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Abstract
We investigate the norm properties of a generalized derivation on a norm ideal J in B(H), the algebra of
bounded linear operators on a Hilbert space H. Specifically, we extend the concept of S−universality from the
inner derivation to the generalized derivation context, establish the necessary conditions for the attainment of the
optimal value of the circumdiameters of numerical ranges and the spectra of two bounded linear operators on H.
Moreover, we characterize the antidistance from an operator to its similarity orbit in terms of the circumdiameters,
norms, numerical and spectra radii of a pair of S-universal operators.
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1. Introduction
A derivation δ on an algebra A is a linear map δ : A →A such that for all A,B ∈A , δ (AB) = δ (A)B+Aδ (B). Fix A,B ∈A
and define a mapping of A into A by δA,B(X) = AX−XB for all X ∈A . Then δA,B is called a generalized derivation on A .
In the case that A = B, we have an inner derivation δA := δA,A. That is, δA(X) = δA,A(X) = AX−XA for all X ∈A . Now, for a
fixed A ∈A , the mappings RA and LA of A into A defined by LA(X) = AX and RA(X) = XA, for all X ∈A , are called the
left and the right multiplications by an operator A, respectively.
Let H be a complex Hilbert space and let B(H) be the algebra of all bounded linear operators on H. Stampfli [1] computed the
norms of both the inner and generalized derivation on B(H); in particular, he proved that for fixed A,B ∈B(H),

‖δA‖= 2d(A), (1.1)

where d(A) = inf{‖A−λ I‖ : λ ∈ C}, and

‖δA,B‖= inf{‖A−λ I‖+‖B−λ I‖ : λ ∈ C}. (1.2)

Following [2], a norm ideal (J ,‖ · ‖J ) in B(H) consists of a proper two-sided ideal J together with the norm ‖ · ‖J
satisfying the following conditions;

(i) (J ,‖ · ‖J ) is a Banach space;

(ii) ‖AXB‖J ≤ ‖A‖‖X‖J ‖B‖ for all X ∈J and all operators A,B ∈B(H).
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For a good account of the theory of norm ideals, we refer to [2]. An example of such an ideal is the Schatten p-ideal,
Cp(H), 1 ≤ p ≤ ∞, see for instance [2]. The space Cp(H) consists of the compact operators X such that ∑ j Sp

j (X) < ∞,

where {S j(X)} j denotes the sequence of singular values of X . For X ∈Cp(H) where 1≤ p≤ ∞, we set ‖X‖p = (∑ j Sp
j (X))

1
p ,

where, by convention, ‖X‖∞ = S1(X) is the usual operator norm of X . Then (Cp(H),‖ · ‖p) is a norm ideal. Moreover,
C1(H),C2(H) and C∞(H) are the trace class, the Hilbert-Schmidt class and the class of compact operators respectively.
For A,B ∈B(H), if X ∈J , then

‖δA,B(X)‖J = ‖AX−XB‖J
= ‖(A−λ )X−X(B−λ )‖J
≤ (‖A−λ‖+‖B−λ‖)‖X‖J .

Taking supremum over all X ∈J , we get ‖δA,B|J ‖ ≤ ‖A− λ‖+ ‖B− λ‖, and from equation (1.2), it follows that the
restriction δA,B|J of δA,B to J is a bounded linear operator on (J ,‖ · ‖J ) and

‖δA,B|J ‖ ≤ ‖δA,B‖ (1.3)

for each norm ideal J in B(H). If A = B in (1.3), then

‖δA|J ‖ ≤ ‖δA‖= 2d(A). (1.4)

