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NOTIONS OF CONTINUITY FOR FINITE RANK MAPS IN THE SPACE OF
NORMAL OPERATORS

J. A. OTIENO1, D. O. AMBOGO, AND F. O. NYAMWALA

ABSTRACT. We show that a natural extension of a continuous finite rank oper-
ator to an arbitrary Hilbert space is continuous. We also give sufficient condi-
tions to calculate delta- epsilon numbers in all the domains of T . In addition,
we characterize the concept of uniform continuity in terms of delta- epsilon
function and finally show that finite rank operators preserve Cauchyness.

1. INTRODUCTION

It is well known that a mapping T : H → H is continuous if and only if it
is bounded (see [6] and [5]). Most results in mathematical analysis use the
concept of continuity directly or indirectly in order to extend a property of a
function that is satisfied at a point p to a property satisfied in a neighborhood of
p. It is known (see [4]) that the radius of the open ball depends on the norm of
the linear mapping [T

′
p]−1 and also on a positive number delta appearing in the

definition of continuity of a mapping x 7→ T
′
x at the point p. Also [4] shows that

for 2λ‖[T−1p]−1‖ = 1, then δ is such that if ‖x − p‖ < δ, then ‖T ′
x − T ′

p‖ < λ.
In this regard, the use of ε − δ criterion in characterizing continuity is intrigu-
ing. In addition, uniform continuity has been studied by several researchers for
instance [7] dealt with the characterization of uniform continuity for maps be-
tween unit balls of real Banach spaces in terms of universal properties. In [8],
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the authors discussed the continuity of bounded linear operators on normed lin-
ear spaces showing that they are uniformly continuous. In [10], the authors
described the basic properties of uniform continuity of functions on normed
linear spaces. We have given results on sequential continuity as well. A map-
ping f between metric spaces is sequentially continuous if xn → x implies that
fxn → fx. It is well known in classical mathematics that sequentially contin-
uous mapping between metric spaces is continuous as all proofs of this result
involve the law of excluded middle [1]. Classically, for a linear mapping bound-
edness and sequential continuity are equivalent. For more details on sequential
continuity see [1], [2] and the references therein.

2. PRELIMINARIES

We outline preliminary concepts which are useful to this sequel.

Definition 2.1. [6] A bounded linear operator T on a Hilbert space H is said to
be normal if it commutes with its adjoint i.e TT ∗ = T ∗T. The space of all normal
operators is denoted by N(H).

Definition 2.2. [9] Let T : H → H be a continuous linear operator on a Hilbert
spaceH. A Hilbert subspaceH0 is T -stable or T -invariant if Tx ∈ H0 for all x ∈ H0.
In other words H0 is invariant under T if T |H0 is an operator on H0.

Definition 2.3. [3] A function f : H → R with H ⊆ R is continuous at x0 ∈ H
if and only if for any ε > 0 there is a δ > 0 such that |fx − fx0| < ε holds for all
x ∈ H with |x− x0| < δ.

Definition 2.4. [3] Let T : H → H be a continuous map at p ∈ H1 and ε > 0.
A positive number δ is said to be a delta-epsilon number for T at p, if δ satisfies
the ε − δ definition of continuity of T at the point p. In other words, δ is such
that if x ∈ H and ‖x − p‖2 < δ, then ‖Tx − Tp‖H1 < ε, which implies that
∀ε > 0 ∃ δ > 0 ∀x ∈ H such that |x− x0| < δ ⇒ |fx− fx0| < ε.

Definition 2.5. [7] A function f is said to be uniformly continuous on A if for
every ε > 0 there exists a δ > 0 such that |fx − fy| < ε whenever x, y ∈ A and
|x− y| < δ.
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Definition 2.6. [2] A mapping T : H → H is sequentially continuous if for each
sequence xn converging to x ∈ H, Txn converges to Tx that is if xn → x⇒ Txn →
Tx.

3. CONTINUITY OF FINITE RANK OPERATORS

We now present the main results of this paper.

Proposition 3.1. Let T ∈ N(H) be a finite rank operator. Then T is continuous if
and only if its usual operator norm is finite.

