQyNzMwNjtBUzo4NDQ3OTQ4ODQ1MjE5ODVAMTU3ODQyNjIwNDQ4MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/338427306_An_Algorithm_for_Estimating_Resistance_Magnitude_of_Plants_Against_Disease_Establishment_and_Pathogen_Virulence_Levels?enrichId=rgreq-d1acb2eaf9988019ec5a1ddd6014210c-XXX&enrichSource=Y292ZXJQYWdlOzMzODQyNzMwNjtBUzo4NDQ3OTQ4ODQ1MjE5ODVAMTU3ODQyNjIwNDQ4MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/DNA-barcoding-17?enrichId=rgreq-d1acb2eaf9988019ec5a1ddd6014210c-XXX&enrichSource=Y292ZXJQYWdlOzMzODQyNzMwNjtBUzo4NDQ3OTQ4ODQ1MjE5ODVAMTU3ODQyNjIwNDQ4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/LEGUMES-RESEARCH?enrichId=rgreq-d1acb2eaf9988019ec5a1ddd6014210c-XXX&enrichSource=Y292ZXJQYWdlOzMzODQyNzMwNjtBUzo4NDQ3OTQ4ODQ1MjE5ODVAMTU3ODQyNjIwNDQ4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d1acb2eaf9988019ec5a1ddd6014210c-XXX&enrichSource=Y292ZXJQYWdlOzMzODQyNzMwNjtBUzo4NDQ3OTQ4ODQ1MjE5ODVAMTU3ODQyNjIwNDQ4MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dennis-Omayio?enrichId=rgreq-d1acb2eaf9988019ec5a1ddd6014210c-XXX&enrichSource=Y292ZXJQYWdlOzMzODQyNzMwNjtBUzo4NDQ3OTQ4ODQ1MjE5ODVAMTU3ODQyNjIwNDQ4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dennis-Omayio?enrichId=rgreq-d1acb2eaf9988019ec5a1ddd6014210c-XXX&enrichSource=Y292ZXJQYWdlOzMzODQyNzMwNjtBUzo4NDQ3OTQ4ODQ1MjE5ODVAMTU3ODQyNjIwNDQ4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Masinde-Muliro-University-of-Science-and-Technology?enrichId=rgreq-d1acb2eaf9988019ec5a1ddd6014210c-XXX&enrichSource=Y292ZXJQYWdlOzMzODQyNzMwNjtBUzo4NDQ3OTQ4ODQ1MjE5ODVAMTU3ODQyNjIwNDQ4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dennis-Omayio?enrichId=rgreq-d1acb2eaf9988019ec5a1ddd6014210c-XXX&enrichSource=Y292ZXJQYWdlOzMzODQyNzMwNjtBUzo4NDQ3OTQ4ODQ1MjE5ODVAMTU3ODQyNjIwNDQ4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dennis-Omayio?enrichId=rgreq-d1acb2eaf9988019ec5a1ddd6014210c-XXX&enrichSource=Y292ZXJQYWdlOzMzODQyNzMwNjtBUzo4NDQ3OTQ4ODQ1MjE5ODVAMTU3ODQyNjIwNDQ4MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf




   OPEN ACCESS Plant Pathology Journal

ISSN 1812-5387
DOI: 10.3923/ppj.2020.16.21

Research Article
An Algorithm for Estimating Resistance Magnitude of Plants
Against Disease Establishment and Pathogen Virulence Levels