The question as to when the equality is attained in (1.4) was considered by Fialkow [3] who introduced the concept of
S−universal operators. An operator A ∈B(H) is said to be S−universal if ‖δA|J ‖= 2d(A). Having introduced the concept
of S−universal operators, Fialkow in [3] studied the criteria of S−universality for a subnormal operator and posed several
questions. Barraa and Boumazgour [4] later characterized S−universality for arbitrary hyponormal operators thereby answering
a question posed by [3] in the affirmative. Motivated by the work [4], the current second author and his co-authors gave a
number of results on the properties of these operators in [5, 6]. In the current paper, we extend S−universality to the setting of
generalized derivations thereby giving a condition for a pair of operators on H to be S−universal.
Given an algebra A with a unit, let Inv(A ) be the set of invertible elements of A , and A ∈ Inv(A ) be fixed; then the mapping
αA of A into A given by αA(X) = A−1XA, for all X ∈A , is an automorphism on A and is called an inner automorphism
on A . It is clear that αA = I if A belongs to the centre of A . In particular, if A is commutative, then I is the only inner
automorphism. We refer to [7, 8] for details on inner automorphisms. Now, for fixed A,B ∈ Inv(A ), we define a mapping
αA,B : A → A by αA,B(X) = A−1XB for all X ∈A . We shall call αA,B a generalized inner automorphism on A . It can be
easily proved that αA,B is indeed an automorphism on A .
Let A ∈B(H), we denote by σ(A), σp(A), σap(A), W (A), r(A) and ω(A); the spectrum, the point spectrum, the approximate
point spectrum, the numerical range, the spectral and the numerical radii of A, respectively. We refer to [7, 12] for basic
properties of numerical ranges and spectra of bounded linear operators. The numerical range and spectrum of generalized
derivations on B(H) and their restrictions to a norm ideal J have been determined in literature. See for instance [9] and
references therein. It was proved that

σ(δA,B)⊆ σ(A)−σ(B) and W (δA,B)⊆W (A)−W (B), (1.5)

while for the restriction on J ,

σ(δA,B|J ) = σ(A)−σ(B) and W (δA,B|J ) =W (A)−W (B). (1.6)

Let S1 and S2 be two nonempty sets. We call the set diamc(S1,S2) = sup{|α−β | : α ∈ S1,β ∈ S2} the circumdiameter of the
sets S1 and S2. If S1 = S2, then we simply obtain the usual diameter of S1, diam(S1) = sup{|α−β | : α,β ∈ S1}. In this study,
we shall consider two circumdiameters diamc(W (A;B)) := diamc(W (A),W (B)) and diamc(σ(A;B)) := diamc(σ(A),σ(B)).
It is important to note that when A = B, then the circumdiameters diamc(W (A;A)) and diamc(σ(A;A)) turn out to be the
diameters of the numerical range and the spectrum of A, respectively, and whose relationships with the norms of derivations
were well studied in [5, 6].

2. Algebraic Properties of Generalized Derivations
In this section, we study various properties of the generalized derivation acting on an algebra A .

Proposition 2.1. A generalized derivation δA,B is linear but fails to be a derivation on an algebra A while an inner derivation
δA,A is a derivation on A .
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Proof. First we prove that δA,B is linear. Fix A,B ∈A and let α,β ∈ C. Then for all X ,Y ∈A , we have

δA,B(αX +βY ) = A(αX +βY )− (αX +βY )B

= α(AX−XB)+β (AY −Y B)

= αδA,B(X)+βδA,B(Y ).

Next we show that δA,B fails to be a derivation on A . Indeed, for all X ,Y ∈A , we have;

δA,B(XY ) = A(XY )− (XY )B

= AXY −XY B+XBY −XBY

= (AX−XB)Y +X(BY −Y B)

= δA,B(X)Y +XδB,B(Y ).

Since δA,B(X)Y +XδB,B(Y ) is not equal to δA,B(X)Y +XδA,B(Y ), it follows that δA,B fails to be a derivation on A . On the other
hand, an inner derivation δA,A turns out to be a derivation. Indeed, the linearity of δA follows from the linearity of δA,B. Now for
a fixed A ∈A , we have for all X ,Y ∈A ,

δA(XY ) = A(XY )− (XY )A.

= (AX−XA)Y +X(AY −YA)

= δA(X)Y +XδA(Y ), as desired.

This completes the proof.