Proof. The usual operator norm of a linear map T : H → H is given by

‖T‖ = inf{c ≥ 0 : ‖Tx‖ ≤ c‖x‖ ∀x ∈ H}

= sup{‖Tx‖ : x ∈ H with‖x‖ ≤ 1}

= sup{‖Tx‖ : x ∈ H with ‖x‖ = 1}

= sup{‖Tx‖
‖x‖

: x ∈ H with x 6= 0}

We note that for all x ∈ H, ‖Tx‖ ≤ ‖T‖.‖x‖. In fact, ‖T‖ is the smallest constant
with this property: ‖T‖ = min{c ≥ 0 : ‖Tx‖ ≤ c‖x‖,∀x ∈ H}. �

Proposition 3.2. Let T ∈ N(H) be continuous finite rank operator, then T has a
unique adjoint T ∗.

Proof. For each x ∈ H, the map πx : H → C given by πx(w) = 〈Tw, x〉 is
continuous on H. By Riesz-Fischer representation theorem, there is a unique
wx ∈ H so that 〈Tw, x〉 = πx(w) = 〈w,wx〉. We define adjoint T ∗ by T ∗x = wx

which makes the map to be well defined from H to H and has the adjoint
property 〈Tw, x〉H = 〈w, T ∗x〉H . To show that T ∗ is continuous, we only show
that it is bounded. Applying Cauchy- Schwarz- Bunyakowsky inequality,

(3.1) ‖T ∗x‖2 = ‖〈T ∗x, T ∗x〉‖ = ‖〈x, TT ∗x〉‖ ≤ ‖x‖.‖TT ∗x‖ ≤ ‖x‖.‖T‖.‖T ∗x‖,

where ‖T‖ is the usual operator norm. From inequality (3.1), we obtain

(3.2) ‖T ∗x‖2 ≤ ‖x‖‖T‖‖T ∗x‖.

Dividing (3.2) by a nonzero T ∗x, we obtain ‖T ∗‖ ≤ ‖T‖. In particular, T ∗ is
bounded. Since (T ∗)∗ = T by symmetry ‖T‖ = ‖T ∗‖ and also T ∗ is linear. �
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Characterization in the space of normal operators for continuous finite rank
operators under T -stable subspace of H, follows.

Theorem 3.1. Let T ∈ N(H) be a continuous finite rank operator. If H1 is T -
stable subspace of H, then H⊥ is T ∗-stable. Moreover, if T is self-adjoint then both
H and H⊥ are T -stable.

Proof. For y ∈ H⊥ and x ∈ H, 〈T ∗y, x〉 = 〈y, T ∗∗x〉 = 〈y, Tx〉 for continuous
linear map and T ∗∗ = T . Since H is T -stable, Tw ∈ H, and this inner product is
0. Hence T ∗y ∈ H⊥. �

Characterization of norm continuity of finite rank maps is given below.

Proposition 3.3. Suppose that ι is a finite rank map on H, then the following are
equivalent:

(i) ι is (norm) continuous.
(ii) there is a sequence pn(a, b) of non-commutative polynomials such that
‖pn(T, T ∗ − ι(T ))‖ → 0 uniformly in T on bounded subsets of N(H).

Proof. (i) → (ii). Suppose ι is continuous, T ∈ N(H) and also that Un is a
sequence of unitary operators such that ‖UnT − TUn‖ → 0. Then U∗nTUn → T

and we find that U∗nι(T )Un = ι(U∗nTUn)→ ι(T ) and thus ‖Unι(T )−ι(T )Un‖ → 0.
Hence ι(T ) ∈ C∗(T ). Let S be unitarily equivalent to direct sum of finite matrices
so that ‖S‖ = 1. For each integer n where n ≥ 0 then ι(nS) ∈ C∗(nS) hence
there is a noncommutative polynomial pn(a, b) such that ‖pn(nS, nS∗)−ι(nS)‖ ≤
1
n
. If T ∈ N(H), n ≥ ‖T‖ then ‖pn(T, T ∗)−ι(T )‖ = ‖π(pn(nS, nS∗)−ι(nS)‖ ≤ 1

n
.

