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Theoretical realisation of a two qubit quantum controlled-not logic gate and a single

qubit Hadamard logic gate in the anti-Jaynes-Cummings model
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We provide a theoretical scheme for realizing a Hadamard and a quantum controlled-NOT logic
gates operations in the anti-Jaynes-Cummings interaction process. Standard Hadamard operation
for a specified initial atomic state is achieved by setting a specific sum frequency and photon
number in the anti-Jaynes-Cummings qubit state transition operation with the interaction com-
ponent of the anti- Jaynes-Cummings Hamiltonian generating the state transitions. The quantum
controlled-NOT logic gate is realised when a single atomic qubit defined in a two-dimensional
Hilbert space is the control qubit and two non-degenerate and orthogonal polarised cavities defined
in a two-dimensional Hilbert space make the target qubit. With precise choice of interaction time in
the anti-Jaynes-Cummings qubit state transition operations defined in the anti-Jaynes-Cummings
sub-space spanned by normalised but non-orthogonal basic qubit state vectors, we obtain ideal unit
probabilities of success in the quantum controlled-NOT operations.
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I. INTRODUCTION

In quantum computers, quantum bits (qubits) [1, 2]
are the elementary information carriers. In such a com-
puter, quantum gates [1–3] can manipulate arbitrary
multi-partite quantum states [4] including arbitrary su-
perposition of the computational basis states, which are
frequently also entangled. Thus the logic gates of quan-
tum computation are considerably more varied than the
logic gates of classical computation. In addition, a quan-
tum computer can solve problems exponentially faster
than any classical computer [5] because by exploiting su-
perposition principle and entanglement allows the com-
puter to manipulate and store more bits of information
than a classical computer.
In this paper we present a theoretical approach of real-

izing Hadamard and controlled-NOT (C-NOT) quantum
logic gates which form a universal set for quantum com-
putation [6–8]. The important discovery and proof of a
conserved excitation number operator of the AJC Hamil-
tonian [9] now means that dynamics generated by the
AJC Hamiltonian is exactly solvable, as demonstrated in
the polariton and anti-polariton qubit (photospin qubit)
models in [10, 11]. The reformulation developed in [9–11],
drastically simplifies exact solutions of the AJC model
which we shall apply in the present work.
We define the quantum C-NOT gate as that which af-

fects the unitary operation on two qubits which in a cho-
sen orthonormal basis in C2 gives the C-NOT operation
obtained as

|a〉|b〉 → |a〉|a⊕ |b〉 (1)

where |a〉 is the control qubit, |b〉 is the target qubit and⊕
indicates addition modulo 2 [1, 2, 12]. The C-NOT gate
transforms superposition into entanglement thus acts as
a measurement gate [1, 2, 12] fundamental in performing
algorithms in quantum computers [13]. Transformation

to a separable state (product state) is realized by apply-
ing the C-NOT gate again. In this case, it is used to
implement Bell measurement on the two qubits [14].
We note here that the JC model has been applied ex-

