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Abstract

This article is a response to the continued assumption, cited even in reports and reviews of recent
experimental breakthroughs and advances in theoretical methods, that the antiJaynes-Cummings (AJC)
interaction is an intractable energy non-conserving component of the quantum Rabi model (QRM). We
present three key features of QRM dynamics : (a) the AJC interaction component has a conserved
excitation number operator and is exactly solvable (b) QRM dynamical space consists of a rotating
frame (RF) dominated by an exactly solved Jaynes-Cummings (JC) interaction specified by a conserved
JC excitation number operator which generates the U(1) symmetry of RF and a correlated counter-
rotating frame (CRF) dominated by an exactly solved antiJaynes-Cummings (AJC) interaction specified
by a conserved AJC excitation number operator which generates the U(1) symmetry of CRF (c) for
QRM dynamical evolution in RF, the initial atom-field state |e0〉 is an eigenstate of the effective AJC
Hamiltonian HAJC , while the effective JC Hamiltonian HJC drives this initial state |e0〉 into a time
evolving entangled state, and, in a corresponding process for QRM dynamical evolution in CRF, the
initial atom-field state |g0〉 is an eigenstate of the effective JC Hamiltonian, while the effective AJC
Hamiltonian drives this initial state |g0〉 into a time evolving entangled state, thus addressing one of the
long-standing challenges of theoretical and experimental QRM dynamics; consistent generalizations of

the initial states |e0〉 , |g0〉 to corresponding n ≥ 0 entangled eigenstates | Ψ
+

en〉 , |Ψ−

gn〉 of the AJC in
RF and JC in CRF, respectively, provides general dynamical evolution of QRM characterized by collapses
and revivals in the time evolution of the atomic, field mode, JC and AJC excitation numbers for large
initial photon numbers ; the JC and AJC excitation numbers are conserved in the respective frames RF
, CRF, but each evolves with time in the alternate frame.

1 Introduction

The quantum Rabi model (QRM) is the simplest form of quantized light-matter interaction coupling a single
two-level atom to a single mode of quantized light. The Hamiltonian of the system takes the standard form

HR = h̄ω

(

â†â+
1

2

)

+ h̄ω0sz + h̄g(â+ â†)(s− + s+) ; sz =
1

2
σz ; σx = s− + s+ (1)

where (â, â†, ω) and (sz , s−, s+, ω0) are the respective quantized field mode and atomic spin state operators
and frequencies with standard meanings, while g is the coupling constant. Opening the brackets in the
interaction term reveals that the HamiltonianHR is composed of a rotating component, the Jaynes-Cummings
(JC) interaction and a counter-rotating component, the antiJaynes-Cummings (AJC) interaction, which we
obtain explicitly below. Since the two components are algebraically correlated in the sense that they do not
commute, the quantum Rabi Hamiltonian HR must be considered in its full form, which has made it too
difficult, if not impossible, to determine the exact general time evolving state of QRM.

Great advances have been made in developing fairly accurate theoretical methods [1-5] to gain insight into
QRM dynamics beyond the rotating wave approximation (RWA). However, a major drawback has remained
the long-standing assumption that the antiJaynes-Cummings component does not have a conserved excitation
number and is not exactly solvable, even though it is now several years since the present author constructed
the AJC excitation number operator and proved its conservation in [6], followed by simpler reformulation
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and exact solutions of both JC and AJC dynamics in [7 , 8]. The good news is that experiments on the
full QRM have now made outstanding breakthroughs, determining details of the dynamics someway into the
USC-DSC regimes [9-12]. However, in both theoretical and experimental advances, the lack of information
on the solvability of the AJC interaction has meant that the coupling range is defined only from the JC
side where the rotating wave approximation (RWA) applies, considering the USC-DSC regimes far beyond
the RWA as the dynamical region dominated by the counter-rotating component of QRM. Since the main
purpose of the present article is to supply the long-missing information on the conserved excitation number
operator and exact solutions of the AJC interaction, we do not give details of the general historical and
technical developments of the outstanding theoretical and experimental achievements made so far on QRM,
but refer the interested readers to the most recent excellent reviews [13 , 14 , 15].

This article is organized as follows : we present the basic algebraic and dynamical structure of QRM in
section 2, where the JC and AJC components are defined together with the respective conserved excitation
number, U(1) and parity operators, as well as the rotating and counter-rotating frames RF , CRF, leading to
the corresponding rotating and counter-rotating wave approximations RWA , CRWA ; we develop dynamics
in RF (RWA) and CRF (CRWA) in section 3, where we provide consistent generalizations of the initial states
|e0〉 , |g0〉 to the corresponding n ≥ 0 entangled eigenstates of the AJC and JC in RF , CRF, respectively ;
the Conclusion is given in section 4.

2 Basic algebraic and dynamical structure of QRM

An important point to note is that the algebraic properties of the basic state operators of a fully quan-
tized system such as QRM directly determine the dynamical structure of the system. To achieve a clear
understanding of the internal structure of QRM dynamics, we begin by applying the algebraic properties of
the atom-field state operators â , â† , sz , s− , s+ to develop the basic algebraic structure, automatically
leading us to identification of two algebraically correlated dynamical frames of QRM as we now present in
this section.

2.1 Basic algebraic structure of QRM

Following the original work in [6] where details are presented, we apply normal and antinormal operator
ordering of the basic atomic and quantized field mode state operators to express the standard quantum Rabi
model (QRM) Hamiltonian HR in equation (1) in the symmetrized rotating and counter-rotating component
form [6-8]

HR =
1

2
(H +H ) (2a)

The rotating component H is the Jaynes-Cummings (JC) Hamiltonian obtained in the normal order form

H = h̄ωN̂ + h̄δsz + 2h̄g(âs+ + â†s−)−
1

2
h̄ω ; N̂ = â†â+ s+s− ; δ = ω0 − ω (2b)

where N̂ is the standard conserved excitation number operator of the JC interaction, commuting with the
Hamiltonian H according to

[N̂ , H ] = 0 (2c)

which we have proved explicitly in [6-8] and is easily proved here using the JC qubit state transition operator
introduced in equation (5c). The parameter δ = ω0 − ω in equation (2b) is the usual JC red-sideband
frequency detuning.

The counter-rotating component H is the antiJaynes-Cummings (AJC) Hamiltonian obtained in the
antinormal order form

H = h̄ωN̂ + h̄δsz + 2h̄g(âs− + â†s+)−
1

2
h̄ω ; N̂ = ââ† + s−s+ ; δ = ω0 + ω (2d)

where N̂ is the (long-missing) conserved excitation number operator of the AJC interaction, which we first
constructed and proved conserved in [6], commuting with the Hamiltonian H according to

[ N̂ , H ] = 0 (2e)

2



This commutation relation is easily proved here using the AJC qubit state transition operator introduced
in equation (7b) below. The parameter δ = ω0 + ω in equation (2d) is the AJC blue-sideband frequency
detuning.

The JC and AJC excitation number operators N̂ , N̂ commute, but each does not commute with the
alternate Hamiltonian according to

[ N̂ , N̂ ] = 0 ; [ N̂ , H ] 6= 0 ; [ N̂ , H ] 6= 0 ; [ H , H ] 6= 0 (2f)

where the last commutation relation shows that the JC and AJC components do not commute and are
therefore algebraically correlated as stated earlier.

With the specification of the basic algebraic structure provided above, we now present the U(1) and parity

symmetry properties of QRM generated by the JC and AJC excitation number operators N̂ , N̂ .

