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Abstract: 
The transport of solutes through porous media where chemicals undergo adsorption or change process on the surface of the 

porous materials has been a subject of research over years. Usage of pesticides has resulted in production of diverse quantity and 

quality for the market and disposal of excess material has also become an acute problem. The concept of adsorption is essential in 

determining the movement pattern of pesticides in soil in order to assess the effect of migrating chemical, from their disposal 

sites, on the quality of ground water. Most studies made of movement of pesticides in the ground environment, the mathematical 

models so far developed emphasis axial movement and in a few cases both axial and radial movements. Soil processes have a 3D 

character; modeling therefore in principle, should employ three dimensions. It should also be noted that the appropriate number of 

dimensions is closely related to the required accuracy of the research question. The 1D and 2D approaches are limited since they 

are not capable of giving dependable regional influence of pesticides movement in the porous media and ground water. They give 

us only theoretical results which are devoid of the reality in the field due to lumping of parameters. In this publication, three 

dimensional formulas are developed so that it can enhance our capacity to analyze the realistic regional impact of adsorption of 

pesticides in a porous media and the ground water in the field condition. The methodology will involve determining the 

comprehensive dispersion equation accounting for 3D movement of solutes in the porous media and finding the solution of the 

governing equation using Alternate Direction Implicit method (ADI) which is unconditionally stable for 3D equations of Douglas 

and Gunn approach. 
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1.INTRODUCTION 

 

Convective-Dispersive equations have been solved using 

implicit methods. This is due to their unconditional stability 

but the challenges associated with the matrices have become a 

concern and a limitation in obtaining solutions [1, 9]. Implicit 

finite difference methods obtain the solution for the next step 

from the state of both the current and the next steps, while 

explicit methods obtain the solution from the current step only. 

Implicit methods require computation per time step and can 

implement long time step intervals without suffering numerical 

instabilities. On the contrary explicit numerical methods suffer 

from instabilities. Implicit numerical methods are stable in 

one-dimension problems but they do not guarantee stability in 

multidimensional problems. Inversion of matrices produced by 

explicit numerical are easier to solve compared to those of 

implicit numerical methods, but require smaller time interval 

thus increasing computation time. In this paper we adopt ADI 

method. In numerical analysis, the Alternating Direction 

Implicit (ADI) method is a finite difference method for solving 

parabolic and elliptic partial differential equations. The 

advantage of the ADI method is that the equations that have to 

be solved in each step have a simpler structure and can be 

solved efficiently with the tridiagonal matrix algorithm., also 

called Thomas Alogarithm, whis is user friendly [6]Douglas 

and Gunn modified Crank and Nicolson Method developed a 

general ADI scheme that is unconditionally  stable and retains 

second order accuracy when applied to 3D problems with 

varied implicit and explicit steps. This method gives a 

tridiagonal matrix algorithm (TDMA) which is a simplified 

Gaussian elimination. [3] These details are essential in analysis 

of many environmental studies related to irrigation and 

drainage strategies(efficient water use), transport of nutrients 

and pesticides movements towards ground water and surface 

water system (pollution), surface water management of 

agricultural areas and natural areas (agronomic and ecological 

interest). In this study, we derive a 3D convective dispersive 

equation describing movement of pesticides in underground 

porous media and solve the equation using an efficient 

alternating direction implicit method by Peaceman and 

Rachford [1], and Douglas and Gunn [3] developed from a 

variation on the Crank Nicolson approximation. Advantages of 

ADI method is that it prevents numerical problems 

encountered by the fully implicit schemes and it shortens 

computing time by a factor of 2 compared to the implicit 

method and does not encounter numerical problems such as 

negative distribution functions or crashes during matrix 

inversion [6] that are seen in implicit methods. 

2. DERIVATION OF CONVECTIVE-DISPERSIVE 

SOLUTE TRANSPORT EQUATION WITH STEADY 

STATE WATER FLOW CONDITION 

For a control volume 

  outin MM  

0




t

M cv  

Where, 
cvM is the mass of controlled volume=a constant 

(Steady state) The speed of water in porous media is 

determined by considering the, 

Average pore water velocity 


q
LTv 1(

 

i.e. q =- k
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, is the flux density, and
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  in which wv is 

the volume of water in the porous media and sv is the volume 

of solids, 
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k-is the permeability 

H -the hydraulic head 

l -distance travelled 

In this study we use the concept of dispersion through a 

cubically packed soil vessel with internal dimensions x, y, and 

z to derive our equation. 