tensively in implementing C-NOT and Hadamard gate
operations. Domokos et al (1995) [15] showed that using
induced transitions between dressed states, it is possible
to implement a C-NOT gate in which a cavity contain-
ing at most one photon is the control qubit and the atom
is the target qubit. Later, Vitali, D. et al (2001)[16]
proposed a scheme of implementing a C-NOT gate be-
tween two distinct but identical cavities, acting as control
and target qubits respectively. By passing an atom pre-
pared initially in ground state consecutively between the
two cavities a C-NOT (cavity → atom) and a C-NOT
(atom → cavity) is realised with the respective classi-
cal fields S. Saif, F. et al (2001) [17] presented a study
of quantum computing by engineering non-local quan-
tum universal gates based on interaction of a two-level
atom with two modes of electromagnetic field in high
Q superconducting cavity. The two-level atom acted as
the control qubit and the two-mode electromagnetic field
served as the the target qubit. In this letter, we apply
an approach similar to that in [17] where we implement
a quantum C-NOT gate operation between two cavities
defined in a two-dimensional Hilbert space spanned by
the state vectors |µ1〉 = |1A, 0B〉 and |µ2〉 = |0A, 1B〉 as
target qubits. Here |µ1〉 expresses the presence of one
photon in mode A, when there is no photon in mode B,
and |µ2〉 indicates that mode A is in vacuum state and
one photon is present in mode B. The control qubit in
this respect is a two-level atom. The important difference
with the approach used in [17] is the model, i.e, while
the initial absolute atom-field ground state |g, 0〉 in the
AJC interaction is affected by atom-cavity coupling, the
ground state |g, 0〉 in the JC model [17] is not affected by
atom-cavity coupling. A similar result was determined
independently in [11]. Further, with precise choice of
interaction time in the AJC qubit state transition oper-
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ations defined in the AJC qubit sub-space spanned by
normalised but non-orthogonal basics qubit state vectors
[10, 11], C-NOT gate operations are realized between the
two cavities.
The Hadamard gate also known as the Walsh-

Hadamard gate is a single qubit gate [1, 2]. The
Hadamard transformation is defined as

Ĥ =
σ̂x + σ̂z√

2
(2)

where it transforms atomic computational basis states
|e〉(|0〉), |g〉(|1〉) into diagonal basis states according to

Ĥ |e〉 → |e〉+ |g〉√
2

; Ĥ |g〉 → |e〉 − |g〉√
2

Ĥ |0〉 → |0〉+ |1〉√
2

; Ĥ|1〉 → |0〉 − |1〉√
2

(3)

Vitali, D. et al (2001)[16] showed that one qubit opera-
tions can be implemented on qubits represented by two
internal atomic states because it amounts to applying
suitable Rabi pulses. He demonstrated that the most
practical solution on implementing one qubit operations
on two Fock states is sending the atoms through the cav-
ity. If the atom inside the cavity undergoes a π

2 pulse one
realizes a Hadamard-phase gate. Saif, F. et al (2001) [17]
also showed that it is possible to realise Hadamard op-
eration by a controlled interaction between a two-mode
high Q electromagnetic cavity field and a two-level atom.
In his approach, the two-level atom is the control qubit,
whereas the target qubit is made up of two modes of
cavity field. Precision of the gate operations is realised
by precise selection of interaction times of the two-level
atom with the cavity mode. In this paper, we show that
Hadamard operation in the AJC interaction is possible
for a specified initial atomic state by setting a specific
sum frequency and photon number in the anti-Jaynes-
Cummings qubit state transition operation [10, 11], not-
ing that the interaction components of the anti-Jaynes-
Cummings Hamiltonian generates state transitions.
The content of this paper is therefore summarised as

follows. Section II presents an overview of the theoretical
model. In sections III and IV respectively, implementa-
tion of a quantum C-NOT and Hadamard gates in the
AJC interaction are presented. Finally section V con-
tains the conclusion.

II. THE MODEL

The quantum Rabi model of a quantized electromag-
netic field mode interacting with a two-level atom is gen-
erated by the Hamiltonian [9]

ĤR =
1

2
~ω(â†â+ ââ†)+~ω0ŝz+~λ(â+ â†)(ŝ++ ŝ−) (4)

noting that the free field mode Hamiltonian is ex-
pressed in normal and anti-normal order form 1

2~ω(â
†â+

ââ†). Here, ω , â , â† are quantized field mode angu-
lar frequency, annihilation and creation operators, while
ω0 , ŝz , ŝ+ , ŝ− are atomic state transition angular fre-
quency and operators. The Rabi Hamiltonian in eq. (4) is
expressed in a symmetrized two-component form [9–11]

ĤR =
1

2
(Ĥ + Ĥ) (5)

where Ĥ is the standard JC Hamiltonian interpreted as
a polariton qubit Hamiltonian expressed in the form [9]