2.2 QRM in the rotating frame : RF

The free evolution operator U0(t) = e−iωtN̂ generated by the JC excitation number operator N̂ is a U(1)
symmetry operator which effects transformation of the JC and AJC Hamiltonians in equations (2b) , (2d) to
the rotating frame (RF) according to [6]

U0(t) = e−iωtN̂ : U †
0 (t)HU0(t) = H ; U †

0 (t) H U0(t) = h̄ω( N̂ − 1

2
) + h̄δsz +2h̄g(e−2iωtâs− + e2iωtâ†s+)

(3a)
Using equations (2a) , (2b) , (3a), we obtain the transformation of the QRM Hamiltonian HR to the rotating
frame reorganized in the final form

U †
0 (t)HRU0(t) = HJC + h̄g(e−2iωtâs− + e2iωtâ†s+) ; HJC = h̄ωN̂ + h̄δsz + h̄g(âs+ + â†s−) (3b)

where HJC is the effective JC Hamiltonian in the rotating frame.
According to equation (3b), the effective JC Hamiltonian HJC dominates over the fast oscillating AJC

interaction component in the RF. Hence, QRM dynamics in the RF is dominated by the JC interaction mech-
anism characterized by red-sideband transitions generated by the effective JC Hamiltonian HJC . Dropping
the fast oscillating AJC component in equation (3b), we obtain the QRM Hamiltonian in a rotating wave
approximation (RWA) in the RF in the form

U †
0HRU0(t) ≈ HJC (3c)

2.3 QRM in the counter-rotating frame : CRF

The free evolution operator U0(t) = e−iωt
ˆ
N generated by the AJC excitation number operator N̂ is a U(1)

symmetry operator which effects transformation of the JC and AJC Hamiltonians in equations (2b) , (2d) to
the counter-rotating frame (CRF) according to [6]

U0(t) = e−iωt
ˆ
N : U

†

0(t) H U0(t) = H ; U
†

0(t) H U0(t) = h̄ω(N̂− 1

2
)+ h̄δsz+2h̄g(e−2iωtâs++e2iωtâ†s−)

(3d)
Using equations (2a) , (2d) , (3d), we obtain the transformation of the QRM Hamiltonian HR to the counter-
rotating frame reorganized in the final form

U
†

0(t) HR U0(t) = HAJC+h̄g(e−2iωtâs++e2iωtâ†s−) ; HAJC = h̄ω( N̂−1)+h̄δsz+h̄g(âs−+â†s+) (3e)

where HAJC is the effective AJC Hamiltonian in the counter-rotating frame.
According to equation (3e), the effective AJC Hamiltonian HAJC dominates over the fast oscillating JC

interaction component in the CRF. Hence, QRM dynamics in the CRF is dominated by the AJC interaction
mechanism characterized by blue-sideband transitions generated by the effective AJC Hamiltonian HAJC .
Dropping the fast oscillating JC component in equation (3e), we obtain the QRM Hamiltonian in a counter-
rotating wave approximation (CRWA) in the CRF in the form

U
†

0 HR U0(t) ≈ HAJC (3f)
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2.4 QRM parity symmetry

An important algebraic property has arisen that QRM is characterized by two commuting excitation number
operators, namely, the JC conserved excitation number operator N̂ which generates U(1) symmetry in the

rotating frame according to equations (3a)-(3c), and the AJC conserved excitation number operator N̂ which
generates U(1) symmetry in the counter-rotating frame according to equations (3d)-(3f). The two excitation
number operators commute with the respective RF/CRF Hamiltonians HJC , HAJC , but each does not
commute with the Hamiltonian in the alternate frame according to

[ N̂ , HJC ] = 0 ; [ N̂ , HAJC ] 6= 0 ; [ N̂ , HAJC ] = 0 ; [ N̂ , HJC ] 6= 0 ; [ HJC , HAJC ] 6= 0 (4a)

where we recall [ N̂ , N̂ ] = 0 in equation (2f). We observe that equation (4a) essentially re-emphasizes the
commutation relations in equation (2f), now within the dynamical frames RF , CRF.

The U(1) symmetry generated by either excitation number operator N̂ or N̂ in the respective frame RF
or CRF is therefore not a common symmetry of the full QRM. However, in [6], we established that setting
ωt = kπ, k = 1, 2, 3, ..., in U0(t) , U0(t) in equations (3a) , (3d), provides the parity operator Π̂k = ( Π̂ )k

which generates parity symmetry as a common symmetry of QRM according to [6]

Π̂k = e−ikπN̂ = e−ikπ
ˆ
N = ( Π̂ )k ; Π̂ = e−iπN̂ = e−iπ

ˆ
N ; k = 1, 2, 3, ... (4b)

Π̂†
k H Π̂k = H ; Π̂†

k H Π̂k = H ⇒ Π̂†
k HR Π̂k = HR (4c)

where Π̂ in equation (4b) is the standard QRM parity operator in usual definition with respect to the JC
excitation number operator N̂ , but now given equivalent definition in terms of the AJC excitation number

operator N̂ . The equality arising in the corresponding definition with respect to the AJC excitation number

operator N̂ is easily proved [6], using the relation (recall ââ† = â†â+ 1 , s+s− + s−s+ = 1)

N̂ = N̂ + 2s−s+ : e−iπ
ˆ
N = e−iπN̂e−2iπs

−
s+ ; e−2iπs

−
s+ = I ⇒ e−iπ

ˆ
N = e−iπN̂ = Π̂ (4d)

This parity symmetry has been applied to obtain approximate solutions of QRM in the deep strong coupling
(DSC) regime [2] and exact stationary state solutions in [3], noting also the related dynamical evolution in
[1].

3 QRM dynamics in RF and CRF : following experiments

It follows from subsections 2.2− 2.3 that QRM has two dynamical frames, namely, the rotating frame (RF)
and the counter-rotating frame (CRF). Dynamics in RF is dominated by the JC interaction mechanism and
through a U(1) symmetry transformation generated by the conserved JC excitation number operator N̂ , the
QRM Hamiltonian is approximated by an effective JC Hamiltonian HJC in a rotating wave approximation
(RWA) according to equations (3b)-(3c). Dynamics in CRF is dominated by the AJC interaction mechanism
and through a U(1) symmetry transformation generated by the conserved AJC excitation number operator

N̂ , the QRM Hamiltonian is approximated by an effective AJC Hamiltonian HAJC in a counter-rotating wave
approximation (CRWA) according to equations (3e)-(3f). This specification of the QRM dynamical frames
which we have achieved here has never been done earlier, since CRF was never known to have a conserved

excitation number operator, until the present author constructed the correct form N̂ and proved conservation
in [6]. By a comparison with the theoretical models [1 , 2 , 4 , 13 , 14] and experimental designs [5 , 9-12 , 14
, 15] of the full QRM dynamics, RF as specified in the present article may be identified with the JC (weak-
strong coupling) regime, but CRF as specified here may not be interpreted as the USC-DSC regime where
the RWA breaks down and the counter-rotating terms (AJC interaction) start contributing to the dynamics.
We note that the definition of CRF in subsection 2.3 does not involve the dimensionless coupling parameter
g
ω
, which is explicitly used in characterizing the USC-DSC regimes [2 , 4 , 13 , 14], meaning that CRF,

even though dominated by the effective AJC interaction, may not necessarily be equivalent to the USC-DSC
regime. The property established earlier in [6] and in the present article that QRM dynamical frames RF

and CRF are each specified by a corresponding conserved excitation number operator N̂ , N̂ , respectively,
means that these commuting excitation number operators may be used as order parameters for characterizing
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QRM dynamics in RF and CRF regions of the general quantum state space. According to the commutation
relations in equation (4a), the JC excitation number operator N̂ is conserved in the dynamics generated
by the effective JC Hamiltonian HJC in RF, but non-conserved in the dynamics generated by the effective

AJC Hamiltonian HAJC in CRF, while the AJC excitation number operator N̂ is conserved in the dynamics
generated by the effective AJC Hamiltonian HAJC in CRF, but non-conserved in the dynamics generated by
the effective JC Hamiltonian HJC in RF. The dynamical property that the JC excitation number operator
N̂ is conserved in the RF (RWA) coupling regime, but evolves with time in the USC-DSC regime has been
determined in QRM experiments [9]. We now follow the initial states specified in the experiments and apply
the RF and CRF specifications in subsections 2.2−2.3 to determine and clarify the observed physical features
of QRM dynamics. The experiments have focussed attention on QRM dynamics evolving from an initial state
with the field mode in the vacuum state and the atom in excited or ground state specified by |e0〉 or |g0〉
in standard notation. In the present work, we provide consistent generalizations of these atom-field initial
states to include field mode initial states |n ≥ 0〉.

3.1 QRM dynamics in RF

We have established in subsection 2.2 that QRM dynamics in RF is generated by the effective JC Hamiltonian
HJC in RWA according to equations (3b)-(3c). The experiments [9-12] have identified the state |e0〉 with the
field mode in the vacuum state |0〉 and the atom in the excited state |e〉 as the appropriate initial state for
QRM dynamics in RF (JC regime). Here, we establish that the initial state |e0〉 in RF is an eigenstate of the
effective AJC Hamiltonian HAJC and provide a consistent generalization to the corresponding n ≥ 0 initial
AJC eigenstate which reduces to |e0〉 for n = 0.

