
International Journal of Computer Applications Technology and Research

Volume 8–Issue 08, 299-302, 2019, ISSN:-2319–8656

www.ijcat.com 299

An Enhanced Browser Reference Model

Harun Kamau

School of Computing and

Informatics

Maseno University

Maseno, Kenya

Dr.O.McOyowo

School of Computing and

Informatics

Maseno University,

Maseno, Kenya

Dr.O.Okoyo

School of Computing and

Informatics

Maseno University,

Maseno, Kenya

Abstract: Browsers are prime software applications in modern computing devices. They are essential in accessing internet rich

content. Access to these contents pose a high memory demand on the host device thus affecting the user browsing experience

and running of other programs. The architectural model adopted by the current browsers lacks a memory control mechanism

that would prevent memory hogging which results to device crawl. The paper critically addresses the weaknesses of the

contemporary browser reference architecture with a view to controlling memory hogging by integrating a memory analyzer into

existing architecture.

Keywords: Browser reference architecture, memory hogging, web browser

1. INTRODUCTION

The Internet is gradually becoming a requisite element of

modern generation. It is heavily relied upon in education

sector where teaching and learning methods have gone digital.

Business transactions have been digitized to reflect global

reach and improve efficiency. Moreover, social and

communication activities are being performed in a manner

that makes the world a global village (Sagar A. et al., 2010).

A web browser is prime software while seeking to realize the

mentioned activities. While efficiency and multiprogramming

is desired in the target computing devices, memory becomes

an impending factor in realizing state of art performances.

Studies have shown that browsers are memory ravenous and

their consumption is dynamic contrary to generic computer

programs (Doug DePerry, 2012).

The architectural model has been established to be a

contributing factor to memory hogging which to leads to a

computer freeze (Kamau, 2018). Modern browsers including

Mozilla Firefox, Chrome, and Internet Explorer are derived

from the reference architecture postulated by Allan and

Michael (2006). In this architectural model, the browser

continuously requests memory from the operating system to

load the content it has fetched. This phenomenon leads to

memory hogging and thus reduces the degree of

multiprogramming. In single-processor systems, this

phenomenon is undesired. To avert this problem, modification

of the current model becomes a necessity. This is done with a

view to providing memory control mechanism that would

limit the maximum amount of memory a browser can use.

This prevents memory hogging and thus increases the level of

multiprogramming.

1.1 Contemporary Model

The architecture constitutes five major modules, which

include User interface, Browser engine, Rendering engine,

Display backend and Data persistence. This model was

derived by Allan and Michael in 2006. These modules work

collaboratively to interpret intricate protocols and provide a

visual display of the URL fetched, (Paulina Siva et al., 2016).

Modules functionality is discussed in the subsections herein.

An illustration of the interaction of the mentioned modules is

as shown in figure 1.

Figure 1:Browser reference architecture.

1.1.1User Interface

This module provides the methods with which a user interacts

with the Browser Engine. It provides standard web browser

International Journal of Computer Applications Technology and Research

Volume 8–Issue 08, 299-302, 2019, ISSN:-2319–8656

www.ijcat.com 300

features including user preferences, printing functionality,

downloading, opening and closing tabs etc. Browser designers

have variant approaches in designing the user interface of the

target browser. However, a given browser version depicts

slight differences in user interface from another version of the

same type. For instance, earlier versions of Mozilla Firefox

had the reload button positioned to the right of the address bar

while current versions have positioned to the left.

1.1.2 Browser Engine

This module provides a high-level interface to the Rendering

Engine. It provides methods to initiate the loading of a URL

and other high-level browsing actions like reload, back and

forward. Furthermore, it provides the User interface with

various messages relating to error messages and loading

progress. When the browser fails to fetch the content specified

by the URL, appropriate messages are conveyed to the User

Interface, seeking intervention of the browser user.

1.1.3 Rendering Engine

This module provides the visual representation of the fetched

URL. It comprises various subsystems that enable the browser

to interpret the content of the URL. A URL contains two

major parts: protocol and web resource. The protocol defines

the mechanism through which resource will be fetched.

Common protocols include HTTP and FTP. Web resources

include text documents, images/graphics, audio and video.

The multimedia content is interpreted by the appropriate

parser to visually human-readable format. A prime component

of the Rendering Engine is the HTML parser. The HTML

parser is often tightly integrated with the rendering engine for

performance reasons and can provide varying levels of

support for broken or nonstandard HTML .It can display other

types of data via plug-ins or extension; for example,

displaying PDF documents using a PDF viewer plug-in. The

rendering engine has XML parser sub system that parses

XML data. The JavaScript content in the URL is interpreted

by the JavaScript Interpreter. Detailed functionality of

mentioned subsystems is discussed in sub sections below.