(ii) → (i) . Let ‖pn(T, T ∗) − ι(T )‖ = ‖pn(nS, nS∗) − ι(nS)‖ ≤ 1
n
, for all n ∈ N.

As n → ∞ , since U∗ is unitary and S is unitarily equivalent to the direct sum
of finite matrices, then we have ‖pn(nS, nS∗) − ι(nS)‖ → 0 hence ‖Unι(T ) −
ι(T )Un‖ → 0, therefore ι is norm continuous. �

Remark 3.1. Part (ii) implies that a natural extension of a continuous finite rank
operator to an arbitrary Hilbert space is continuous.

Theorem 3.2. Suppose that T ∈ N(H). If a mapping π : C∗(T ) → Cf(Σ(T )) is
defined by π(λ(T )) = λ|Σ(T ), for each continuous finite rank map on H then λ is
an isomorphism.

Proof. Since π acts on C∗(T ) then it is an isometric ∗- homomorphism. Now,
we show that π is onto. Suppose κ ∈ Cf(Σ(T )), if Un is a sequence of unitary
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operators on H such that ‖UnT−TUn‖ = ‖U∗nTUn−T‖ → 0, then by Proposition
3.3, ‖Unκ(T )−κ(T )Un‖ = ‖κ(U∗nTUn)−κ(T )‖ → 0 since U∗nTUn ∈ Σ(T ), for each
n. So κ(T ) ∈ C∗(T ). Choose a continuous finite rank map λ so that λ(T ) = κ(T ).
Also λ(S) = κ(S), for every S in the closure of the unitary equivalence class U(T )

of T . Since each operator is a sub operator of an operator in U(T )−, it follows
that λ|Σ(t) = κ. �

Proposition 3.4. If α, κ are continuous finite rank and T ∈ N(H), then α(T ) =

κ(T ) if and only if α(A) = κ(A) for every irreducible operator A in Σ(T ).

Proof. There is an operator S in Σ(T ) and a sequence Un of unitary operators
such that S is a direct sum of irreducible operators and ‖U∗nSUn − T‖ → 0. It
follows that α(S) = κ(S), and that α(T ) = limα(U∗nSUn) = limU∗nα(S)Un) =

limU∗nκ(S)Un) = limU∗nκ(S)Un) = limκ(U∗nSUn) = κ(T ). �

At this point we focus on characterization of finite rank preserver maps on
spaces of normal operators using the ε− δ criterion for continuity.

Proposition 3.5. Let T : H → H be a finite rank continuous map, p ∈ H, and
ε > 0.

(i) If T−1(S[Tp, ε]) 6= ∅, the quantity δ(p, ε) = dist(p, T−1(S[Tp, ε])) is well de-
fined and represents a positive number with S[Tp, ε] representing a sphere
with center at Tp and radius ε. Then

S[Tp, ε] = r ∈ Hsuch that‖Tp− r‖H1 = ε.

(ii) In addition, if the open ball B(p, δ(p, ε)) is path-connected then the number
δ(p, ε) is a delta-epsilon number for T at p.

(iii) δ(p, ε) is the greatest delta-epsilon number at p.
(iv) Define the set {Kp, ε} as:

{Kp, ε} = {β ∈ R+ : ‖x− p‖H1 < β ⇒ ‖Tx, Tp‖H < ε,∀x ∈ H},

then δ(p, ε) = max{Kp, ε} and of course {Kp, ε} = (0, δ(p, ε)].

Proof. For the proof we have:

(i) Since T−1(S[Tp, ε]) is a nonempty set, then the number

δ(p, ε) = inf{‖x− p‖H : x ∈ H, ‖Tx− Tp‖H1 = ε}
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is well defined. If δ(p, ε) = 0, then there exists a sequence xn ∈ H

such that lim ‖xn − p‖H = 0 with lim ‖Txn − Tp‖H1 = ε. Being that
T is continuous at p then lim ‖Txn − Tp‖H1 = 0, since ε > 0 hence a
contradiction. Thus, δ(p, ε) must be a positive number.