3.1.1 Dynamics from initial state |e0〉
We introduce appropriate notation |ψe0〉 for the initial state and |ψg1〉 for the associated transition state
defined in standard notation as

|ψe0〉 = |e0〉 ; |ψg1〉 = |g1〉 (5a)

We observe that the effective AJC Hamiltonian HAJC does not generate dynamical evolution of the initial
state |e0〉 in RF, since |e0〉 is an eigenstate of HAJC , which, using HAJC from equation (3e) and applying
standard atom and field mode state algebraic operations, is easily established to satisfy an eigenvalue equation
(recall δ = ω0 + ω)

HAJC |ψe0〉 =
1

2
h̄(ω0 + ω)|ψe0〉 (5b)

where we identify the energy eigenvalue 1
2 h̄(ω0 + ω) as the atomic excited state energy 1

2 h̄ω0 and the field

mode vacuum state energy 1
2 h̄ω as expected. Equation (5b) means that the effective AJC Hamiltonian HAJC

generates only plane wave evolution e−
it
2
(ω0+ω)|ψe0〉 of the initial state |ψe0〉 which does not describe the

general QRM dynamics in RF. However, in agreement with the theoretical models and experiments, the
effective JC Hamiltonian HJC generates dynamical evolution of the initial state |ψe0〉 into a time evolving
entangled state which describes the general QRM dynamics in RF as we now demonstrate.

We introduce a JC qubit state transition operator Â and apply standard algebraic properties of the atom
and field mode state operators â , â† , sz , s− , s+ to determine the relation with the JC excitation number
operator N̂ in the form

Â = δsz + g(âs+ + â†s−) ; Â2 =
1

4
δ2 + g2N̂ (5c)

Using Â from equation (5c), we express the effective JC Hamiltonian HJC defined in equation (3b) in the
form

HJC = h̄ωN̂ + h̄Â (5d)

Conservation of the JC excitation number in the dynamics generated by HJC in RF is easily proved by using
the relations in equations (5c) , (5d) to show that N̂ commutes with HJC , thus confirming equations (2f) ,
(4a) and simplifying the earlier proof in [6].

Applying Â from equation (5c) on the initial state |ψe0〉 defined in equation (5a), using standard atom-field
state algebraic operations and reorganizing as appropriate, we obtain JC qubit states |ψe0〉 , |φe0〉 satisfying
qubit state transition algebraic operations in the form

Â |ψe0〉 = Re0|φe0〉 ; Â |φe0〉 = Re0|ψe0〉 (5e)
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where |φe0〉 is an entangled qubit transition state obtained in the form

|φe0〉 = ce0|ψe0〉+ se0|ψg1〉 ; Re0 = g
√

1 + ξ2 ; ce0 =
δ

2Re0
; se0 =

g

Re0
; ξ =

δ

2g
(5f)

We identify Re0 as the Rabi frequency of the JC qubit oscillations. Repeated application of Â on |ψe0〉 even
and odd number times using equation (5e) gives useful general qubit state transition algebraic operations

Â2k |ψe0〉 = R2k
e0 |ψe0〉 ; Â2k+1 |ψe0〉 = R2k+1

e0 |φe0〉 ; k = 0, 1, 2, 3, ... (5g)

The general time evolving state |Ψe0(t)〉 describing QRM dynamics generated by HJC from the initial
state |ψe0〉 is obtained in the form

|Ψe0(t)〉 = UJC(t)|ψe0〉 ; UJC(t) = e−
it
h̄
HJC (6a)

where UJC(t) is the JC time evolution operator which on substituting HJC from equation (5d) and noting
the commutation relation [ N̂ , Â ] = 0 takes the factorized form

UJC(t) = e−itÂe−iωtN̂ (6b)

Substituting this into equation (6a) and applying N̂ = â†â+ s+s− on |ψe0〉 gives

N̂ |ψe0〉 = |ψe0〉 ⇒ |Ψe0(t)〉 = e−iωte−itÂ|ψe0〉 (6c)

Expanding e−itÂ and reorganizing in even and odd power terms

e−itÂ =

∞
∑

k=0

(−1)kt2k

(2k)!
Â2k − i

∞
∑

k=0

(−1)kt2k+1

(2k + 1)!
Â2k+1 (6d)

and substituting into equation (6c), applying the general qubit state algebraic operations from equation (5g),
then introducing standard trigonometric expansions, we obtain the general time evolving state in the final
form

|Ψe0(t)〉 = e−iωt(cos(Re0t)|ψe0〉 − i sin(Re0t)|φe0〉) (6e)

which describes Rabi oscillations at frequency Re0 between the initial separable state |ψe0〉 and an entangled
transition state |φe0〉. Substituting |φe0〉 from equation (5f) into equation (6e), reorganizing and introducing
the definitions of |ψe0〉 , |ψg1〉 from equation (5a) reveals that in general, the time evolving state |Ψe0(t)〉 is
a normalized entangled state obtained in the form

|Ψe0(t)〉 = e−iωt( (cos(Re0t)− ice0 sin(Re0t) )|e0〉 − ise0 sin(Re0t)|g1〉) ; 〈Ψe0(t)|Ψe0(t)〉 = 1 (6f)

Hence, as we set out to demonstrate, the effective JC Hamiltonian HJC generates dynamical evolution of the
initial atom-field state |e0〉 into a time evolving entangled state |Ψe0(t)〉 in RF. We can now compare QRM
dynamics described by |Ψe0(t)〉 in RF to the corresponding dynamical features observed in the JC ( g

ω
= 0.04)

regime in the QRM simulation experiment in [9]. In this respect, we determine the atomic excitation number,
field mode mean photon number, the JC and AJC excitation numbers in the state |Ψe0(t)〉.

Applying the JC excitation number operator N̂ on |Ψe0(t)〉 gives an eigenvalue equation

N̂ |Ψe0(t)〉 = |Ψe0(t)〉 ⇒ N(t) = 1 (6g)

from which it follows that the JC excitation number N(t) is conserved in the QRM dynamics generated
by the effective JC Hamiltonian HJC in RF as expected from the corresponding commutation relation
[ N̂ , HJC ] = 0 in equation (4a). The experiment in [9] confirmed conservation of the JC excitation number
(the only total excitation number known at the time of the experiment) in the corresponding JC regime
characterized by g

ω
= 0.04 in [9].

We determine the atomic population inversion sz(t) and excitation number s+s−(t), the field mode mean

photon number n(t) and the AJC excitation number N(t) in the QRM time evolving state |Ψe0(t)〉 in RF in
the form (recall s+s− = 1

2 + sz ; s−s+ = 1
2 − sz)

sz(t) =
1

2
(1−2s2e0 sin

2(Re0t)) ; s+s−(t) =
1

2
+sz(t) ; n(t) = s2e0 sin

2(Re0t) ; N(t) = 2(1−sz(t)) (6h)
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It follows immediately from equation (6h) that the AJC excitation number N(t) is non-conserved and evolves
in time in the QRM dynamics generated by the effective JC Hamiltonian HJC in RF as expected from the

corresponding commutation relation [ N̂ , HJC ] 6= 0 in equation (4a). This dynamical evolution was not
investigated in [9], since the authors were not yet aware of the existence of the AJC excitation number
operator as a QRM order parameter at the time of the experiment in [9].

The form of dynamical evolution of the atomic excitation number X = s+s−(t) and the field mode
mean photon number F = n(t), characterized by pure Rabi oscillations in Fig.1 , Fig.2, respectively, agrees
precisely with the corresponding dynamical evolution observed in the JC ( g

ω
= 0.04) regime in the experiment

in [9]. Fig.3 reveals the conservation of the JC excitation number N(t) in RF, agreeing with the behavior

observed in the JC regime in [9]. The dynamical evolution of the AJC excitation number N(t) in Fig.4 was
not investigated in [9] as we have already explained.

2 4 6 8 10 12 14
Τ

0.2

0.4

0.6

0.8

1.0

RF-X0

Figure 1: JC-atomic excitation number in RF s+s−(τ) , τ = gt : ξ = 0 ; ε = ...