Ĥ = ~ωN̂ + 2~λÂ− 1

2
~ω ; N̂ = â†â+ ŝ+ŝ−

Â = αŝz + âŝ+ + â†ŝ− ; α =
ω0 − ω

2λ
(6)

while Ĥ is the AJC Hamiltonian interpreted as an anti-
polariton qubit Hamiltonian in the form [9]

Ĥ = ~ωN̂ + 2~λÂ− 1

2
~ω ; N̂ = ââ† + ŝ−ŝ+

Â = αŝz + âŝ− + â†ŝ+ ; α =
ω0 + ω

2λ
(7)

In eqs. (6) and (7), N̂ , N̂ and Â, Â are the respective
polariton and anti-polariton qubit conserved excitation
numbers and state transition operators.
Following the physical property established in [11],

that for the field mode in an initial vacuum state only
an atom entering the cavity in an initial excited state
|e〉 couples to the rotating positive frequency field com-
ponent in the JC interaction mechanism, while only an
atom entering the cavity in an initial ground state |g〉
couples to the anti-rotating negative frequency field com-
ponent in an AJC interaction mechanism, we generally
take the atom to be in an initial excited state |e〉 in the
JC model and in an initial ground state |g〉 in the AJC
model.
Considering the AJC dynamics, applying the state

transition operator Â from eq. (7) to the initial atom-
field n-photon ground state vector |g, n〉, the basic qubit
state vectors |ψgn〉 and |φgn〉 are determined in the form
(n=0,1,2,....) [11]

|ψgn〉 = |g, n〉 ; |φgn〉 = −cgn|g, n〉+sgn|e, n+1〉 (8)

with dimensionless interaction parameters cgn, sgn and

Rabi frequency Rgn defined as

cgn =
δ

2Rgn

; sgn =
2λ

√
n+ 1

Rgn

; Rgn = 2λAgn

Agn =

√

(n+ 1) +
δ
2

16λ2
; δ = ω0 + ω (9)
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where we have introduced sum frequency δ = ω0 + ω to
redefine α in eq. (7).
The qubit state vectors in eq. (8) satisfy the qubit state

transition algebraic operations

Â|ψgn〉 = Agn|φgn〉 ; Â|φgn〉 = Agn|ψgn〉 (10)

In the AJC qubit subspace spanned by normalized but
non-orthogonal basic qubit state vectors |ψgn〉 , |φgn〉
the basic qubit state transition operator ε̂g and identity

operator Îg are introduced according to the definitions
[11]

ε̂g =
Â

Agn

; Îg =
Â

2

A
2

gn

⇒ Îg = ε̂
2

g (11)

which on substituting into eq. (10) generates the basic
qubit state transition algebraic operations

ε̂g|ψgn〉 = |φgn〉 ; ε̂g|φgn〉 = |ψgn〉

Îg|ψgn〉 = |ψgn〉 ; Îg|φg〉 = |φg〉 (12)

The algebraic properties ε̂
2k

= Îg and ε̂
2k+1

= ε̂g
easily gives the final property [11]

e−iθε̂g = cos(θ)Îg − i sin(θ)ε̂g (13)

which is useful in evaluating time-evolution operators.
The AJC qubit Hamiltonian defined within the qubit

subspace spanned by the basic qubit state vectors |ψgn〉 ,
|φgn〉 is then expressed in terms of the basic qubit states

transition operators ε̂g, Îg in the form [11]

Ĥg = ~ω(n+
3

2
)Îg + ~Rgnε̂g (14)

III. QUANTUM C-NOT GATE OPERATIONS

In order to realise a C-NOT quantum gate operation
in this context, we take a two-level atom as the control
qubit, which is defined in a two dimensional Hilbert space
with |e〉 and |g〉 as basis vectors, where |e〉 expresses the
excited state of the two-level atom and |g〉 indicates the
ground state. Two non-degenerate and orthogonal po-
larized cavity modes CA and CB make the target qubit.
The target qubit is defined in two-dimensional Hilbert
space spanned by the state vector |µ1〉 = |1A, 0B〉, which
expresses the presence of one photon in mode A, when
there is no photon in mode B, and the state vector
|µ2〉 = |0A, 1B〉, which indicates that mode A is in the
vacuum state and one photon is present in mode B.