 
Figure 1 

At very low flow rate, the dispersion is different in the three 

directions. The dispersion coefficients are denoted by D x  , D y

, and D
z

 for x, y and z directions respectively. 

  dm DDvD ,  

where  12 TLDm  is molecular diffusion coefficient and 

 12 TLDd  is the hydrodynamic dispersion and is the mixing 

of spreading of the solute during transport due to differences in 

velocities within the pores and between the pores. 

The volumetric water content denoted by   can be assumed to 

be void ratio for saturated soils. The element height is denoted 

by l .  The measurements are denoted by x , y  and z  for x, 

y and z-axis of the cube respectively. C is the concentration of 

the material to be dispersed and is a function of axial position 

x, radial positions y and z, time t and dispersion coefficients 

RD  and 
LD  radial and axial respectively. 

The rate of entry of reference adsorption material due to flow 

in axial direction, 

   CzzqCyyq xx                   (1.1) 

The corresponding efflux rate, 
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The net accumulation rate in element due to axial flow, 
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Rate of diffusion in axial direction across inlet boundary, 
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Corresponding rate at outlet boundary, 
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The net accumulation due to diffusion from boundaries in axial 

direction is, 
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Diffusion at inlet y and z direction 
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The corresponding rate at y  and z  outlet is, 
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The net accumulation rate due to diffusion from boundaries in 

axial directions y and z 
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For a representative volume of soil, the total amount of a given 

chemical species  2 ML  is represented by the sum of the 

amount retained by the soil. When the adsorption isotherm 

obeys the Freundlich equation the Matrix and the amount 

present in the soil, 

CSb     (1.10) 

where, b  is bulky density and S is the solute adsorbed, 

therefore, 

C is the solute in the solution 
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Now the total accumulation rate, 
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From equations 1.3, 1.6, 1.9, and 1.12, we have the following 

combined equation, 
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(1.13) 

For a cube x=y=z and zyxlx  for cube 

Therefore the above equation gives us, 
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The presentation of the amount of solute adsorbate per unit 

adsorbent as a function of the equilibrium concentration in 

bulky solution at a constant temperature is termed as the 

adsorption isotherm. One of the most popular adsorption 

isotherm equations that is used for liquids was described as 
N

eKCS  ,(1.15) 

where 
m

xS  ,  is adsorbed solid and eC  is the solute 

equilibrium constant. 
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From equation (1.11) and (1.16) we get, 

Where 

R (C) = )1(
1
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Taking xl  , 
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LTv 1(  and zy   given that the 

width of the element in question is equal, therefore, 
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Therefore equation (1.18) is our model equation. 

2.2 Problem formulation by finite difference 
For uniform porous media, the adsorption of solute is give by 

our derive equation, 
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 (1.18) 

This equation is the second order equation quasilinear partial 

differential equation. The first step is to establish a finite 

difference method solution of the partial differential equation 

is to discretize the continuous domain of its grids with finite 

number of grid points. At time step n, the concentration of the 

solute  tzyxC ,,,  at grid point ),,( kji  can be placed by 

),,,( tnzkyjxiC   which is denoted by
n

kjiC ,, . The 

initial conditions for solving the model equations are; 

The partial derivatives of C with respect to x, implies y, z and t 

are kept constant and vice versa 
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dx
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The initial condition; the concentration of pesticides at 

positions in the porous media at time zero is constant, and 

equal to kjiC ,, , 

i.e. kjiCzyxC ,,)0,,,(   for 0,, zyx  

Boundary conditions: -Two conditions are necessary; 1, in the 

first case the concentration of pesticides at position x=o, y=0 

and z=0 is specified for a period of time. Following that time, 

the concentration at the surface is zero 

  0,0,0,0 CtC   

For 00 tt   and   0,0,0,0 tC  for t>0 

2. in the second case, the concentration of pesticides in the 

solution entering the soil system at point x=0, y=0 and z=0, is 

specified for a period of time. Following that time, the 

concentration at the surface is zero 

Assumptions; 

 The pore water velocity is constant in time and space. This 

condition can be met for a uniform medium if the flux 

density of water velocity and volumetric water content are 

constant for all positions all the time. 

 The spread of solute is dominated by hydraulic dispersion 

rather than diffusion 

 The hydraulic dispersion can be approximated as a product 

of dispersivity and pore water velocity 

 The adsorption process is instantaneous and reversible. The 

concentration of the pesticides adsorbed on the soil solid is 

proportional to the concentration in the solution. 

2.3 Alternate Direct Implicit Method (ADI) 

The implicit method is also known as the Backward in Time 

Central in Space (BTCS) scheme, and is unconditionally 

stable. Although it has this great advantage, the drawback is 

that a tridiagonal system must be solved for each time step. 