2 4 6 8 10 12 14
Τ

0.2

0.4

0.6

0.8

1.0

RF-F0

Figure 2: JC-field mode mean photon number in RF n(τ) , τ = gt : ξ = 0 ; ε = ...

2 4 6 8 10 12 14
Τ

0.5

1.0

1.5

2.0

RF- JCE0

Figure 3: JC-excitation number in RF N(τ) , τ = gt : ξ = 0 ; ε = ...
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2 4 6 8 10 12 14
Τ

1.5

2.0

2.5

3.0

RF-AJCE0

Figure 4: AJC-excitation number in RF N(τ) , τ = gt : ξ = 0 ; ε = ...

There are two points to note at this stage : (i) in presenting the dynamical evolution in Fig.1-Fig.4, we have
set the dimensionless coupling parameter ξ = δ

2g = 0 coinciding with ω0 = ω in [9], but the parameter ε−1 = g
ω

used to characterize the coupling regimes in [9] does not affect the dynamical evolution described by |Ψe0(t)〉
in RF, noting δ = 0, ξ = 0 gives Re0 = g, ce0 = 0, se0 = 1, |Ψe0(t)〉 = e−iωt( cos(Re0t)|e0〉 − i sin(Re0t)|g1〉)
according to equations (5f) , (6f) (ii) taking note of the dynamical features of the USC-DSC regimes regarding
the vacuum state [1 , 4 , 5 , 11 , 12], the atom-field initial state in [9] is defined with the field mode in a
displaced vacuum state with displacement parameter ± g

ω
, while the atom may be in an eigenstate of the spin

operator σx = s−+s+ so that the general dynamical evolution of the atom-field initial state takes the form of
a Schroedinger cat state, which depends on the coupling regime parameter g

ω
. Varying g

ω
from the JC to the

USC-DSC regimes then determines the dynamical features of QRM as observed in the three coupling regimes
in [9]. To obtain corresponding dynamical features in the description developed in the present article, we
provide a consistent generalization of the atom-field initial state |e0〉 to an n ≥ 0 entangled eigenstate of the
effective AJC Hamiltonian HAJC here below.

3.1.2 Dynamics from a general initial AJC eigenstate

Noting that the initial state |ψe0〉 used above in developing QRM dynamics in RF is an eigenstate of the
AJC Hamiltonian HAJC according to equation (5b), we now provide a consistent generalization to an n ≥ 0
initial AJC eigenstate. Since the atom starts in the excited state |e〉, the basic n ≥ 0 atom-field state is |en〉.
Considering that the state algebraic operation for determining a general eigenstate of the AJC Hamiltonian
couples the state |en〉 to the state |gn − 1〉, we introduce appropriate notation |ψen〉 , |ψgn−1〉 for the two
states in the form

|ψen〉 = |en〉 ; |ψgn−1〉 = |gn− 1〉 (7a)

Introducing an AJC qubit state transition operator Â related to the AJC excitation number operator N̂
defined by

Â = δsz + g(âs− + â†s+) ; Â
2

=
1

4
δ
2
+ g2( N̂ − 1) (7b)

we express the effective AJC Hamiltonian HAJC in equation (3e) in the form

HAJC = h̄ω( N̂ − 1) + h̄Â (7c)

Applying Â from equation (7b) on the state |ψen〉 in equation (7a), reorganizing, then applying Â on the
resulting transition state | φen〉, we determine AJC qubit states |ψen〉 , | φen〉 satisfying qubit state algebraic
operations

Â |ψen〉 = Ren| φen〉 ; Â | φen〉 = Ren|ψen〉 (7d)

where

| φen〉 = cen|ψen〉+ sen|ψgn−1〉 ; Ren = g
√

n+ (ξ + ε)2 ; cen =
δ

2Ren

; sen =
g
√
n

Ren

; ε =
ω

g
(7e)

where we have rewritten δ = δ + 2ω , δ/2g = δ/2g + ω/g and the parameter ξ = δ/2g is defined in equation
(5f). We identify Ren as the Rabi frequency of oscillations between the AJC qubit states |ψen〉 , | φen〉, well
developed in [7 , 8] and in subsection 3.2 below.

Noting that the qubit states |ψen〉 , | φen〉 are non-orthogonal satisfying

〈ψen|ψen〉 = 1 , 〈ψen| φen〉 = cen , 〈 φen|ψen〉 = cen , 〈 φen| φen〉 = 1 (7f)
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we introduce normalized AJC eigenstates | Ψ +

en 〉 , | Ψ
−

en 〉 obtained as simple linear combinations of the qubit
states in the form

| Ψ +

en 〉 =
1

√

2(1 + cen)
(|ψen〉+ | φen〉) ; | Ψ −

en 〉 =
1

√

2(1− cen)
(|ψen〉 − | φen〉) (7g)

satisfying eigenvalue equations

Â | Ψ ±

en 〉 = ±Ren | Ψ ±

en 〉 ; N̂ | Ψ ±

en 〉 = (n+ 1)| Ψ ±

en 〉

HAJC | Ψ ±

en 〉 = E
±

en | Ψ ±

en 〉 ; E
±

en = h̄ωn± h̄Ren (7h)

If we now set n = 0 in equations (7e) , (7g) , (7h), the general n ≥ 0 eigenstates | Ψ ±

en 〉 reduce to the forms
(recalling δ = ω0 + ω )

n = 0 : | Ψ +

en 〉 → | Ψ +

e0 〉 = |ψe0〉 ; E
+

e0 =
1

2
h̄(ω0 + ω)

| Ψ −

en 〉 → | Ψ −

e0 〉 = 0 ; E
−

e0 = −1

2
h̄(ω0 + ω) (7i)

which show that | Ψ +

en 〉 is the general n ≥ 0 AJC eigenstate which reduces to the n = 0 initial state |ψe0〉
with the correct AJC energy eigenvalue E

+

e0 = 1
2 h̄(ω0+ω) agreeing precisely with equation (5b). Notice that

for n = 0, the eigenstate | Ψ −

en 〉 reduces to | Ψ −

e0 〉 = 0 specified by energy eigenvalue E
−

e0 = − 1
2 h̄(ω0 + ω)

which may represent a closed state in the lower AJC spectrum with the atom in the normal ground state of
energy − 1

2 h̄ω0 and the field mode in the antinormal vacuum state of negative energy − 1
2 h̄ω.

From equation (7i), we identify | Ψ +

en 〉 in equation (7g) as the consistent n ≥ 0 generalization of the
AJC eigenstate defining the general initial state for general QRM dynamics generated by the effective JC
Hamiltonian HJC in RF which we now present below. In this respect, we substitute the definition of | φen〉
from equation (7e) into equation (7g) and reorganize to express | Ψ +

en 〉 in the form

| Ψ +

en 〉 =
1

√

2(1 + cen)
( (1 + cen)|ψen〉+ sen|ψgn−1〉) (7j)

Substituting the definitions of |ψen〉 , |ψgn−1〉 from equation (7a) reveals that | Ψ +

en 〉 is an entangled state.
Note that choosing an AJC eigenstate as the initial state inactivates the AJC interaction in the QRM
dynamics in RF, noting that according to the eigenvalue equation (7h), HAJC generates only plane wave

evolution e−
i
h̄
E+

ent| Ψ +

en 〉.
The general time evolving state |ΨRF (t)〉 of general QRM dynamics in RF is generated from the general

initial n ≥ 0 AJC eigenstate | Ψ +

en 〉 through the effective JC Hamiltonian HJC according to

|ΨRF (t)〉 = UJC(t)| Ψ
+

en 〉 (8a)

where the time evolution operator UJC(t) is defined in equations (6a)-(6b). Substituting | Ψ +

en 〉 from equation
(7j) into equation (8a) gives the form

|ΨRF (t)〉 =
1

√

2(1 + cen)
( (1 + cen)|Ψen(t)〉+ sen|Ψgn−1(t)〉)

|Ψen(t)〉 = UJC(t)|ψen〉 ; |Ψgn−1(t)〉 = UJC(t)|ψgn−1〉 (8b)

Applying the JC qubit state transition operator Â from equation (5c) on |ψen〉 , |ψgn−1〉 generates the
respective qubit states (|ψen〉 , |φen〉) , (|ψgn−1〉 , |φgn−1〉) satisfying state transition algebraic operations