Dennis Ondieki Omayio

Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, 50100 Kakamega, Kenya

Abstract
Background and Objective: Host plant resistance approach is one of the highly sought techniques in mitigation of several plant diseases
that cause huge losses. This is attributed to its ease of implementation and cost effectiveness especially in third world countries. However,
the success of selecting stable resistant varieties is significantly affected by error prone qualitative approaches of screening, coupled with
other techniques like computer imaging systems that are very expensive to acquire in resource poor countries. Therefore, this study
sought to determine the quantitative levels of host plant resistance and pathogen virulence based on a series of combined models.
Materials and Methods: A 7 step algorithm that integrates 3 plant parameters affected most by the disease, referred to as ‘Omatec host
plant resistance and pathogen virulence estimator algorithm was used. Post-experiment data of 3 napier grass varieties screened against
napier  stunt  disease  at  International  Centre  for  Insect  Physiology  and  Ecology-Mbita,  Kenya,  was  used  to  test  the  approach.
Results: From the algorithmic outputs, Clone-13 variety (the susceptible check) had host plant resistance levels of 34.06% and was
classified as having low resistance or susceptible. Ouma-2 and South Africa varieties used as the resistant checks had host plant resistance
levels of 60.91 and 63.66%, respectively with a classification of high resistance or resistant. The pathogen virulence levels on Clone-13
variety  was  estimated  at  65.94%,  whereas,  in  Ouma-2  and  South  Africa  varieties  the  impacted  pathogen  virulence  levels  were
39.09 and 36.34%, respectively. Conclusion: The algorithm outputs of resistance and pathogen virulence levels were consistent with the
reported qualitative description of the varieties’ responses amidst infection by napier stunt disease. The algorithm exhibited potential
in complementing existing qualitative approaches of screening for resistance in a relatively cheap, reliable and accurate manner.
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INTRODUCTION

Natural resistance of plants against diseases is one of the
most effective, cheap, easily and highly adapted technique for
management of serious diseases of plants currently1-4. The
technique relies on inherent resistance trait in some host
plants to merit its use as a tool in the control of plant
pathogens that have continued to cause huge economic
losses due to low crop yields1,2,5. The trait varies in magnitude
in different varieties in a continuum manner ranging from
highly susceptible lower end to highly resistant at the higher
end, due to genome differences brought about by agents of
evolution6. It is classified into two forms namely; quantitative
and qualitative resistance1,7. The qualitative resistance is
encoded by a few or single gene and it is expressed by plants
against a certain specific strain of a pathogen. The quantitative
resistance is expressed by several multiple genes that are
generally involved in the general growth of the plant.
Moreover, it is expressed by plants against all strains of a
particular  pathogen  though  influenced  by  certain
environmental factors6.

Efforts  to  select  resistant  varieties  to  mitigate  this
situation of crop losses due to plant diseases are ongoing
across the world8. However, many of the techniques used in
screening  are  prone  to  errors  due  to  their  qualitative
nature9. Further, modern techniques like computer imaging
are expensive and unavailable for many researchers especially
in the third world countries to use in screening quantitatively
for resistance9,10. In addition, some plant diseases express
limited symptoms in initial stages of infection to merit a good
qualitative estimation of resistance1,11,12. This is a challenge
towards successful mitigation of these plant diseases and
management of the co-evolution of causative pathogens due
to survival pressure resulting from use of highly resistant
varieties only13,14. Therefore, this study sought to develop an
algorithm that can quantitatively estimate the levels of host
plant resistance and pathogen virulence levels in a plant
under evaluation in a cheap, accurate, consistent and
objective manner.

MATERIALS AND METHODS

Study period: This study was conducted between April, 2018
to March, 2019 at International Centre of Insect Physiology
and Ecology (ICIPE) -Mbita and Masinde Muliro University of
Science and Technology-Kakamega, Kenya.

Study approach: The study involved a designed 7 step
algorithm which is referred to as Omatec host plant resistance

and pathogen virulence estimator algorithm, which was used
to estimate the virulence and host plant resistance levels of
selected varieties of napier grass. The post-experiment data
used in this study was from 3 selected varieties known as;
Clone-13, South Africa and Ouma-2. These varieties were
being used as test crops against a disease known as napier
stunt disease at International Centre for Insect Physiology and
Ecology at Mbita in Kenya. Clone-13 variety’s data was
purposively  used  as  a  positive  control  since  it’s  susceptible
to  the  disease,  whereas,  the  other  two  varieties  data  was
used  due  to  their  reported  levels  of  resistance  to  the
disease8. The disease is caused by a phytoplasma ‘Candidatus
Phytoplasma oryzae’ strain Mbita 1 transmitted by Maiestas
banda4,8,11,15.