With reference to the AJC qubit state transition oper-
ator in eq.(13), lets first consider when an atom in ground
state |g〉 enters an electromagnetic cavity with mode A in
vacuum state and a single photon in mode B. The atom
couples to the anti-rotating negative frequency compo-
nent of the field mode undergoing an AJC qubit state
transition. After the atom interacts with mode A for a
time t = π

Rg0

, equal to half Rabi oscillation time, the driv-

ing field is modulated such that θ = Rg0t = 2λAg0t = π.
Redefining [11]

α =
δ

2λ
=
ω0 − ω + 2ω

2λ
=

δ

2λ
+
ω

λ
= α+

ω

λ
(15)

and considering a resonance case where δ = ω0 − ω = 0
with λ≫ ω, α becomes very small thus θ = λt = π

2 , since

Ag0 = 1 determined from eq. (9). The evolution of this
interaction determined by applying the AJC qubit state
transition operation in eq. (13) noting the definition of

Îg and ε̂g [11] in eq. (11) is of the form

e−iθε̂g |g, 0A〉 = cos(θ)|g, 0A〉 − i sin(θ)|e, 1A〉 (16)

which reduces to

|g, 0A〉 → −i|e, 1A〉 (17)

We observe that the atom interacted with mode A and
completed half of the Rabi oscillation, as a result, it con-
tributed a photon to mode A and evolved to excited state
|e〉. Now, after the interaction time, it enters mode B
containing a single photon, interacting with the cavity
mode as follows

− ieiθε̂e |e, 1B〉 = −i cos(θ)|e, 1B〉+ sin(θ)|g, 0B〉 (18)

After an interaction with mode B for a time t1 = 2t

such that t1 =
π(Rg0+Re1)

Rg0Re1

, the driving field is modulated

such that θ =
(

Rg0Re1

Rg0+Re1

)

t = π
2 with Rg0 = 2λAg0 = 2λ

since Ag0 = 1 and Re1 = 2λAe1 = 2λ since Ae1 = 1.
Therefore, λt = π

2 . The form of eq. (18) results into the
evolution

− i|e, 1B〉 → |g, 0B〉 (19)

The results in eq. (19) shows that the atom evolves to
ground state and absorbs a photon initially in mode B.
Therefore the atom clearly performs a swapping of the
electromagnetic field between the two field modes by con-
trolled interaction.
When the atom in ground state |g〉, enters the elec-

tromagnetic cavity containing a single photon in mode
A and mode B in vacuum state, the atom and the field
interacts as follows
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e−iθε̂g |g, 0B〉 = cos(θ)|g, 0B〉 − sin(θ)|e, 1B〉 (20)

After an interaction with field mode B for a time t = π

Rg0

equal to half Rabi oscillation time, the driving field is
modulated such that θ = Rg0t = π, with Rg0 = 2λAg0 =

2λ since Ag0 = 1. Therefore θ = λt = π
2 . The form of

eq. (20) results into the evolution

|g, 0B〉 → −|e, 1B〉 (21)

The atom then enters mode A containing one photon and
interacts as follows

− eiθε̂e |e, 1A〉 = − cos(θ)|e, 1A〉 − i sin(θ)|g, 0A〉 (22)

After an interaction with the cavity mode for a time t1 =

2t such that t1 =
π(Re1+Rg0)

Re1Rg0

we obtain a driving field

modulation θ =
(

Re1Rg0

Re1+Rg0

)

t = π
2 , with Re1 = 2λAe1 =

2λ since Ae1 = 1 and Rg0 = 2λAg0 = 2λ since Ag0 = 1.
Therefore θ = λt = π

2 . The form of eq. (22) results into
the evolution

|e, 1A〉 → i|g, 0A〉 (23)