Â |ψen〉 = Ren+1|φen〉 ; Â |φen〉 = Ren+1|ψen〉 ; |φen〉 = cen+1|ψen〉+ sen+1|ψgn+1〉

|ψgn+1〉 = |gn+ 1〉 ; Ren+1 = g
√

(n+ 1) + ξ2 ; cen+1 =
δ

2Ren+1
; sen+1 =

g
√
n+ 1

Ren+1
(8c)
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Â |ψgn−1〉 = Rgn−1|φgn−1〉 ; Â |φgn−1〉 = Rgn−1|ψgn−1〉 ; |φgn−1〉 = −cgn−1|ψgn−1〉+ sgn−1|ψen−2〉

|ψen−2〉 = |en− 2〉 ; Rgn−1 = g
√

(n− 1) + ξ2 ; cgn−1 =
δ

2Rgn−1
; sgn−1 =

g
√
n− 1

Rgn−1
(8d)

where Ren+1 , Rgn−1 are the respective Rabi frequencies of qubit oscillations.
Substituting UJC(t) from equation (6b) into equation (8b), noting

N̂ |ψen〉 = (n+ 1)|ψen〉 ; N̂ |ψgn−1〉 = (n− 1)|ψgn−1〉 (8e)

and using equation (6d) with repeated application of Â on |ψen〉 , |ψgn−1〉 even and odd number of times,
giving general qubit state algebraic relations similar to the relations in equation (5g), then introducing
trigonometric functions according to the expansions as appropriate, we obtain

|Ψen(t)〉 = e−iω(n+1)t(cos(Ren+1t)|ψen〉 − i sin(Ren+1t)|φen〉)

|Ψgn−1(t)〉 = e−iω(n−1)t(cos(Rgn−1t)|ψgn−1〉 − i sin(Rgn−1t)|φgn−1〉) (8f)

Substituting these into equation (8b) provides the explicit form of the general time evolving QRM state
|ΨRF (t)〉 in RF generated by the effective JC Hamiltonian HJC from the general n ≥ 0 entangled AJC eigen-

state | Ψ +

en 〉 according to equation (8a). Introducing the definitions of the states ( |ψen〉 , |ψgn+1〉 , |φen〉 )
and ( |ψgn−1〉 , |ψen−2〉 , |φgn−1〉 ) from equations (7a) , (8c) , (8d) reveals that |ΨRF (t)〉 is a general time
evolving entangled state.

We easily obtain orthonormalization relations

〈Ψen(t)|Ψen(t)〉 = 1 ; 〈Ψen(t)|Ψgn−1(t)〉 = 0 ; 〈Ψgn−1(t)|Ψen(t)〉 = 0 ; 〈Ψgn−1(t)|Ψgn−1(t)〉 = 1

〈ΨRF (t)|ΨRF (t)〉 = 1 (8g)

We obtain the JC excitation number N(t) in the general time evolving QRM state |ΨRF (t)〉 in the form

N(t) = n+ 1− s2en
1 + cen

(8h)

which once again confirms that the JC excitation number is conserved in RF as expected according to the
commutation relation [ N̂ , HJC ] = 0 in equation (4a). The atomic population inversion and excitation

sz(t) , s+s−(t), the field mode mean photon number n(t) and the AJC excitation number N(t) in the general
QRM state |ΨRF (t)〉 in RF are obtained in the form

sz(t) =
1

4(1 + cen)
{ (1 + cen)

2(1− 2s2en+1 sin
2(Ren+1t))− s2en(1− 2s2gn−1 sin

2(Rgn−1t)) }

s+s−(t) =
1

2
+ sz(t) ; n(t) = n+

1

2
− s2en

1 + cen
− sz(t) ; N(t) = n− s2en

1 + cen
+ 2(1− sz(t)) (8i)

We observe that setting n = 0 reduces |ΨRF (t)〉 in equation (8b) to |Ψe0(t)〉 in equation (6e) , (6f) and the
results in equation ((8i) reduce to the corresponding results in equation (6h), showing that QRM dynamical

evolution from the general n ≥ 0 entangled AJC eigenstate | Ψ +

en 〉 in equation (7j) is a consistent generaliza-
tion of the dynamical evolution from the n = 0 AJC eigenstate |ψe0〉 in equation (5a). Plots of the excitation
numbers in equation (8i) for initial field mode photon number n = 0 reproduce the corresponding plots in
Fig.1-Fig.4.

For initial photon numbers n ≥ 1, the time evolution of the excitation numbers in equation (8i) is
characterized by quantum collapses and revivals largely determined by the field mode initial photon number
n, which we display for the arbitrarily chosen case n = 40 in Fig.5-Fig.7 for the atomic excitation number

X = s+s−(t), field mode mean photon number F = n(t) and the AJC excitation number N(t), respectively.
In contrast to the collapse and revival phenomena in the USC-DSC regime due to specification of the atom-
field initial state with field mode in initial displaced vacuum state in [9], the collapse and revival phenomenon
revealed here in Fig.5-Fig.7 is due to the superposition of time evolving entangled states |Ψen(t)〉 , |Ψgn−1(t)〉
with competing Rabi frequencies Ren+1 , Rgn−1 which constitute the general QRM state |ΨRF (t)〉 in RF
according to equations (8b) , (8f). We observe that the collapses and revivals in Fig.5-Fig.7 agree particularly
well with the field mode mean photon number collapses and revivals obtained in [1].
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Figure 5: JC-atomic excitation number in RF s+s−(τ) , τ = gt : ξ = 0 ; ε = ... ; n = 40
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Figure 6: JC-field mode mean photon number in RF n(τ) , τ = gt : ξ = 0 ; ε = ... ; n = 40
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Figure 7: AJC-excitation number in RF N(τ) , τ = gt : ξ = 0 ; ε = ... ; n = 40
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We note that the collapse-revival phenomenon revealed here in Fig.5-Fig.7 is a familiar dynamical feature
of JC interaction mechanism for atom-field initial states formed from superpositions of atom or field mode
states with specified initial photon distributions, which may not be related in any way to the interaction
mechanisms in the USC-DSC regimes of QRM as generally defined in [1 , 2 , 4 , 9-15]. QRM dynamics in
the USC-DSC regime has generally been associated with the AJC component, but without specifying how
the AJC interaction generates dynamical evolution from an initial state, which we now present in the next
subsection.

3.2 QRM dynamics in CRF

We have established in subsection 2.3 that QRM dynamics in CRF is generated by the effective AJC Hamil-
tonian HJC in CRWA according to equations (3e)-(3f). We note that various theoretical and experimental
studies of QRM beyond the RWA have characterized CRF as the USC-DSC regime [1 , 2 , 4 , 9-15]. With
this USC-DSC characterization in mind, we follow the experiments [9-12] in identifying and using the state
|g0〉 with the field mode in the vacuum state |0〉 and the atom in the ground state |g〉 as the appropriate
initial state for QRM dynamics in CRF. Here, we establish that the initial state |g0〉 in CRF is an eigenstate
of the effective JC Hamiltonian HJC and provide a consistent generalization to the corresponding n ≥ 0
initial JC eigenstate which reduces to |g0〉 for n = 0.

3.2.1 Dynamics from initial state |g0〉
We introduce appropriate notation |ψg0〉 for the initial state and |ψe1〉 for the associated transition state
defined in standard notation as

|ψg0〉 = |g0〉 ; |ψe1〉 = |e1〉 (9a)

Determining the dynamical evolution of the QRM ground state |g0〉 has been problematic, noting that the
effective JC Hamiltonian HJC cannot generate dynamical evolution of |g0〉 in CRF, since this initial state
is an eigenstate of HJC . Indeed, using HJC from equation (3b) and applying standard atom and field mode
state algebraic operations, we easily establish that the QRM ground state |ψg0〉 is an eigenstate of the effective
JC Hamiltonian satisfying an eigenvalue equation (recall δ = ω0 − ω)

HJC |ψg0〉 = −1

2
h̄(ω0 − ω)|ψg0〉 (9b)

where we identify the energy eigenvalue − 1
2 h̄(ω0 − ω) as the atomic ground state energy − 1

2 h̄ω0 and the
field mode vacuum state energy 1

2 h̄ω as expected. Equation (9b) means that the effective JC Hamiltonian

HJC generates only plane wave evolution e
it
2
(ω0−ω)|ψg0〉 of the initial state |ψg0〉 which does not describe

the general QRM dynamics in CRF. However, the effective AJC Hamiltonian HAJC generates dynamical
evolution of the initial state |ψg0〉 into a time evolving entangled state which describes the general QRM
dynamics in CRF as we now demonstrate.