Step 1
Measurement  or  selection  of  the  plants’  data  to  be
evaluated  by  the  algorithm:  This  step  involved  the
identification  of  the  data  that  was  to  be  subjected  in
subsequent steps of analysis towards estimation of the
virulence and host plant resistance levels of selected varieties.
Three parameters captured on Table 4, were identified that are
significantly affected by the napier stunt disease namely, plant
height, chlorophyll levels and biomass levels4,8. The data was
from an experiment that was hosted at the International
Centre for Insect Physiology and Ecology in Mbita Kenya
(ICIPE-Mbita) and was used to simulate how the algorithm
works in subsequent steps 2-6.

Step 2
Determination of the magnitude of relative logarithmic
index of divergence of the inoculated treatments (MRIDIT)
from  their  respective  controls  (non-inoculated):  This
entailed the determination of magnitude in percentage of the
relative logarithmic index of divergence of the inoculated
treatment (MRIDIT) from the non-inoculated treatments using
a modified Eq. 1, that integrates the 3 most affected
parameters by the disease as described by Parry1. The use of
natural logarithm (LN) in the model determining the MRIDIT
value was to enable estimation of the logarithmic efficacy
indices which are good estimators of efficiency in performance
in such scenarios of plant analysis1,16,17. Secondly, logarithms
can effectively be used in integrating different parameters
regardless of their different units of measurement to obtain a
holistic index that represents performance2,12,18:

(1)  
 

LN(PHi CHi BMi) LN PHc CHc BMc
MRIDIT (%) 100

LN PHc CHc BMc
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where, MRIDIT was the magnitude of relative logarithmic
index of divergence of inoculated treatments from their
respective controls. Estimating the damage inflicted on the
variety by the pathogen. The LN was the natural logarithm of
the variables PHi, CHi and BMi that represented the mean
plant height, chlorophyll mean levels and biomass mean levels
of  the  individual  variety’s  inoculated  treatments.  Whereas,
the variables PHc, CHc and BMc represented the mean plant
height, chlorophyll mean levels and biomass mean levels of
the individual variety’s non-inoculated treatments (control).

Step 3
Estimation of respective varieties integrated parameter
damage levels (IPDL) impacted through pathogen infection:
This step entailed estimation of damage levels in percentage
based on the integrated parameters by taking in to
consideration the MRIDIT value calculated in step two of the
algorithm. Since, it measures the levels of divergence of the
infected materials from their controls. The expected output
was a negative value to demonstrate decline in performance
due to infection1,12. Therefore, to remove the negative value
from the value towards determination of integrated parameter
damage levels; it meant multiplying by negative one as
demonstrated in Eq. 2:

Integrated parameter damage levels (IPDL) = (-1×MRIDIT) (2)

where, MRIDIT was the magnitude of relative logarithmic
index of divergence of inoculated treatments as determined
in step two above.

Step 4
Estimation of the integrated parameter growth levels (IPGL)
based   on   individual   variety’s   integrated   parameters:
The   determination   of   integrated   parameters   growth
levels  (IPGL)  of  a  variety  was  done  to  estimate  the
performance of an individual variety based on the integrated
3  parameters  divergence  from  their  respective  controls
(Plant height, chlorophyll levels and biomass levels). It meant
subtracting the estimated damage levels percentage from
100% as illustrated in Eq. 3:

IPGL = 100 -Estimated damage levels percentage (3)

where, IPGL is the integrated parameters growth levels. The
estimated damage levels percentage value in the formula was
determined from step 3.

Step 5
Estimation of each variety’s relative performance levels of
different parameters measured (RPL) after infection: This
entailed the determination of the respective parameters
relative performance potential of the individual variety’s under
infection, relative to the sum of their performance under
infection by the disease and no-infection scenario. A concept
that has been utilized effectively in evaluation of systems
wellness especially ecosystems19. This was based on the
premise that relative performance is a good measure of
systems efforts in regeneration amidst varying environmental
variables20.   Therefore,   by   exploiting   the   same   approach
the infected varieties performance could be established
quantitatively as illustrated in the Eq. 4:

(4)
PHi CHi BMi100 100 100

PHi PHc CHi CHc BMi BMc
 RPL  

3

                                       

where, RPL was the relative performance levels as a
percentage of infected variety under study. The division by 3
was to obtain the mean percentage of the three different
parameters measured. Whereas, the variables PHi, CHi and BMi
represented the plant height levels, chlorophyll levels and
biomass levels of an individual variety’s inoculated/infected
treatments. Whereas, the variables PHc, CHc and BMc
represented   the   plant   heights   levels,   chlorophyll   levels
and      biomass      levels      of      the      individual      variety’s
non-inoculated/non-infected treatments (control).