(ii) We use contradiction to show that if ‖x − p‖H < δ(p, ε), then we have
‖Tx−Tp‖H1 < ε. By definition of δ(p, ε),we have ‖Tx−Tp‖H1 6= ε and so
the inequality ‖Tx− Tp‖H1 > ε is not possible. If ‖Tx− Tp‖H1 > ε, and
since the open ball B(p, δ(p, ε)) is path-connected, there exists a contin-
uous map γ : [0, 1]→ B(p, δ(p, ε)) such that γ(0) = p and γ(1) = x. Con-
sidering a map g : [0, 1]→ R given by g(t) = ‖Tγt−Tp‖H1 is continuous,
it also satisfies g(0) = 0 and g(1) > ε and therefore there exists t0 ∈ (0, 1)

by the intermediate value theorem. Then g(t0) = ‖Tγt0 − Tp‖H1 = ε.

Satisfying γt0 that ‖γt0 − p‖H < δ(p, ε) and ‖Tγt0 − Tp‖H1 = ε, hence
a contradiction to the definition of δ(p, ε). So δ(p, ε) is a delta-epsilon
number for T at p.

(iii) For ϕ is such that δ(p, ε) < ϕ, then there exists x ∈ H such that δ(p, ε) ≤
‖x− p‖H < ϕ with ‖Tx−Tp‖H1 = ε. So, ϕ is not a delta-epsilon number
for T at p.

(iv) In order to prove this, we look back at (i) and (ii) where we deduced that
δ(p, ε) ∈ {Kp, ε}. For (iii) we obtained that any other number greater
that δ(p, ε) is not in {Kp, ε}. Then we can conclude that δ(p, ε) =

max{Kp, ε}.
�

Proposition 3.6. Let T : H → H be a finite rank continuous map and suppose
that there exists p, x ∈ H such that ‖Tx − Tp‖H1 = β > 0 and there be a path
connecting the two points p and x. Then for every ε such that 0 < ε ≤ β we have
T−1(S[Tp, ε]) 6= ∅ and T−1(S[Tx, ε]) 6= ∅. Also for every ε satisfying 0 < ε ≤ β, the
numbers δ(p, ε) and δ(x, ε) are well defined and positive.

Proof. From the statement of the proposition, a path connecting p and x given
as γ : [0, 1] → H exists. A map g(t) : [0, 1] → R defined by ‖Tγt − Tp‖H1 is
continuous and satisfying ‖Tγt0 − Tp‖H1 = ε that proves that T−1(S[Tp, ε]) 6= ∅.
The rest follows from Proposition 3.5. �

In order to compute delta-epsilon numbers in a neighborhood of a point p, we
introduce the next lemma.
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Lemma 3.1. Let T : H → H be a finite rank continuous map and there exists
p, x ∈ H such that ‖Tx − Tp‖H1 = β > 0. If an open ball B(p, δ(p, β)) is path-
connected and suppose that p and x are also path-connected, then for every ε with
0 < ε < β, there exists δ satisfying 0 < δ ≤ δ(p, β), such that if ‖q − p‖H < δ the
numbers δ(q, ε) are path-connected and for all q ∈ B(p, δ) the number δ(q, ε) are
delta-epsilon numbers.

Proof. First, we show that there is a δ with 0 < δ ≤ δ(p, β) such that if ‖q−p‖H <

δ, then ε < ‖Tx − Tq‖H1 . From Proposition 3.5 and since T−1(S[Tp, β]) 6= ∅
and open ball B(p, δ(p, β)) is path-connected, we conclude that δ(p, β) is the
maximum delta-epsilon number at p. On the other hand, T is continuous at p
and since β − ε is positive, there exists δ > 0 such that if ‖q − p‖H < δ then
‖Tq− Tp‖H1 < β − ε < β. Now, δ(p, β) is the maximum delta-epsilon number at
p, then δ ≤ δ(p, β). Using triangle inequality and having q ∈ B(p, δ) we find that

β = ‖Tx− Tp‖H1

≤ ‖Tx− Tq‖H1 + ‖Tq − Tp‖H1

< ‖Tx− Tq‖H1 + β − ε.