We recall the AJC qubit state transition operator Â and effective Hamiltonian HAJC as defined in
equations (7b)-(7c), which we now rewrite here for ease of reference as

Â = δsz + g(âs− + â†s+) ; Â
2

=
1

4
δ
2
+ g2( N̂ − 1) ; HAJC = h̄ω( N̂ − 1) + h̄Â (9c)

Conservation of the AJC excitation number in the dynamics generated by HAJC in CRF is easily proved by

using the relations in equation (9c) to show that N̂ commutes with HAJC , thus confirming equations (2f) ,
(4a) and here again simplifying the earlier proof in [6].

Applying Â from equation (9c) on the initial state |ψg0〉 defined in equation (9a), using standard atom-
field state algebraic operations and reorganizing as appropriate, we obtain AJC qubit states |ψg0〉 , | φg0〉
satisfying qubit state transition algebraic operations in the form

Â |ψg0〉 = Rg0| φg0〉 ; Â | φg0〉 = Rg0|ψg0〉 (9d)

where | φg0〉 is an entangled qubit transition state obtained in the form

| φg0〉 = −cg0|ψg0〉+ sg0|ψe1〉 ; Rg0 = g
√

1 + (ξ + ε)2 ; cg0 =
δ

2Rg0

; sg0 =
g

Rg0

(9e)
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The general time evolving state | Ψg0(t)〉 describing QRM dynamics generated by HAJC from the initial
state |ψg0〉 is obtained in the form

| Ψg0(t)〉 = UAJC(t)|ψg0〉 ; UAJC(t) = e−
it
h̄
HAJC (10a)

where UAJC(t) is the AJC time evolution operator which on substituting HAJC from equation (9c) and

noting the commutation relation [ N̂ , Â ] = 0 takes the factorized form

UAJC(t) = e−it
ˆ
Ae−iωt(

ˆ
N−1) (10b)

Substituting this into equation (10a) and applying N̂ = ââ† + s−s+ on |ψg0〉 gives

( N̂ − 1)|ψg0〉 = |ψg0〉 ⇒ | Ψg0(t)〉 = e−iωte−it
ˆ
A |ψg0〉 (10c)

Expanding e−it
ˆ
A in even and odd power terms similar to the corresponding JC time evolution operator

expansion in equation (6d) and substituting into equation (10c), we apply Â on |ψg0〉 even and odd number
of times using the qubit state transition algebraic operations from equation (9d) giving relations similar to
equation (5g) and then introduce trigonometric functions in the expansions as appropriate to obtain the
general time evolving state in the final form

| Ψg0(t)〉 = e−iωt(cos( Rg0t)|ψg0〉 − i sin( Rg0t)| φg0〉) (10d)

which describes Rabi oscillations at frequency Rg0 between the initial separable state |ψg0〉 and the entan-
gled transition state | φg0〉. Substituting | φg0〉 from equation (9e) into equation (10d), reorganizing and
introducing the definitions of |ψg0〉 , |ψe1〉 from equation (9a) reveals that in general, the time evolving state
| Ψg0(t)〉 is a normalized entangled state obtained in the form

| Ψg0(t)〉 = e−iωt( (cos( Rg0t)+ i cg0 sin( Rg0t) )|g0〉− i sg0 sin( Rg0t)|e1〉) ; 〈 Ψg0(t)| Ψg0(t)〉 = 1 (10e)

Hence, as we set out to demonstrate, the effective AJC Hamiltonian HAJC generates dynamical evolution of
the initial atom-field state |g0〉 into a time evolving entangled state | Ψg0(t)〉 in CRF. We observe that this
form of dynamical evolution of the QRM ground state |g0〉 into a time evolving entangled state generated
by the effective AJC Hamiltonian has never been determined in the various theoretical models or related
experiments in [1 , 2 , 4 , 9-15] and others, noting that the solution procedure for AJC interaction has
only been developed by the present author in recent work [6-8]. As we pointed out earlier, considering the
dynamical features of QRM in the USC-DSC regime, the authors of studies in [1 , 2 , 4 , 9-15] defined the
initial atom-field ground state |g0〉 in a more general form with the field mode in initial displaced vacuum
state and the atom in initial eigenstate of the spin operator σx = s− + s+, so that the ground state evolves
into a Schroedinger cat state in the USC-DSC regime [9 , 12 , 14 , 15]. Comparison of QRM dynamics
described by | Ψg0(t)〉 in CRF with the dynamical features observed in the USC-DSC regime in the QRM
simulation experiments in [9-12] may therefore be inappropriate, since the definition of CRF as a dynamical
frame of QRM as we have developed it in this article is independent of the coupling parameter g

ω
used to

characterize the QRM coupling regimes in [1 , 2 , 4 , 9-15], meaning that CRF may not be equivalent to the
USC-DSC regime. With this in mind, we determine the atomic excitation number, field mode mean photon
number, the JC and AJC excitation numbers to study QRM dynamical features in the state |Ψg0(t)〉 in CRF.

Applying the AJC excitation number operator N̂ on | Ψg0(t)〉 gives an eigenvalue equation

N̂ | Ψg0(t)〉 = 2| Ψg0(t)〉 ⇒ N(t) = 2 (10f)

from which it follows that the AJC excitation number N(t) is conserved in the QRM dynamics generated
by the effective AJC Hamiltonian HAJC in CRF as expected from the corresponding commutation relation

[ N̂ , HJC ] = 0 in equation (4a). This property has never been investigated experimentally, since, as we
have explained earlier, the AJC excitation number operator has largely been unknown to both theoreticians
and experimentalists, a fact which has necessitated the work presented in this article.

Noting that AJC operators are defined in antinormal order form, we determine the atomic population
inversion sz(t) and antinormal order excitation number s−s+(t), the field mode antinormal order photon
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number aa∗(t) = n(t)+1 and the JC excitation number N(t) (normal order) in the QRM time evolving state
| Ψg0(t)〉 in CRF in the form (recall s+s− = 1

2 + sz ; s−s+ = 1
2 − sz ; ââ† = â†â+ 1)

sz(t) = −1

2
(1− 2s2g0 sin

2( Rg0t)) ; s−s+(t) =
1

2
− sz(t) ; n(t) = s2g0 sin

2( Rg0t) ; aa∗(t) = 1 + n(t)

N(t) = n(t) +
1

2
+ sz(t) (10g)

It follows from equation (10g) that the JC excitation number N(t) is non-conserved and evolves in time
in the QRM dynamics generated by the effective AJC Hamiltonian HAJC in CRF as expected from the
corresponding commutation relation [ N̂ , HAJC ] 6= 0 in equation (4a). Experiments [9] have established
that the JC excitation number N(t) is conserved in the JC regime corresponding to RF here, but evolves in
time in the USC-DSC regime, which is associated with, but not necessarily equivalent to CRF. In general,
the experimental observations agree with the results we have obtained in equations (6g) , (8h) in RF and
here in equation (10g) in CRF. Here, we now only mention the familiar and overemphasized fact that the

non-conservation of the AJC excitation number N(t) in equations (6h) , (8i) in RF and its conservation
determined here in equation (10f) in CRF has not been investigated in experiments.

We have plotted the antinormal atomic excitation number X = s−s+(t), the field mode mean antinormal

photon number F = aa∗(t), the AJC and JC excitation numbers N(t) , N(t) from equation (10g) in Fig.8-
Fig.11, respectively. We notice the striking similarity with the time evolution of corresponding quantities
determined in the JC interaction in RF plotted in Fig.1-Fig.4. The similarity in the form of time evolution is
that the excitation and mean photon numbers are defined in quadratic form in both JC and AJC interactions.
We observe that the non-quadratic atomic state population inversion sz(t) and the coherence functions sx ,
sy(t) obtained in JC and AJC interactions in RF , CRF evolve in time in reverse order, which we have not
plotted.
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Figure 8: AJC-atomic antinormal excitation number in CRF s−s+(τ) , τ = gt : ξ = 1
1.31 ; ε = 0.16 ; n = 0
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Figure 9: AJC-field mode mean antinormal photon number in CRF aa∗(τ) , τ = gt : ξ = 1
1.31 ; ε =

0.16 ; n = 0
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Figure 10: AJC-excitation number in CRF N(τ) , τ = gt : ξ = 1
1.31 ; ε = 0.16 ; n = 0
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Figure 11: JC-excitation number in CRF N(τ) , τ = gt : ξ = 1
1.31 ; ε = 0.16 ; n = 0

We now generalize the initial atom-field state by determining the n ≥ 0 JC eigenstate which reduces to
the ground state |g0〉 at n = 0.