In the next proposition, we prove that the sum of two generalized derivations is a generalized derivation

Proposition 2.2. The sum of two generalized derivations on A is a generalized derivation on A . In particular, for fixed
A,B,C,D ∈A ,

δA,B +δC,D = δA+C,B+D.

Proof. For fixed A,B,C,D ∈A and for all X ∈A , it follows from the linearity of a generalized derivation that,

(δA,B +δC,D)(X) = δA,B(X)+δC,D(X)

= AX−XB+CX−XD

= (A+C)X−X(B+D)

= δA+C,B+D(X).

The following is an immediate consequence of proposition 2.2 above.

Corollary 2.3. For fixed A,C ∈A , we have δA +δC = δA+C.

Remark 2.4. The question of when the product of two derivations is a derivation has been considered by a number of authors.
For instance [11] characterized when the product δC,DδA,B is a generalized derivation in the cases when A is the algebra of all
bounded operators on a Banach space and when A is a C∗-algebra.

Proposition 2.5. Let δA,B be a generalized derivation on an algebra A , then for each n ∈ N,

δ
n
A,B(X) =

n

∑
r=0

(−1)r
(

n
r

)
An−rXBr (2.1)

for all X ∈A .
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Proof. By mathematical induction, let p(n) be the statement that for all n ∈ N, equation (2.1) holds. Then clearly p(1) is true.
Now, suppose that p(k) is true for k ∈N. This means that for all X ∈A , δ k

A,B(X) = ∑
k
r=0(−1)r

(k
r

)
Ak−rXBr. Then, for p(k+1),

we have

δ
k+1
A,B (X) = δA,B(δ

k
A,B(X))

= Aδ
k
A,B(X)−δ

k
A,B(X)B

= A

(
k

∑
r=0

(−1)r
(

k
r

)
Ak−rXBr

)
−

(
k

∑
r=0

(−1)r
(

k
r

)
Ak−rXBr

)
B

=
k

∑
r=0

(−1)r
(

k
r

)
Ak−r+1XBr−

k

∑
r=0

(−1)r
(

k
r

)
Ak−rXBr+1

=
k+1

∑
r=0

(−1)r
(

k
r

)
Ak−r+1XBr−

k+1

∑
r=1

(−1)r−1
(

k
r−1

)
Ak−r+1XBr

=
k+1

∑
r=0

(−1)r
(

k
r

)
Ak−r+1XBr +

k+1

∑
r=0

(−1)r
(

k
r−1

)
Ak−r+1XBr

=
k+1

∑
r=0

(−1)r
((

k
r

)
+

(
k

r−1

))
Ak−r+1XBr

=
k+1

∑
r=0

(−1)r
(

k+1
r

)
Ak−r+1XBr.

Thus p(k+1) is true. Hence p(k) implies p(k+1) and therefore by the principle of mathematical induction, it follows that
p(n) is true for all n ∈ N.

For inner automorphisms, if δ is a continuous derivation on a Banach algebra A , then exp(δ ) is a continuous automorphism
on A and if A is an element of a Banach algebra A with unit, then exp(δA) = αexpA, see [7, 8]. In the next result, we extend
these relations to the setting of the generalized derivation δA,B and generalized inner automorphism αexpA,expB(X).

Proposition 2.6. Let δA,B be a generalized derivation on a Banach algebra A . Then, expδA,B(X) = exp(A)X exp(−B) =
αexpA,expB(X).

Proof. Using equation (2.1), we have

expδA,B(X) =
∞

∑
n=0

1
n!

δ
n
A,B(X)

=
∞

∑
n=0

1
n!

n

∑
r=0

(−1)r
(

n
r

)
An−rXBr

=
∞

∑
n=0

n

∑
r=0

(−1)r 1
n!

n!
(n− r)!r!

An−rXBr

=
∞

∑
n=0

n

∑
r=0

(−1)r 1
(n− r)!

1
r!

An−rXBr

=
∞

∑
n=0

n

∑
r=0

(
(−1)r 1

(n− r)!
An−r

)
X
(

1
r!