This implies that if ‖q−p‖H < δ, then ε < ‖Tx−Tq‖H1 , which is what we wanted
to show. Furthermore, as each point q ∈ B(p, δ) can be path-connected to x and
ε < ‖Tx − Tq‖H , then by Proposition 3.6, we conclude that T−1(S[Tq, ε]) 6= ∅.
The numbers δ(q, ε) are well defined in the ball B(p, δ). Being that the open
ball is path-connected then by Proposition 3.5 (ii), the numbers δ(q, ε) are delta-
epsilon numbers. �

The next theorem gives sufficient conditions to calculate delta-epsilon num-
bers in all the domains of T.

Theorem 3.3. Let T : H → H be a finite rank nonconstant continuous map. For
all p ∈ H and r > 0, the open ball B(p, r) is path-connected and there exists β > 0

such that ‖Tp − Tx‖H1 = β, whereby, the delta-epsilon numbers δ(p, ε) are well
defined.

Proof. It is necessary to find a positive number β so that for every p ∈ H there
is x ∈ H such that ‖Tp − Tx‖H1 = β. Being that T is a nonconstant map, then
the diameter of T (H) is positive, namely diam(T (H)) > R for some R > 0.

So, there exists a, b ∈ H with R
2
< ‖Ta − Tb‖H1 . Now, for p ∈ H then, R

2
<
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‖Ta − Tb‖H1 ≤ ‖Ta − Tp‖H1 + ‖Tp − Tb‖H1 , thus either R
4
< ‖Ta − Tp‖H1 or

R
4
< ‖Tp − Tb‖H1 . Alternatively, since H is path-connected, there exists x ∈ H

such that ‖Tx−Tp‖H1 = R
4
. By direct application of Proposition 3.6 and Lemma

3.1 and taking β := R
4

the proof follows. �

Looking at uniform continuity in a bid to characterize finite rank linear maps,
the next theorem shows us that a continuous mapping T that admits a family is
uniformly continuous.

Theorem 3.4. Let H be nonempty and T : H → H a finite rank continuous map.
Then T is uniformly continuous on H if and only if there exists a family {gε}ε>0 of
delta-epsilon mappings for T such that:

(3.3) ηε := inf
x∈H

gε(x) > 0,

for every ε > 0.

Proof. If T : H → H is uniformly continuous and ε > 0, then there exists δ > 0

such that for every a, b ∈ H with ‖a − b‖H < δ, then ‖Tx − Ty‖H1 < ε. A
constant function gε : H → R+, gε(a) = δ, is a delta-epsilon function for T
that clearly satisfies Equation (3.3). Conversely, let {gε}ε>0 be a family of delta-
epsilon mappings for continuous operator T that satisfies the Equation (3.3),
then for every ε > 0 and a, b ∈ H, we have that ‖a − b‖ < ηε ≤ gε(a) since T
is continuous at a and gε(a) satisfies the continuity definition at a. Hence, we
conclude that ‖Ta− Tb‖H1 < ε. �

We can now give characterization of the concept of uniform continuity in
terms of delta-epsilon function.

Theorem 3.5. Let T : H → H be a finite rank nonconstant continuous map.
Suppose that for all s ∈ H and r > 0 the open ball B(s, r) is path-connected. Then
the following conditions are equivalent:

(i) T is not uniformly continuous on H.
(ii) There exists ε0 such that, infx∈H δ(x, ε0) = 0.

(iii) There exists ε0 and sequences xn, yn ∈ H, such that,
limn→∞ ‖xn − yn‖H = 0 and ‖Txn − Tyn‖H1 = ε0.

Proof.
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(i) ⇒ (ii). T is not uniformly continuous on H, then by Theorem 3.4, the
family of delta-epsilon {δ(., ε)}ε∈(0,β) must have an element satisfying condition
(ii).

(ii) ⇒ (iii). Since infx∈H δ(x, ε0) = 0, then for all n ∈ N, there exists xn ∈ H
such that 0 < δ(xn, ε0) <

1
n
. By definition of δ(xn, ε0) there is yn ∈ H satisfying,

0 < δ(xn, ε0) ≤ ‖xn − yn‖H < 1
n

and ‖Txn − Tyn‖H1 = ε0. Getting two sequences
of elements xn, yn ∈ H such that limn→∞ ‖xn−yn‖H = 0 and ‖Txn−Tyn‖H1 = ε0.