This shows that the atom evolves to ground state and
performs a field swapping by absorbing a photon in mode
A.
When the atom in excited state |e〉 enters mode A in

vacuum state,that is target qubit |µ2〉, the atom propa-
gates as a free wave without coupling to the field mode in
vacuum state |0〉 [11], leaving the cavity without altering
the state of the cavity-field mode. A similar observation
is made when the atom enters cavity B in vacuum state
for the case of target qubit |µ1〉.
From the results obtained, we conclude that the tar-

get qubit made up of the electromagnetic field remains
unchanged if the control qubit, that is, the two-level
atom, is initially in the excited state |e〉, while when the
atom is in ground state |g〉, the cavity states |0〉 and
|1〉 flip. We shall refer to this gate as the AJC C-NOT
(atom→ cavity)

A. Probability of success of the C-NOT gate

Success probability for the C-NOT gate is given by

Ps = 1− (sin2(θA) + cos2(θA) sin
2(θB)) (24)

In terms of the Rabi frequency we write eq. (24) as

Ps = 1− (sin2(RA∆tA) + cos2(RA∆tA) sin
2(RB∆tB))

(25)

For the case in which the atom is in the ground state
|g〉 and enters an electromagnetic cavity with mode A in
vacuum state and a single photon of the field mode B

RA = Rg0 = 2λAg0 = 2λ

∆tA =
π

RA

=
π

Rg0

=
π

2λ

RB = Re1 = 2λAe1 = 2λ

∆tB =
π

2

(RA +RB)

RARB

=
π

2

(Rg0 +Re1)

Rg0Re1

=
π

2λ
(26)

substituting eq. (26) into eq. (25) we obtain

Ps = 1− (sin2(π) + cos2(π) sin2(π)) = 1 (27)

a unit probability of success.

When the atom in ground state |g〉 enters an electro-
magnetic cavity containing a single photon in mode A,
and mode B in the vacuum state

RA = Re1 = 2λAe1 = 2λ

∆tA =
π

2

(RA +RB)

RARB

=
π

2

(Re1 +Rg0)

Re1Rg0

=
π

2λ

RB = Rg0 = 2λAg0 = 2λ

∆tB =
π

RB

=
π

Rg0

=
π

2λ
(28)

substituting eq. (28) into eq. (25) we obtain

Ps = 1− (sin2(π) + cos2(π) sin2(π)) = 1 (29)

a unit probability of success.

We observe that success probabilities depend mainly
upon the precise selection of the interaction times of the
two level atom with the successive cavity modes.



5

IV. HADAMARD LOGIC GATE

To realise Hadamard operation in the AJC interaction,
we apply the qubit state transition operation in eq. (11)
and the general form in [10, 11]. In this respect, we define
the Hadamard operation at sum frequency δ = 4λ and
n = 0 specified for an initial atomic state |g〉 as

ε̂g =
1

Ag0

(

2ŝz + âŝ− + â†ŝ+
)

; Ag0 =
√
2 (30)

The initial atomic state |g〉 is rotated to

|g〉 → 1√
2
(|e〉 − |g〉) (31)

Similarly, the Hadamard operation at sum frequency δ =
4λ and n = 1 specified for an initial atomic state |e〉 is
defined as [11]

ε̂e =
1

Ae1

(

2ŝz + âŝ− + â†ŝ+
)

; Ae1 =
√
2 (32)

The initial atomic state |e〉 is rotated to

|e〉 → 1√
2
(|e〉+ |g〉) (33)

The Hadamard transformations in Eqs. (31) and (33) re-
alised in the AJC interaction process (AJC model) agree
precisely with the standard definition in Eq. (3).

V. CONCLUSION

In this paper we have shown how to implement quan-
tum C-NOT and Hadamard gates in the anti-Jaynes-
Cummings interaction mechanism. We obtained ideal
unit probabilities of success due to precise selection of
interaction times during the C-NOT gate operations. We
also realised efficient Hadamard operations through ap-
plication of respective AJC qubit state transitions.
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