Br
)

=
∞

∑
n=0

n

∑
r=0

(
1

(n− r)!
(A)n−r

)
X(−1)r

(
1
r!

Br
)

=
∞

∑
n=0

n

∑
r=0

(
1

(n− r)!
(A)n−r

)
X
(
(−1)r 1

r!
Br
)

= exp(A)X exp(−B)

= αexpA,expB(X), as claimed.
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3. S−universality and Generalized Derivations

In this section, we consider A = B(H), the algebra of bounded linear operators on H and study the norm properties of
generalized derivations restricted to norm ideals J in B(H). Most importantly, we extend the concept of S−universal
operators to the setting of generalized derivations.

Theorem 3.1. Let A,B ∈B(H) be S−universal operators and J a norm ideal in B(H). Then ‖δA,B‖= ‖δA,B|J ‖.

Proof. For fixed A,B ∈B(H), we have that ‖δA‖ = 2d(A) and ‖δB‖ = 2d(B). Since A,B are S−universal it follows that
‖δA‖ = 2‖A‖ and ‖δB‖ = 2‖B‖, see [6]. Thus, d(A) + d(B) = ‖A‖+ ‖B‖. That is; infλ∈C ‖A− λ‖+ infλ∈C ‖B− λ‖ =
‖A‖+ ‖B‖. This implies that infλ∈C(‖A−λ‖+ ‖B−λ‖) = ‖A‖+ ‖B‖. But infλ∈C(‖A−λ‖+ ‖B−λ‖) = ‖δA,B‖ so that
‖δA,B‖= ‖A‖+‖B‖. This is equivalent to WN(A)∩WN(−B) 6= /0 which by [6] further implies that ‖δA,B‖= 1

2 (‖δA‖+‖δB‖) =
1
2 (‖δA|J ‖+ ‖δB|J ‖) = ‖δA,B|J ‖, where WN(A) is the normalized maximal numerical range of A. This completes the
proof.

The theorem 3.1 above extends the notion of S-universality from the setting of inner derivation to the setting of a generalized
derivation. In particular, give the following definition;

Definition 3.2. Let A,B ∈B(H). The pair (A,B) is said to be S−universal if ‖δA,B|J ‖= ‖δA,B‖.

As noted earlier, a special class of norm ideals is the Schatten p-ideal Cp(H).

Theorem 3.3. Let A,B ∈ B(H) be S−universal, then

‖δA,B|Cp‖= ‖A‖+‖B‖.

Proof. Since A,B are S−universal and Cp(H) is a norm ideal in B(H), it follows that ‖δA,B|Cp‖= ‖δA,B‖= infλ∈C(‖A−λ‖+
‖B−λ‖). By a compactness argument, ∃µ ∈ C such that infλ∈C(‖A−λ‖+ ‖B−λ‖) = ‖A− µ‖+ ‖B− µ‖. We note that
δA,B|Cp = δA−µ,B−µ |Cp = LA−µ |Cp−RB−µ |Cp. Thus ‖LA−µ |Cp−RB−µ |Cp‖= ‖A−µ‖+‖B−µ‖. On the other hand, since
‖LA−µ‖= ‖A−µ‖ and ‖RB−µ‖= ‖B−µ‖, it follows that ‖LA−µ |Cp−RB−µ |Cp‖= ‖LA−µ |Cp‖+‖RB−µ |Cp‖. Without loss
of generality, we may assume that µ = 0. Then ‖LA|Cp−RB|Cp‖ = ‖LA|Cp‖+ ‖RB|Cp‖ = ‖A‖+ ‖B‖. This completes the
proof.

The following are immediate from Theorem 3.3 above;

Corollary 3.4. Let A,B ∈B(H) be S−universal operators, then ‖δA,B|J ‖= ‖A‖+‖B‖

Proof. Since Cp(H)⊆J , it follows by Theorem 3.3 that
‖δA,B|J ‖ ≥ ‖δA,B|Cp‖= ‖A‖+‖B‖. The rest of the proof follows from the fact that ‖δA,B|J ‖ ≤ ‖A‖+‖B‖.