Lastly, (iii) ⇒ (i). If (iii) holds, then 0 < δ(xn, ε0) ≤ ‖xn − yn‖H . Hence
limn→∞ δ(xn, ε0) = 0, which implies that infx∈H δ(x, ε0) = 0. Let {ρε}ε>0 be a
family of delta-epsilon for T. Then we have that ρε(x) ≤ δ(x, ε) ≤ δ(x, ε0), for
all x ∈ H, where 0 < ε ≤ ε0. We obtain that infx∈H ρε(x) = 0. Then T is not
uniformly continuous on H. �

For the final characterization, we turn to sequentially continuous finite rank
operators.

Proposition 3.7. Let T ∈ N(H) be a sequentially continuous finite rank operator
and xm a Cauchy sequence in H with 0 < Ω < π. Then there exists m such that
‖Txm‖ > Ω.

Proof. Being that T is a linear map, we assume that π−Ω > 1. Choosing a strictly
increasing sequence (Nl)

∞
l=1 of positive integers such that ‖xm − xn‖ < 2−3l, for

all n,m ≥ Nl, write sl = max{‖Txm‖ : 1 ≤ m ≤ Nl}. We construct an increasing
binary sequence (βl)

∞
l=1 such that

βl = 0⇒ ∀j ≤ l(sj < π − 2−2j),

βl = 1⇒ ∃j ≤ l(sj < π − 2−2j+1).

We may assume that β1 = β2 = 0. Next we construct a sequence wl in H as
follows: If βl+1 = 0 or if βl+1 = βl = 1, set wl = 0. If βl+1 = 1 and βl = 0, then
‖TxNl‖ ≤ sl < π − 2−2j and sl+1 > π − 2−2l−1, so we can choose l such that
Nl < j < Nl+1 and ‖Txl‖ > π − 2−2l−1, setting wl = 22l(xj − xNl), we see that
‖wl‖∗ < 2−l and

‖Twl‖ = 22l‖Txl − TxNl‖ ≥ 22l(‖Txl‖ − ‖TxNl‖)

> 22l(π − 2−2l−1 − (π − 2−2l)) =
1

2
.
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This completes the construction of a sequence wl converging to 0 in H. By se-
quential continuity of T, liml→∞ Twl = 0. We choose K such that ‖Txl‖ < 1

2
for

all l ≥ K, so that βl 6= 1 − βl for all l ≥ K. If βl = 1, then there exists n ≤ NK

such that ‖Twl‖ > π − 2−2n+1 > Ω. If βK = 0, then βl = 0, for all l ≥ K so
‖Twl‖ < π, for all l. The rest is clear. �

Proposition 3.8. Let T ∈ N(H) be a sequentially continuous finite rank operator
and xm a Cauchy sequence in H, then supm≥1 ‖Txm‖ exists.

Proof. We show that the sequence xm is bounded. We first choose M > 0 such
that ‖xm‖M for all m. Taking Ω = 1 and π = 2 in Proposition 3.7, we assume
that there is m1 such that ‖Txm1‖ > 1. Set β1 = 0. Applying Proposition 3.7
repeatedly, we now construct an increasing binary sequence βm, and an increas-
ing sequence (ml)

∞
l=1 of positive integers, such that β1 = 0 ⇒ ‖Txml

‖ > l and
ml > ml−1, β1 = 1 ⇒ Txm is a bounded sequence and ml+1 = ml. Suppose we
have found βl and ml and if β1 = 1, we set βl+1 = βl and ml+1 = ml. If βl = 0,

then ‖Txmj
‖ > j, for all j ≤ l. Applying Proposition 3.7 to Cauchy sequence

(xl)l>ml
, we obtain ml+1 > ml such that ‖Txml+1

‖ > l + 1 or else ‖Txj‖ < l + 2

for all j > ml. If we set βl+1 = 0 for the first case and βl+1 = 1 for the second,
then (Txm)∞m=1 is bounded and ml+1 = ml. If βl = 0, set wl = l−1xm1 ; if βk = 1,

set wl = 0. Then ‖wl‖ ≤ Ml−1 for each l, so wl → 0 and therefore, by the se-
quential continuity of T, T (wl) → 0. We choose M such that ‖Twl‖ < 1 for all
l ≥ M. If βM = 0, then ‖Twl‖ = l−1‖Txml