Alternate Direct Implicit Method (ADI) is a Difference 

Method for solving Parabolic and Partial difference equations. 

In this study we will deal with two methods 

 Crank &Nicolson Method, 

 Douglas & Gunn Method 

 

2.3.1 Crank and Nicolson Method 
Implicit numerical methods are stable in one dimension 

problem but do not guarantee stability in multidimensional. 

Alternate Direct implicit (ADI) Method is a numerical method 

developed by Crank and Nicolson and is unconditionally 

stable, accurate and deal with time matching problems by 

taking simple explicit and implicit methods. It prevents 

numerical problems encountered by fully implicit schemes and 

shortens computing times by a factor of 2. It also does not 

encounter numerical problems such as negative distribution 

function or crash during matrix inversion that are seen in other 

implicit numerical methods. However its matrix is complicated 

to solve. Crank and Nicolson [3] dealt with the time marching 

problem by taking the average of simple explicit and implicit 

methods. For our equation (1.18), 
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Rearranging the Crank Nicolson equation; 
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The equation above gives us; 
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The matrix generated by Crank & Nicolson Method has the 

best accuracy and unconditionally stable but its main 

disadvantage is the matrix generated is expensive (or 

Complicated) to solve. 

 

Model Equation Solution 

ADI Method 

Peaceman and Rachford [1] and Douglas and Gunn[3] 

developed a variation on the Crank & Nicolson approximation 

which is known as ADI Method. Douglas & Gunn scheme is 

more relevant for our calculation. 

 

2.3.2 Douglas & Gunn Method 

This numerical method is an alternative solution method which 

instead of solving 3D problem solves a succession of three one 

dimensional problems. The breakdown of the method is 

explained diagrammatically as shown below. 

 

STEP: X Implicit 

 
Figure.2. 

 

STEP: Y Implicit 

 
Figure.3. 

STEP3: Z Implicit 

 

Figure.4. 

Douglas and Gunn [3] modified the Crank Nicolson method 

and developed a general ADI scheme that is unconditionally 

stable and retains second order accuracy when applied to 3D 

problems. This approach exploits the understanding that 

Implicit numerical methods are stable in one-dimension 

problem but do not guarantee stability in multi-dimensional 

problems. The incorporation of Thomas algorithm is based on 

the fact that the inversions of matrices produced by explicit 

numerical methods are easier to solve compared to those of 

implicit numerical methods but require smaller time intervals 

Based on Douglas and Gunn approach we rewrite our equation 

as follows; 
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Instead of directly solving the equation at time step n, we solve 

the same equation at three sub-time steps; 
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Step 2:- 
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Step 3:-  
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Expanding the equation in the steps above 

Step 1 
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Step 2 

   









































 










n

kji

n

kji

n

kji

n

kji

n

kji

n

kjixx

n

kji

n

kjikji CCCCCCrDCCCR ,,1,,,,1
3

1

,,1
3

1

,,
3

1

,,1,,
3

2

,,,, 22

 

 


























 









n

kji

n

kji

n

kji

n

kji
xx CCCC

mV
,,1,,1

3

1

,,1
3

1

,,1
2

 

 


























 









n

kji

n

jki

n

kji

n

kji

n

kji

n

kji

yy
CCCCCC

rD
,1,,,1,

3

2

,1,
3

2

,,
3

2

,1, 22
2

 

 n

kji

n

kji

n

kjizz CCCrD 1,,,,1,, 2  

(1.28) 

Step 3 
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1.29) 

Rearranging Douglas & Gunn equation gives us the equation which provides the matrix of solving the model equation; 

Stage 1; Implicit in x direction, explicit in (y, z) directions 
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Stage 2; Implicit in y direction, explicit in (x, z) directions
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Step 3; Implicit in z direction, explicit in (x, y) direction 

     
1

1,,

,,

1

,,

,,

1

1,,

,, 2
1

2







 













 n

kjin

kji

zzn

kji

kji

zzn

kjin

kji

zz C
CR

rD
C

CR

rD
C

CR

rD

 

         

    







































n

kjin

kji

zzn

kjin

kji

yy

n

kjin

kji

yyn

kjin

kji

xx
n

kjin

kji

xxn

kjin

kji

xx
n

kjin

kji

xx

C
CR

rD
C

CR

rD

C
CR

rD
C

CR

rD
C

CR

mV
C

CR

mV
C

CR

rD

1,,

,,

,1,

,,

3

2

,1,

,,

,,1

,,

3

1

,,1

,,

,,1

,,

3

1

,,1

,,

22

2222

 