Remark 3.5. For A,B ∈B(H), the equation

‖A−B‖= ‖A‖+‖B‖ (3.1)

was studied by many authors, see for instance [4, 10] and references therein. In [10], it is shown that if A and B satisfy equation
(3.1), then 0 must be in the approximate point spectrum of the operator ‖B‖A+‖A‖B. Moreover, Lin proved that the converse
holds if either A or B is an isometric operator. Another result in this direction as provided in [4] asserts that non-zero A and B in
B(H) satisfy the equation (3.1), if and only if ‖A‖‖B‖ is in the closure of the numerical range of the operator −A∗B.

We now give further consequences of Theorem 3.3,

Corollary 3.6. Let A,B∈B(H). If the operators A,B are S-universal and LA,RB are defined on Cp(H). Then 0∈ σap(‖A‖RB+
‖B‖LA). Moreover, the converse holds if either A or B is isometric.

Proof. By Theorem 3.3, we have that for A,B ∈B(H) S−universal, ‖LA|Cp−RB|Cp‖ = ‖LA|Cp‖+ ‖RB|Cp‖ = ‖A‖+ ‖B‖.
The result now follows from Remark 3.5.

Corollary 3.7. Let A,B ∈B(H). If the operators A,B are S−universal, then ‖LA|Cp‖‖RB|Cp ∈W (−LA∗ |CpRB|Cp)

Another consequence which follows from the fact that ‖A‖ ∈ σ(A) if and only if ‖A‖ ∈W (A) and Corollary 3.7 is the
following;
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Corollary 3.8. Let A,B ∈B(H) be S−universal, then

‖LA|Cp‖‖RB|Cp‖ ∈ σ(−LA∗ |CpRB|Cp).

In the next results, we consider the pair of S−universal operators A,B ∈B(H) and establish the relationship between the
circumdiameter
diamc(W (A;B)) and the norm of a generalized derivation.

Theorem 3.9. Let A,B ∈B(H) be S−universal, then diamc(W (A;B)) = ‖A‖+‖B‖.

Proof. If the pair A,B are S−universal, then by corollary 3.8,
we have ‖LA|Cp‖‖RB|Cp‖ ∈ σ(−LA∗ |CpRB|Cp). But σ(−LA∗ |CpRB|Cp) =−σ(A∗)σ(B), and ‖LA|Cp‖‖RB|Cp‖= ‖A‖‖B‖. So
there exists α ∈ σ(A),β ∈ σ(B) such that ‖A‖‖B‖ = −αβ . Since |α| ≤ ‖A‖ and |β | ≤ ‖B‖, there exists θ ∈ R such that
α = ‖A‖eiθ and β =−‖B‖eiθ . Also since σ(δA,B|Cp) =σ(A)−σ(B), it follows that r(δA,B|Cp) = diamc(σ(A;B))≥ |α−β |=
|‖A‖eiθ +‖B‖eiθ |= ‖A‖+‖B‖. By the spectral inclusion, it follows that diamc(W (A;B))≥ diamc(σ(A;B))≥ ‖A‖+‖B‖. For
the reverse inequality, we have

diamc(W (A;B)) = sup{|α−β | : α ∈W (A),β ∈W (B)}

≤ sup{|α|+ |β | : α ∈W (A),β ∈W (B)}

≤ sup{|α| : α ∈W (A)}+ sup{|β | : β ∈W (B)}
≤ ‖A‖+‖B‖, as desired.

The following consequences are immediate;

Corollary 3.10. Let A,B ∈B(H) be S−universal, then

diamc(W (A;B)) = ‖δA,B|J ‖.

Proof. Follows from Theorem 3.9 and Corollary 3.4.

Corollary 3.11. Let A,B ∈B(H) be S−universal operators, then

diamc(W (A;B)) = ‖δA,B‖.