‖ > 1, a contradiction. Hence, βM = 1

so (‖Txm‖)∞m=1 is bounded. It then follows that supm≥1 ‖Txm‖ exists. �

Finally, we extend a finite rank sequentially continuous linear map to the
completion of its domain by the theorem below.

Theorem 3.6. A linear mapping T : H → H is finite rank sequentially continuous
if and only if it maps Cauchy sequences to Cauchy sequences.

Proof. Taking T to be sequentially continuous and given a Cauchy sequence xm
in H, we can choose a strictly increasing sequence (Nl)

∞
l=1 of positive integers

such that ‖xn − xm‖ < 2−l for all n,m ≥ Nl. Next, we consider the existence of
the supremum. For each l let sl = supm≥Nl

‖Txm − TxNl
‖ exists. We show that

sl < ε for some l given ε > 0. Next we construct an increasing binary sequence
βm such that βl = 0 ⇒ sl >

ε
4

and βl = 1 ⇒ sl <
ε
2
. Assume that β1 = 0. If

βl = 0, choose j ≥ Nl such that ‖Txj − TxNl
‖ > ε

4
and set wl = xj − xNl

. If
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βl = 1, set wl = 0. Then for each l we have ‖wl‖2−l so wl → 0. Having taken T

as sequentially continuous, Twl → 0 and we choose M so that ‖Twl‖ < ε
4
, for

all l ≥ M. Next if βl 6= 0 it implies that ‖Twl‖ > ε
4

which is absurd. Then βl = 1

and thus sl < ε
2
. For all j, l ≥ Nl we have that

‖Txj − Txl‖ ≤ ‖Txj − TxNl
‖+ ‖Txl − TxNl

‖

<
ε

2
+
ε

2
= ε.

Being that ε is arbitrary, (Txm)∞m=1 is a Cauchy sequence in H. Conversely, as-
sume that T maps Cauchy sequences to Cauchy sequences. If xm is a converging
sequence to 0 in H, then (Txm)∞m=1 is a Cauchy sequence in H. We then find a
subsequence that converges to 0 as well for the proof that (Txm)∞m=1 converges
to 0. Let (xml

)∞l=1 be a subsequence of xm such that ‖xml
‖ < 1

l2
, for each l. We

note that (lxml
)∞l=1 converges to 0 in H, so that (T lxml

)∞l=1 is a Cauchy sequence
in H. Then there exists K > 0 such that for each l, ‖lTxml

‖ ≤ K and hence
‖Txml

‖ ≤ K
l
. Therefore, liml→∞ Txml

= 0. �

Corollary 3.1. Let T be a sequentially continuous finite rank linear mapping of H
into H. Then T extends to a sequentially continuous linear mapping of H] into H,
where H] is the completion of H.

Proof. Let xm, x
′
m be sequences in H that converges to the same limit x ∈ H].

From Theorem 3.6, (Tx1, Tx
′
1, Tx2, Tx

′
2, ...) is a Cauchy sequence in H. Being

that H is complete, this Cauchy sequence converges to a limit y ∈ H. Then each
of the sequences Txm and Tx

′
m converges to y so T ]x ≡ limm→∞ Txm does not

depend on the sequence xm of elements of H converging to x. Then T ] is linear
and coincides with T on H. Now, let xm be any sequence in H] converging to 0.

By the definition of T ], for each m there exists x′
m ∈ H such that ‖x′

m−xm‖ ≤ 1
m

and ‖Tx′
m − Txm‖ < 1

m
. Then limm→0 x

′
m = 0, so 0 = T ]0 = limm→∞ Tx

′
m =

limm→∞ Txm, hence T ] is sequentially continuous. �
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