          















n

kjin

kji

zzn

kjin

kji

yyn

kjin

kji

yyn

kjin

kji

xx
n

kjin

kji

xxn

kji C
CR

rD
C

CR

rD
C

CR

rD
C

CR

rD
C

CR

rD
C ,,

,,

,,

,,

3

2

,,

,,

,,

,,

3

1

,,

,,

,,

22

 

         

    







































n

kjin

kji

zzn

kjin

kji

yy

n

kjin

kji

yyn

kji

kji

xx
n

kjin

kji

xxn

kjin

kji

xx
n

kjin

kji

xx

C
CR

rD
C

CR

rD

C
CR

rD
C

CR

mV
C

CR

mV
C

CR

rD
C

CR

rD

1,,

,,

,1,

,,

3

2

,1,

,,

,,1

,,

3

1

,,1

,,

,,1

,,

3

1

,,1

,,

22

222

(1.32) 

The above is the solution to the model equation, which are equations (1.30), (1.31) and (.32). 
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I=1,2……..,I, j=1,2,……………………J and k=1,2,………………K 
 

In each of the three steps, we have 1I    equations for each of

),( kj , 
1J  equations for each of ),( ki and 1K  for 

each of ),( ji value. We also have three unknown values in 

variables in each step. In all the three cases, the tridiagonal 

matrix can be solved by use of Thomas algorithm [16]. In 

numerical algebra, the triadiagonal matrix (TDMA), also 

known as the Thomas algorithm, which is simplified form of 

Gaussian elimination that can be used to solve numerical 

equations like this. The triadiagonal system of one dimension 

for n unknown may be written as; 

iiiiiii dxcxbxa   11    (1.33)
 

Where 01 a and 0nc
 
This algorithm is only applicable 

to matrixes that are diagonally dominant, as illustrated below; 
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The first step consists of modifying the coefficients as follows, 

denoting the new modified coefficients with primes 
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This is a forward sweep. The solution is obtained by back 

substitution; 

nn dx   

1,,.........2,1;1   nnixcdx iiii   (1.36b)

 
This will be the method that will be applied in find the solution 

in the equations, 

Theorem 1: The ADI Method used in solving the model 

equation is unconditionally stable. 

Proof: - 
The three-dimension equation; 

Douglas and Gunn [1964] derived an ADI scheme based on 

„‟approximating factoring‟‟ that is unconditionally stable and 

retains second order accuracy when applied to three 

dimensions‟ schemes. 

A development of the scheme that highlights the approximate 

factorization point of view is best carried out making use of a 

delta form of the equation. A delta form expresses the 

unknown quantity as the change from a known value of the 

variable of interest. Here we use a time delta and defined 
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In this analysis, the discrete Fourier transform of the non-

homogeneous is used so as to establish 
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using the discretization and Fourier transform for equations 

(1.37) to (1.38) the to the equations below 
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Equation (5.39) becomes; 
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Using equation (5.38), we find the following expression; 
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From basic trigonometry, 
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The amplification factor 3

1

  is given as; 
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Where KJImmzyx ,,;   , and let xG3
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Following the same process as in stage 1; 
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Making the denominator real numbers gives us; 
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The amplification factor 3

2

 is given above; 

Where KJImmzyx ,,;   , and let yG3
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Following the process in Stage 3; 
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From the details above, the nominator is diminishing and denominator increasing 

therefore the theorem is right. 

(1.54)                                                        

 

2.3.3 Determination of time step using stability criteria 

Fourier or Von Neumann Stability analysis 

Using Fourier transform, 
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Fitting this in the model equation (5.18); 
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Using equation (5.55), 

Fourier transforms give; 
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(1.57) 

Define; 

From equation (1.56) 
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A particular time stepping scheme will be stable provided Ĉ  lies in its stability region. 

To simplify the discussion suppose that the stability region is contained in an ellipse: 

Stability Region: A: 1
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If real and imaginary parts Ĉ  are; 
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which implies that; 
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(1.60) 

which can be a sufficient condition, using 
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Maximum value of a sine function is realized at   
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(1.61) 

00  and  are constants which can assumed to be equal to 1. 

2.3.4-Determination of fractional step using stability in Multispace dimensions 

Model Equation (5.18) 
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Discretization in space, 
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(1.63) 
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And the scheme will be stable for, 
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(1.64) 

For maximum value 
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For Forward Euler time step, we require, 

11 Q

             Or since 

Q

we need 
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