Step 6
Estimation of each variety’s host plant resistance levels
(HPRL) against the pathogen and virulence levels of the
pathogen (PVL) impacted on the variety: This was the final
step that involved the determination of the host plant
resistance of a variety by simple averaging of 2 out puts as
illustrated below in Eq. 5 and consequently virulence
estimation by subtracting the host plant resistance levels from
100% using Eq. 6:

(5)   IPGL RPL
Host plant resistance levels HPRL

2




Pathogen Virulence levels (PVL) = 100-Host plant resistance levels (6)

where, HPRL was the host plant resistance levels as a
percentage. The division by 2 was to obtain the mean
percentage of the 2 percentage values determined in steps 4
and 5 above of the algorithm.
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Step 7
Interpretation keys for the estimated variety’s host plant
resistance levels (HPRL) against the pathogen: This step
involved  the  generation  of  an  interpretation  key  to  aid  in
the  interpretation  of  the  final  outputs  from  the  algorithm.
The key was modified for napier as described by Obura21 and
Kawube et al.22.

Statistical analysis: The data generated was interpreted
directly since the outputs were statistically descriptive
percentages, where, they quantified the levels of host plant
resistance of the evaluated varieties and pathogen virulence
magnitude manifested by the germplasms against the
pathogen’s establishment.

RESULTS

The  analysis  of  the  results  based  on  the  algorithm,
Clone-13 had the lowest levels of host plant resistance against
the pathogen at 34.06%, followed by the Ouma-2 variety at
60.91%. South Africa variety had the highest levels of host
plant resistance at 63.66% as demonstrated in Table 1. Basing
on the interpretation key illustrated in Table 2 Clone-13 variety
host plant resistance levels classification was described as
having low resistance, since the value 34.06% lay between the
range 25% to 49% as illustrated in Table 2. Whereas, Ouma-2
and South Africa varieties classification was high resistance
based  on  their  values  falling  within  the  range  of  50-74%
(Table 2).

Based on the data used the pathogen ‘Candidatus
Phytoplasma oryzae’ strain Mbita-1 damaged more Clone-13
variety with pathogen virulence levels of 65.94%. Whereas,
Ouma-2 and South Africa varieties determined pathogen
virulence levels were 39.09 and 36.34%, respectively as
demonstrated in Table 1. The other values determined by the
algorithm towards determination of host plant resistance and
pathogen virulence levels are captured in Table 3 to enable
validation by an independent individual or researcher.

DISCUSSION

The    results    indicated    that    Clone-13    had    low  
host  plant resistance levels to the pathogen ‘Candidatus
Phytoplasma oryzae’ strain Mbita-1(Table 1). This is consistent
with the general qualitative description of the variety’s
response to the disease as generally susceptible though the
level of host plant resistance has not been reported for this
variety until these findings in this current study4,22,23. In the
evaluations of Wamalwa et al.4 Clone-13 variety had a
validated disease incidence of 16.7%. The variety typical of
many   napier   grass   varieties   is   a   vigorous   grower   when
not   diseased   and   generally   exhibits   moderately   varying
growth and biomass levels outputs in different agro-ecological
zones due  to  genotype differences and agronomy practices

Table 1: Determined levels of host plant resistance levels (HPRL) of individual
varieties and pathogen virulence levels (PVL) based on the algorithm

Varieties Host plant resistance levels (%) Pathogen virulence levels (%)
Clone-13 34.06 65.94
Ouma-2 60.91 39.09
South Africa 63.66 36.34

Table 2: Interpretation key for the determined host plant resistance levels by the
algorithm

Range values (%) Host plant resistance classification
From 0-24 Very low resistance (or) very susceptible
From 25-49 Low resistance (or) susceptible
From 50-74 High resistance (or) resistant
From 75-100 Very high resistance (or) very resistant

Table 3: Determined levels of other variables used in estimation of host plant
resistance levels and pathogen virulence levels from the algorithm
based on the data in step 1