Another consequence of Theorem 3.9 which interestingly coincides with and is a summary of the results obtained in [6] is
the following;

Corollary 3.12. Let A ∈B(H) be S−universal operator, J be a norm ideal in B(H) and Cp(H) be the Schatten norm ideal
in B(H). Then,
diam(W (A)) = ‖δA‖= ‖δA|J ‖= ‖δA|Cp‖= 2‖A‖.

Proof. From Theorem 3.9, Corollaries 3.10 and 3.11 above, we have that for A = B,

diamc(W (A;A)) = ‖δA,A|J ‖= ‖δA,A|B(H)‖= 2‖A‖.

For arbitrary operators A,B ∈ B(H), the circumdiameters diamc(W (A,B)) and diamc(σ(A;B)) are related to the sum of
numerical and spectral radii of A and B, respectively. In fact for A,B ∈B(H),

diamc(W (A;B)) = sup{|α−β | : α ∈W (A),β ∈W (B)}
≤ sup{|α|+ |β | : α ∈W (A),β ∈W (B)}
≤ ω(A)+ω(B). (3.2)

Similarly, it can be shown that

diamc(σ(A;B))≤ r(A)+ r(B). (3.3)
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Remark 3.13. A natural question then arises: When can equalities be obtained in (3.2) and (3.3)? In the next results, we answer
this question in the affirmative in the case that the operators are S−universal.

Theorem 3.14. Let A,B ∈B(H) be S−universal, then

1. diamc(W (A;B)) = ω(A)+ω(B)

2. diamc(σ(A;B)) = r(A)+ r(B).

Proof. It is clear from equation (3.2) that for arbitrary operators A,B ∈B(H), we have diamc(W (A;B))≤ ω(A)+ω(B). To
prove the reverse inequality, we have for A,B S−universal, diamc(W (A;B)) = ‖δA,B‖ = ‖A‖+ ‖B‖ ≥ ω(A)+ω(B), which
proves (1). The proof of (2) is similar.

The diameters diamc(W (A;B)) and diamc(σ(A;B)) are respectively related to the numerical and spectral radii of a
generalized derivation. In fact for a generalized derivation on a norm ideal J , diamc(W (A;B)) and diamc(σ(A;B)) turn out to
be exactly the numerical and spectral radii of the generalized derivation respectively, as we give in the following theorem;

Theorem 3.15. For A,B ∈B(H), we have;

1. ω(δA,B)≤ diamc(W (A;B))

2. r(δA,B)≤ diamc(σ(A;B)). Moreover, if J is a norm ideal in B(H), we have;

3. ω(δA,B|J ) = diamc(W (A;B))

4. r(δA,B|J ) = diamc(σ(A;B)).

Proof. As remarked in the introduction, we have that for A,B ∈B(H), W (δA,B)⊆W (A)−W (B). Let λ ∈W (δA,B). Then ∃
α ∈W (A) and β ∈W (B) such that |λ | ≤ |α−β |. Taking supremum over all λ ∈W (δA,B), we obtain ω(δA,B)≤ |α−β |. Now,
taking supremum over all α ∈W (A) and β ∈W (B), we get, ω(δA,B)≤ sup{|α−β | : α ∈W (A),β ∈W (B)}= diamc(W (A,B)).
On the other hand, we have; σ(δA,B) ⊆ σ(A)−σ(B). Now, by letting λ ∈ σ(δA,B), it follows that ∃λ1 ∈ σ(A),λ2 ∈ σ(B)
such that |λ | ≤ |λ1−λ2|. Taking supremum over all λ ∈ σ(δA,B) and then over all λ1 ∈ σ(A),λ2 ∈ σ(B), we obtain r(δA,B)≤
diamc(σ(A;B)). This proves assertions 1 and 2. To prove assertions 3 and 4, we have that the restriction of δA,B to a norm
ideal J yields the equalities; W (δA,B) =W (A)−W (B) and σ(δA,B) = σ(A)−σ(B). Now by similar arguments as above, we
obtain the assertions 3 and 4.