Different browsers use different rendering engines: Internet

Explorer uses Trident, Firefox uses Gecko, and Safari uses

WebKit. Chrome and Opera (from version 15) use Blink, a

fork of WebKit.

1.1.3.1 Networking Component

This component provides functionality to handle URLs

retrieval using the common Internet protocols like HTTP and

FTP. It handles all aspects of Internet communication and

security; character set translations and Multi-Purpose Internet

Mail Extensions (MIME) type resolution. This component

may also implement a cache of retrieved documents to

minimize network traffic

1.1.3.2 JavaScript Interpreter

This component executes the JavaScript code that is

embedded in a URL. Results of the execution are passed to

the Rendering Engine for display. The Rendering Engine may

disable various actions based on user defined properties.

Where the browser user has set JavaScript code to be

disabled, the rendering engine ignores the interpreted

material.

1.1.3.3 XML Parser

This is a software library or a package that provides an

interface for client applications to work with XML

documents. It is generic and reusable component with a

standard that has well defined interface. It checks for proper

format of the XML document and may also validate the XML

documents. Modern day browsers have built-in XML parsers.

The goal of a parser is to transform XML data into a human-

readable code.

1.1.4 Display/UI Backend

This component is tightly coupled with the host operating

system. It provides primitive drawing and windowing

methods that are host operating system dependent. Common

widgets like combo box, an input box, a check box, etc are

drawn using UI properties.

1.1.5 Data Persistence

The Data Persistence component manages user’s data such as

bookmarks, cookies and preferences. The browser may need

to save all sorts of data locally. Browsers also support storage

mechanisms such as localStorage, IndexedDB, WebSQL and

FileSystem (Michael Coates, 2010).

1.2 Flaws of the Current Browser Reference

Architecture

The contemporary architecture has two main weaknesses

which are outlined herein.

International Journal of Computer Applications Technology and Research

Volume 8–Issue 08, 299-302, 2019, ISSN:-2319–8656

www.ijcat.com 301

i. The rendering engine processes the requests made

by the browser engine by rendering the fetched

content provided there is little memory available for

use by the browser. If the operating system can no

longer allocate any more memory, the computer

freezes hence becomes unusable.

ii. The browser process prevents other legitimate

processes from being loaded in the main memory if

it consumes almost all-available memory. This

reduces the level of multiprogramming.

2. METHODS

The enhanced model was anchored on browser reference

architecture highlighted in figure 1

2.1 Necessity to Modify Browser Reference

Architecture

From the weaknesses highlighted in section 1.2, there was

need to restructure the architecture to provide a control

mechanism for browser memory usage. While seeking to

address this problem, the researcher opted to integrate a

memory analyzer to the contemporary browser reference

architecture.

2.2 The Enhanced Browser Reference

Architecture

The enhanced architecture incorporates the Memory Analyzer

component as shown in figure 2. The memory analyzer

component interacts with the operating system to track

memory usage in real-time and to check browser memory

consumption against the set threshold total memory. After

analysis, the browser user is provided with possible actions to

take to prevent memory hogging. Consequently, more

applications can be loaded into the main memory awaiting

execution. This guarantees that browsers do not make

computer to freeze by delimiting other legitimate applications

from running. As a result, it improves the level of

multiprogramming and ultimately improves user-browsing

experience. The analyzer is implemented as a software

module included in the web browser application.

Figure 2: The enhanced browser reference architecture

2.2.1Memory Analyzer

This component checks real-time memory consumption for

the browser against the threshold total memory limit set by the

user and gives feedback information to the user on possible

actions to take to prevent memory hogging by the browser.

Memory analysis is done after the browser engine has

retrieved a resource. The rendering engine interprets and gives

a visual representation of the URL with the help of parsers

and JavaScript interpreter if memory space is available. The

integration provides memory control mechanism that hence

controls memory hogging. Furthermore, the analyzer provides

garbage collection mechanism to reclaim unused memory

from the browser objects.