Values
------------------------------------------------------------------------

Varieties MRIDIT IPDL (%) IPGL (%) RPL (%)
Clone-13 -43.09 43.09 56.91 11.21
Ouma-2 -12.70 12.70 87.30 34.51
South Africa -10.38 10.38 89.62 37.69
MRIDIT: Magnitude of relative logarithmic index of divergence of the inoculated
treatments,   IPDL:   Integrated   parameter   damage   levels,   RPL:   Relative
performance levels, IPGL: Integrated parameter growth levels 

Table 4: Data of 3 varieties mean performance in 2 trials of 24 weeks each of growth under Candidatus  phytoplasma oryzae’ strain Mbita 1 infection and their controls
performance

Napier stunt Inoculated treatments performance in 3 parameters Non-inoculated (controls) treatments performance in 3 parameters
------------------------------------------------------------------------------------ -------------------------------------------------------------------------------------------
Plant height Chlorophyll levels Biomass Plant height Chlorophyll levels Biomass

Varieties (cm) (SPAD) levels (g) (cm) (SPAD) levels (g)
Clone-13 18±9.5 8±1.3 28±5.20 158±12.6 46±2.2 298±15.2
Ouma-2 98±7.8 28±2.5 204±16.4 188±14.2 58±3.6 352±18.5
South Africa 86±4.5 30±3.3 177±5.4 146±10.4 53±1.8 267±8.7
Data was means±standard deviation of the varieties’ respective treatments each replicated ten times in each of the 2 trials of evaluation at International Centre for
Insect Physiology and Ecology-Mbita, Kenya, data was used to test the algorithm levels of estimating host plant resistance and pathogen virulence levels
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effect24,25. This scenario could explain why the variety was
significantly damaged though not entirely by the pathogen at
65.94% virulence levels (Table 1). Thus, validating the likely use
of the algorithm in estimating quantitatively host plant
resistance levels.

The other 2 varieties, Ouma-2 and South Africa were
equally consistent with their descriptive qualities in various
evaluation reports, as generally being tolerant to the napier
stunt disease3,8. However, no report of quantitative estimation
on the host plant resistance level has been reported until
these findings in the current study. This scenario can be
attributed to their inherent gene properties that enable plants
mount a defense against an infection1,6,7. Therefore, the
quantitative estimation  of  this trait may open new horizons
in  the  evaluation  of  plants  for  resistance  against  diseases
and prediction of the types of resistance6. Moreover, when
screening for possible presence of pathogen pathovars
quantification of virulence and resistance will be a critical
parameters as reported by Keane6. This is because different
pathovars have varying impact on qualitative levels of
resistance unlike quantitative resistance which is specific1. This
is likely to complement the qualitative strategies existing
especially in selection of resistance trait and generally plant
improvement. The host plant resistance of an infected crop
(napier grass) has been quantitatively estimated using a
designed algorithm and differences in levels exist. Secondly,
the estimation of resistance by the algorithm could be used to
select stable and desirable plant cultivars that can be used to
manage various plant diseases effectively to limit the process
of co-evolution using host plant resistance approach.

CONCLUSION

Basing on the available reports of the varieties general
response to the disease, the algorithm managed to give a
quantitative value on their host plant resistance that seems
consistent with the available qualitative information. Hence,
the algorithm exhibits some potential of being applied in
complementing screening efforts for resistance that use
qualitative approaches, especially in third world countries
where  computer  imaging  technologies  are  limited.
However, there is need for the algorithm to be adopted with
other crops and different plant diseases  to  test  its  versatility
in  application.  This  will  contribute  in  its  improvement
towards  a  very  accurate,  reliable,  cheap  and  cost  effective
tool of analysis of host plant resistance and plant diseases’
virulence levels.

SIGNIFICANCE STATEMENT

The article introduces a novel concept of estimating
quantitatively the host plant resistance levels of plants
towards pathogens management by use of an algorithm. The
algorithm uses post experiment collected data of napier grass
infected by an obligate pathogen‘ Candidatus Phytoplasma
oryzae’ strain Mbita 1. This approach will complement the
selection approaches of resistant plants during screening for
resistance. Further, the findings will help in giving direction on
estimation of pathogen virulence levels which is an important
variable in plant pathology.
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