As an immediate consequence, we give the following;

Corollary 3.16. For A,B ∈B(H), we have

1. ω(δA,B)≤ ω(A)+ω(B)

2. r(δA,B)≤ r(A)+ r(B)
Moreover, if A,B ∈B(H) are S−universal, then

3. ω(δA,B|J ) = ω(A)+ω(B)

4. r(δA,B|J ) = r(A)+ r(B)

Proof. Following Theorems 3.14 and 3.15, we have;

ω(δA,B)≤ diamc(W (A;B))≤ ω(A)+ω(B)

and

r(δA,B)≤ diamc(σ(A;B))≤ r(A)+ r(B).

Now, assume that A,B ∈B(H) are S−universal operators. Then, Theorems 3.14 and 3.15 yield

ω(δA,B|J ) = diamc(W (A;B)) = ω(A)+ω(B)

and

r(δA,B|J ) = diamc(σ(A;B)) = r(A)+ r(B),

as desired.
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4. Normaloid and Spectraloid operators

In this section, we explore other special classes of operators for which we obtain the equalities diamc(W (A;B)) = ω(A)+ω(B)
and diamc(σ(A;B)) = r(A)+ r(B) without the operators A,B ∈B(H) being necessarily S-universal. Recall that an operator
A ∈B(H) is said to be normaloid if ω(A) = ‖A‖, while it is said to be spectraloid if r(A) = ω(A). Note that a normaloid
operator is a spectraloid operator. We refer to [12] for details on these operators. We give the following result;

Theorem 4.1. If A,B ∈B(H) are both normaloid operators, then;

1. diamc(σ(A;B)) = r(A)+ r(B)

2. diamc(W (A;B)) = ω(A)+ω(B).

Proof. By equation (3.3), we have that for arbitrary A,B ∈B(H),
diamc(σ(A,B))≤ r(A)+ r(B). Now, we suppose that both A,B ∈B(H) are normaloid and prove the reverse inequality. By
definition; diamc(σ(A,B)) = sup{|α−β | : α ∈ σ(A),β ∈ σ(B)} ≥ |α−β | for all α ∈ σ(A),β ∈ σ(B). For α ∈ σ(A) and
β ∈ σ(B), we have that |α| ≤ ‖A‖ and |β | ≤ ‖B‖. Let θ ∈ R such that α = ‖A‖eiθ and β = −‖B‖eiθ . Then since A,B are
normaloid, it follows that

|α−β |= |‖A‖eiθ +‖B‖eiθ |= ‖A‖+‖B‖= ω(A)+ω(B)≥ r(A)+ r(B).

Therefore diamc(σ(A;B))≥ r(A)+r(B) and hence diamc(σ(A;B)) = r(A)+r(B), as desired. This proves 1. To prove assertion
2, recall from equation (3.2) that diamc(W (A;B))≤ ω(A)+ω(B) for arbitrary A,B ∈B(H). Now, by the spectral inclusion,
the definition of a normaloid operator as well as the proof of assertion 1 above, we have:

diamc(W (A;B))≥ diamc(σ(A;B)) = ‖A‖+‖B‖= ω(A)+ω(B).

This completes the proof.

Theorem 4.2. Let A,B ∈B(H). Then the following are equivalent:

1. Both A and B are normaloid.

2. Both A and B are spectraloid.

3. diamc(W (A;B)) = ω(A)+ω(B).

4. diamc(σ(A;B)) = r(A)+ r(B).