2.2.2 Flow diagram of memory analyzer

A conceptualized design of a Memory Analyzer and its

interactions with other modules is as shown in figure 3. When

a user enters a URL on the browser’s address bar and hits the

Go button, the Browser Engine takes the URL and attempts to

fetch its content. The Memory Analyzer performs analysis of

the memory consumed against the threshold memory as set by

the user. If the memory is lower than the threshold memory, it

passes the content of the URL to the rendering engine for

further actions. However, if the consumed memory gets

higher than the threshold memory, a notification error

message is passed to the higher modules for action to be taken

by the user.

International Journal of Computer Applications Technology and Research

Volume 8–Issue 08, 299-302, 2019, ISSN:-2319–8656

www.ijcat.com 302

Figure 3: The Flow diagram of a memory analyzer

3. CONCLUSION

Based on the structure of the current browser architecture, it is

evident enough that the model lacks a memory control

mechanism and thus memory hogging becomes a habitual

phenomenon in browser applications. In attempt to solve this

problem, the memory analyzer was integrated to the current

model with a view to providing memory control mechanism.

Further, the module notifies the user when memory hogging is

detected. The researcher designed a browser prototype and

integrated the memory analyzer in it.

4. RECOMMENDATION

An evaluation of the enhanced browser reference should be

done to unveil its performance with regard to memory

consumption and its overall impact on user browsing

experience.

5. REFERENCES

[1] A. E. Hassan and R. C. Holt, (2000). A reference

architecture for web servers. In Proceedings of 7th

the Working Conference on Reverse Engineering

(WCRE ’00), pp. 150–160, 2000.

[2] A. Taivalsaari and T. Mikkonen, (2011). "The Web

as an Application Platform: The Saga Continues,"

Proc. 37th Euromicro Conf. Software Engineering

and Advanced Applications (SEAA 11), IEEE CS,

2011, pp. 170–174.

[3] A. Taivalsaari et al., (2008). Web Browser as an

Application Platform: The Lively Kernel Experience,

tech. report TR-2008-175, Sun Microsystems Labs,

2008.

[4] Accuvant Labs, 2011: Browser Security Comparison; A

Quantitative Approach. Retrieved from

http://files.accuvant.com/web/files/AccuvantBrowserSec

C ompar_FINAL.pdf

[5] Alan Grosskurth and Michael W. Godfrey, (2005)

Reference architecture for web browsers. In ICSM'05:

Proceedings of the 21st IEEE International Conference

on Software Maintenance (ICSM'05), pp 661-664,

Washington, DC, USA, 2005. IEEE Computer Society.

[6] Alan Grosskurth, Michael W. Godfrey ,(2006)

Architecture and evolution of the modern web

browser. Retrieved from

http://grosskurth.ca/papers/browser- archevol-

20060619.pdf

[7] Allan Grosskurth and Michael Godfrey, (2014). Reference

architecture for web browsers. In Journal of Software

Maintenance and Evolution: Research and Practice, pp

1–7, 2006

 [8] Chris Anderson (2012). The Man Who Makes the

Future: Wired Icon Marc Andreessen. Retrieved from

http://www.wired.com/2012/04/ff_andreessen/all/

[9] Doug Deperry, (2012). HTML5 security in the modern

web browser perspective.

[10] Kamau, H.,McOyowo, S. & Okoyo, H. (2018):

Techniques to control memory hogging by web browsers.
International Journal of Computer Applications Technology

and Research. Vol. 7 issue 04,2018

 [11] Matthew Braga (2011): Web Browser

Showdown: Memory Management Tested. Retrieved

from http://www.tested.com/tech/web/2420-web-browser-

showdown-memory-management-tested/index.php

 [12] Michael Coates (2010). A journey in Security. HTML5,

Local Storage, and XSS. Retrieved from

http://michaelcoates.blogspot.com/2010/07/html5-local-

storage-and-xss.html

 [13] Paulina S., Raúl M., & Eduardo B. (2016). A Reference

Architecture for web browsers: Part I, A pattern for Web

Browser Communication

[14] Vrbanec, T., Kiric, N. & Varga, M. (2013). “The

evolution of web browser architecture”. SCIECONF

2013, pp. 472–480.

 [15] W3C (2004). Architecture of the World Wide Web,

Volume one. Retrieved from

http://www.w3.org/TR/webarch/

http://files.accuvant.com/web/files/AccuvantBrowserSecC
http://files.accuvant.com/web/files/AccuvantBrowserSecC
http://files.accuvant.com/web/files/AccuvantBrowserSecC
http://grosskurth.ca/papers/browser-
http://www.wired.com/2012/04/ff_andreessen/all/
http://www.tested.com/tech/web/2420-web-browser-
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/