3.2.2 Dynamics from a general initial JC eigenstate

Noting that the initial state |ψ00〉 used above in developing QRM dynamics in CRF is an eigenstate of the
JC Hamiltonian HJC according to equation (9b), we now provide a consistent generalization to an n ≥ 0
initial JC eigenstate. Since the atom starts in the ground state |g〉, the basic n ≥ 0 atom-field state is |gn〉.
Considering that the state algebraic operation for determining a general eigenstate of the JC Hamiltonian
couples the state |gn〉 to the state |en − 1〉, we introduce appropriate notation |ψgn〉 , |ψen−1〉 for the two
states in the form

|ψgn〉 = |gn〉 ; |ψen−1〉 = |en− 1〉 (11a)

Applying the JC qubit state transition operator Â from equation (5c) on the state |ψgn〉 in equation (11a),

reorganizing, then applying Â on the resulting transition state |φgn〉, we determine JC qubit states |ψgn〉 ,
|φgn〉 satisfying qubit state algebraic operations

Â |ψgn〉 = Rgn|φgn〉 ; Â |φgn〉 = Rgn|ψgn〉 (11b)

where

|φgn〉 = −cgn|ψgn〉+ sgn|ψen−1〉 ; Rgn = g
√

n+ ξ2 ; cgn =
δ

2Rgn

; sgn =
g
√
n

Rgn

(11c)

Noting that the qubit states |ψgn〉 , |φgn〉 are non-orthogonal satisfying

〈ψgn|ψgn〉 = 1 , 〈ψgn|φgn〉 = −cgn , 〈φgn|ψgn〉 = −cgn , 〈φgn|φgn〉 = 1 (11d)

we introduce normalized JC eigenstates |Ψ +
gn〉 , |Ψ −

gn〉 obtained as simple linear combinations of the qubit
states in the form

|Ψ +
gn〉 =

1
√

2(1− cgn)
(|ψgn〉+ |φgn〉) ; |Ψ −

gn〉 =
1

√

2(1 + cgn)
(|ψgn〉 − |φgn〉) (11e)

satisfying eigenvalue equations

Â |Ψ ±
gn〉 = ±Rgn |Ψ ±

gn〉 ; N̂ |Ψ ±
gn〉 = n|Ψ ±

gn〉
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HJC |Ψ ±
gn〉 = E ±

gn |Ψ ±
gn〉 ; E ±

gn = h̄ωn± h̄Rgn (11f)

If we now set n = 0 in equations (11c) , (11e) , (11f), the general n ≥ 0 eigenstates |Ψ ±
gn〉 reduce to the

forms (recalling δ = ω0 − ω )

n = 0 : |Ψ +
gn〉 → |Ψ +

g0 〉 = 0 ; E +
g0 =

1

2
h̄(ω0 − ω)

|Ψ −
gn〉 → |Ψ −

g0 〉 = |ψg0〉 ; E −
g0 = −1

2
h̄(ω0 − ω) (11g)

which show that |Ψ −
gn〉 is the general n ≥ 0 JC eigenstate which reduces to the n = 0 initial state |ψg0〉 with

the correct JC energy eigenvalue E −
g0 = − 1

2 h̄(ω0 − ω) agreeing precisely with equation (9b). Notice that for

n = 0, the eigenstate |Ψ +
gn〉 reduces to |Ψ +

g0 〉 = 0 specified by energy eigenvalue E +
g0 = 1

2 h̄(ω0 − ω) which
may represent a closed state in the upper JC spectrum with the atom in the normal excited state of energy
1
2 h̄ω0 and the field mode in the antinormal vacuum state of negative energy − 1

2 h̄ω.
From equation (11g), we identify |Ψ −

gn〉 in equation (11e) as the consistent n ≥ 0 generalization of the
JC eigenstate defining the general initial state for general QRM dynamics generated by the effective AJC
Hamiltonian HAJC in CRF which we now present below. In this respect, we substitute the definition of |φgn〉
from equation (11c) into equation (11e) and reorganize to express |Ψ −

gn〉 in the form

|Ψ −
gn〉 =

1
√

2(1 + cgn)
( (1 + cgn)|ψgn〉 − sgn|ψen−1〉) (11h)

Substituting the definitions of |ψgn〉 , |ψen−1〉 from equation (11a) reveals that |Ψ −
gn〉 is an entangled state.

Note that choosing a JC eigenstate as the initial state inactivates the JC interaction in the QRM dynamics
in CRF, seeing that according to the eigenvalue equation (11f), HJC only generates plane wave evolution

e−
i
h̄
E−

gnt|Ψ−
gn〉.

The general time evolving state | ΨCRF (t)〉 of general QRM dynamics in CRF is generated from the
general initial n ≥ 0 JC eigenstate |Ψ −

gn〉 through the effective AJC Hamiltonian HAJC according to

| ΨCRF (t)〉 = UAJC(t)|Ψ −
gn〉 (12a)

where the time evolution operator UAJC(t) is defined in equations (10a)-(10b). Substituting |Ψ −
gn〉 from

equation (11h) into equation (12a) gives the form

| ΨCRF (t)〉 =
1

√

2(1 + cgn)
( (1 + cgn)| Ψgn(t)〉 − sgn| Ψen−1(t)〉)

| Ψgn(t)〉 = UAJC(t)|ψgn〉 ; | Ψen−1(t)〉 = UAJC(t)|ψen−1〉 (12b)

Applying the AJC qubit state transition operator Â from equation (9c) on |ψgn〉 , |ψen−1〉 generates the
respective qubit states (|ψgn〉 , | φgn〉) , (|ψen−1〉 , | φen−1〉) satisfying state transition algebraic operations

Â |ψgn〉 = Ren+1| φgn〉 ; Â | φgn〉 = Rgn+1|ψgn〉 ; | φgn〉 = −cgn+1|ψgn〉+ sgn+1|ψen+1〉

|ψen+1〉 = |en+1 ; Rgn+1 = g
√

(n+ 1) + (ξ + ε)2 ; cgn+1 =
δ

2Rgn+1

; sgn+1 =
g
√
n+ 1

Rgn+1

(12c)

Â |ψen−1〉 = Ren−1| φen−1〉 ; Â | φen−1〉 = Ren−1|ψen−1〉 ; | φen−1〉 = cen−1|ψen−1〉+ sen−1|ψgn−2〉

|ψgn−2〉 = |gn−2〉 ; Ren−1 = g
√

(n− 1) + (ξ + ε)2 ; cen−1 =
δ

2Ren−1

; sen−1 =
g
√
n− 1

Ren−1

(12d)

where Rgn+1 , Ren−1 are the respective Rabi frequencies of qubit oscillations.
Substituting UAJC(t) from equation (10b) into equation (12b), noting

( N̂ − 1) |ψgn〉 = (n+ 1)|ψgn〉 ; ( N̂ − 1)|ψen−1〉 = (n− 1)|ψen−1〉 (12e)
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and expanding e−it
ˆ
A in even and odd power terms similar to the corresponding JC time evolution operator

expansion in equation (6d), then substituting into equation (12b), we apply Â on |ψgn〉 , |ψen−1〉 even and
odd number times using the qubit state transition algebraic operations from equations (12c) , (12d) giving
relations similar to equation (5g) and introduce trigonometric functions in the expansions as appropriate to
obtain

| Ψgn(t)〉 = e−iω(n+1)t(cos( Rgn+1t)|ψgn〉 − i sin( Rgn+1t)| φgn〉)

| Ψen−1(t)〉 = e−iω(n−1)t(cos( Ren−1t)|ψen−1〉 − i sin( Ren−1t)| φen−1〉) (12f)