5. The pair (A,B) is S−universal.

Proof. (1)⇒ (2): By the fact that a normaloid operator is a spectraloid. Clearly, (2)⇒ (3). From the proof of Theorem 4.1, we
have that diamc(σ(A;B))≥ ‖A‖+‖B‖. But we know that diamc(σ(A;B))≤ ‖A‖+‖B‖. Hence diamc(σ(A;B)) = ‖A‖+‖B‖.
This implies that diamc(W (A;B)) = ‖A‖+‖B‖ since it is obvious that diamc(W (A;B))≤ ‖A‖+‖B‖ and diamc(W (A;B))≥
diamc(σ(A;B)) = ‖A‖+‖B‖. Thus diamc(σ(A;B)) = diamc(W (A;B)) = ω(A)+ω(B)≥ r(A)+ r(B). So diamc(σ(A;B)) =
r(A)+ r(B). Hence (3)⇒ (4). (4)⇒ (5): Now, diamc(σ(A;B)) = r(A)+ r(B) = r(δA,B|J ) which implies that A,B are
S−universal by Corollary 3.16. (5)⇒ (1): If A,B are S−universal, then by Theorem 3.15 and Corollary 3.16, we have
diamc(W (A;B)) = ω(δA,B|J ) = ω(A)+ω(B) which is only true for the class of normaloid operators.

5. Anti-distance and Similarity orbit
A unitary operator on a Hilbert space H is a bounded linear operator U : H → H that satisfies U∗U = UU∗ = I, where
U∗ is the adjoint of U and I : H → H is the identity operator. Let B ∈ B(H). A unitary similarity orbit through B is
defined as the set US = {U∗BU : U unitary}. The anti-distance from A to the orbit US with respect to the norm ‖ · ‖ is
given by sup{‖A−U∗BU‖ : U unitary}. In [13], T. Ando determined the upper and lower bounds for the anti-distance
sup{‖A−U∗BU‖∞ : U unitary}, where U runs over the set of unitary matrices.
Just like in the case of a generalized derivation, two operators A,B ∈B(H) must be fixed in order to define the anti-distance
from A to the unitary similarity orbit through B,US.
Therefore, the question about the relation between the norms of a generalized derivation and the anti-distance is apparent.
From the available literature, very little attempt has been made towards addressing questions in this direction. It is clear that



Norm Properties of S-Universal Operators — 90/90

sup{‖A−U∗BU‖ : U unitary} ≤ ‖δA,B‖.
In [?], Boumazgour established that for any A,B ∈B(H),

‖δA,B‖= sup{‖A−U∗BU‖ : U unitary}. (5.1)

Moreover, he proved the following;

1. If A,B ∈B(H), then for 1≤ p≤ ∞,

sup{‖A−U∗BU‖ : U unitary} ≤ 2
1
p ‖δA,B|Cp‖. (5.2)

2. If A,B are hyponormal and cohyponormal operators respectively, (If, in particular both of them are normal) then,

sup{‖A−U∗BU‖ : U unitary} ≤
√

2diamc(σ(A;B)) (5.3)

In this section, we give some of results in the same direction. In the next result, we characterize the anti-distance in terms of the
circumdiameters, norms, numerical and spectral radii of pair of S-universal operators.

Theorem 5.1. For S-universal operators A,B ∈B(H),

1. sup{‖A−U∗BU‖ : U unitary}= diamc(W (A;B)),

2. sup{‖A−U∗BU‖ : U unitary}= r(A)+ r(B),

3. sup{‖A−U∗BU‖ : U unitary}= ‖A‖+‖B‖,

4. sup{‖A−U∗BU‖ : U unitary}= ω(A)+ω(B),

5. sup{‖A−U∗BU‖ : U unitary}= ω(δA,B|J ), and

6. sup{‖A−U∗BU‖ : U unitary}= r(δA,B|J ),

where J is a norm ideal in B(H).

Proof. Let A,B ∈ B(H) be S-universal, then by equation (5.1) we get;sup{‖A−U∗BU‖ : U unitary} = ‖δA,B|B(H)‖ =
‖A‖+‖B‖. Clearly, diamc(W (A;B)) = ‖δA,B‖ for A,B S-universal. This proves assertions 1 and 3. By Theorem 3.14, we have
that diamc(W (A;B)) = ω(A)+ω(B) and diamc(σ(A;B)) = r(A)+ r(B) which implies that sup{‖A−U∗BU‖ : U unitary}=
ω(A)+ω(B) and that sup{‖A−U∗BU‖ : U unitary}= r(A)+ r(B) proving the assertion 2 and 4. The proves for assertions 5
and 6 is clear from Corollary 3.16.
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