Substituting these into equation (12b) provides the explicit form of the general time evolving QRM state
| ΨCRF (t)〉 in CRF generated by the effective AJC Hamiltonian HAJC from the general n ≥ 0 initial
entangled JC eigenstate |Ψ −

gn〉. Introducing the definitions of the states ( |ψgn〉 , |ψen+1〉 , | φgn〉 ) and

( |ψen−1〉 , |ψgn−2〉 , | φen−1〉 ) from equations (11a) , (12c) , (12d) reveals that the general time evolving

QRM state | ΨCRF (t)〉 in CRF is a time evolving entangled state.
We easily obtain orthonormalization relations

〈 Ψgn(t)| Ψgn(t)〉 = 1 ; 〈 Ψgn(t)| Ψen−1(t)〉 = 0 ; 〈 Ψen−1(t)| Ψgn(t)〉 = 0 ; 〈 Ψen−1(t)| Ψen−1(t)〉 = 1

〈 ΨCRF (t)| ΨCRF (t)〉 = 1 (12g)

We obtain the AJC excitation number N(t) in the general time evolving QRM state | ΨCRF (t)〉 in the form

N(t) = n+ 2−
s2gn

1 + cgn
(12h)

which once again confirms that the AJC excitation number is conserved in CRF as expected according to the

commutation relation [ N̂ , HAJC ] = 0 in equation (4a). The atomic population inversion and antinormal
order excitation sz(t) , s−s+(t), the field mode mean antinormal order photon number aa∗(t) and the JC
excitation number N(t) (normal order) in the QRM state | ΨCRF (t)〉 are obtained in the form

sz(t) = − 1

4(1 + cgn)
{ (1 + cgn)

2(1− 2s2gn+1 sin
2( Rgn+1t))− s2gn(1− 2s2en−1 sin

2( Ren−1t)) }

s−s+(t) =
1

2
− sz(t) ; aa∗(t) = n+

3

2
−

s2gn
1 + cgn

+ sz(t) ; N(t) = n+ 1−
s2gn

1 + cgn
+ 2 sz(t) (12i)

We observe that setting n = 0 reduces | ΨCRF (t)〉 in equation (12b) to |Ψg0(t)〉 in equation (10d) , (10e)
and the results in equation ((12i) reduce to the corresponding results in equation (10g), showing that QRM
dynamical evolution from the general n ≥ 0 entangled JC eigenstate |Ψ −

gn〉 in equation (11h) is a consistent
generalization of the dynamical evolution from the n = 0 JC eigenstate |ψg0〉 in equation (9a). Plots of the
mean values in equation (12i) for n = 0 reproduce the corresponding plots in Fig.8-Fig.11, while plots for
field mode initial photon numbers n ≥ 1 show time evolution characterized by quantum collapses and revivals
largely determined by the initial field mode photon number n.

We have plotted the atomic antinormal excitation number X = s−s+(t) , field mode mean antinormal
photon number F = aa∗(t) and the JC excitation number N(t) for arbitrarily chosen initial photon number
n = 40 and dimensionless parameters ξ , ε, in Fig.12 , Fig.13 , Fig.14, respectively, which clearly undergo
collapses and revivals similar to the corresponding JC cases in RF presented in Fig.5-Fig.7. Again, we
observe that the field mode mean photon number collapse-revival profile takes the form obtained in the full
QRM DSC regime in [1]. Here again, we consider the collapse-revival phenomenon to be a dynamical feature
of AJC interaction mechanism for atom-field initial superposition state such as the n ≥ 0 entangled JC
eigenstate, noting that CRF where the effective AJC interaction is dominant is not necessarily equivalent to
the USC-DSC regime of QRM as usually defined.
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Figure 12: AJC-atomic antinormal excitation number in CRF s−s+(τ) , τ = gt : ξ = 1
1.31 ; ε = 0.16 ; n =

40
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Figure 13: AJC-field mode mean antinormal photon number in CRF aa∗(τ) , τ = gt : ξ = 1
1.31 ; ε =

0.16 ; n = 40
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Figure 14: JC-excitation number in CRF N(τ) , τ = gt : ξ = 1
1.31 ; ε = 0.16 ; n = 40
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4 Conclusion

By demonstrating that the AJC interaction has a conserved excitation number operator and is exactly
solvable, we have addressed a major challenge of theoretical and experimental efforts to investigate the internal
dynamics of QRM. We have established that QRM has two correlated dynamical frames; the rotating frame
(RF) where the dynamics is dominated by the exactly solved JC interaction characterized by red-sideband
transitions, with a conserved JC excitation number operator which generates the U(1) symmetry of RF, and,
the counter-rotating frame (CRF) where the dynamics is dominated by the exactly solved AJC interaction
characterized by blue-sideband transitions, with a conserved AJC excitation number operator which generates
the U(1) symmetry of CRF. The two conserved, JC and AJC, excitation number operators commute and
generate a common parity symmetry operator of both JC and AJC interactions, thereby providing the parity
symmetry operator of the full QRM. The U(1) symmetry operator of JC reduces QRM Hamiltonian to
an effective JC Hamiltonian in an RWA in RF, while the U(1) symmetry operator of AJC reduces QRM
Hamiltonian to an effective AJC Hamiltonian in a CRWA in CRF. Considering the initial atom-field states
|e0〉 and |g0〉, preferred as the fundamental QRM initial states in the experiments, we have established
that the effective JC Hamiltonian HJC generates dynamical evolution of the state |e0〉 into a time evolving
entangled state in RF, while the effective AJC Hamiltonian HAJC generates dynamical evolution of the
(absolute) ground state |g0〉 into a time evolving entangled state in CRF, thus addressing another major
challenge of determining QRM dynamics beyond RWA. Identifying the initial atom-field states |e0〉 and |g0〉
as eigenstates of the effective AJC and JC Hamiltonians, respectively, we have derived the corresponding
general n ≥ 0 entangled AJC and JC eigenstates as consistent generalizations of QRM initial states in RF
under RWA and CRF under CRWA. The general QRM state in RF or CRF is then a general time evolving

entangled state generated by HJC from the general n ≥ 0 initial entangled AJC eigenstate | Ψ +

en 〉 or a general
time evolving entangled state generated by HAJC from the general n ≥ 0 initial entangled JC eigenstate
|Ψ −

gn〉. In QRM dynamics from the general n ≥ 0 initial entangled states in RF or CRF, the general time
evolution of the atomic population inversion and excitation number, the field mode mean photon number and
the JC/AJC excitation numbers undergo quantum collapses and revivals determined by the initial field mode
photon numbers n ≥ 1, where we note that the JC excitation number is conserved in RF, but evolves in time
in CRF, while the AJC excitation number is conserved in CRF, but evolves in time in RF. An important
point which arises is that the clear specification of the QRM dynamical frames RF and CRF dominated
by the exactly solved effective JC and AJC interaction mechanisms, respectively, now calls to question the
true physical interpretation of the coupling regimes, which have been characterized in the theoretical models
and experimental designs as the weak-strong coupling (WSC) regime where JC interaction dominates and
the USC-DSC regime where AJC interaction is believed to be dominant. Considering the QRM dynamical
frames as we have specified and demonstrated their physical characteristics in the present article, can we
consistently interpret the WSC regime as RF dominated by the JC interaction mechanism and the USC-
DSC regime as CRF dominated by the AJC interaction mechanism ? Such an interpretation may have to
be reviewed, noting that the basic definitions of RF/CRF do not depend explicitly on the dimensionless
coupling parameter g

ω
used to characterize the coupling regimes WSC , USC-DSC and that the respective JC

and AJC qubit state transition algebraic operations in equations (5e-5f , 8c-8d) which characterize dynamics
in RF and (9d-9e , 12c-12d) which characterize dynamics in CRF are generally applicable over the physical
parameter ranges, independently of the coupling regimes. We may therefore interpret USC-DSC simply as
the coupling regime where neither RWA nor CRWA applies and the general QRM dynamics must then be
determined by the full QRM Hamiltonian HR ∼ 1

2 (HJC +HAJC ). In this respect, we may take advantage of

the useful property that each component Hamiltonian HJC , HAJC generates exact dynamical evolution to

develop algebraic methods to disentangle the full QRM time evolution operator UQRM (t) ∼ e−
it
2h̄

(HJC+HAJC)

to determine the general dynamics generated by the full QRM Hamiltonian HR.
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