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Effects of Inclination angle and Free Convection on
Velocity Profile for a Steady 2-Dimensional

Magnetohydrodynamic Fluid Flow in an Inclined
Cylindrical Pipe

B. Odongo, R. Opiyo, and A. Manyonge,

Abstract—Effects of inclination and free convection on velocity
profile for magnetohydrodynamic (MHD) fluid flow in an inclined
cylindrical pipe has been investigated. The governing partial
differential equations are the equations of continuity, momen-
tum and energy which are converted into ordinary differential
equation by employing similarity transformation and solved
numerically by the Runge- Kutta fourth order scheme with
shooting method. The findings, which are presented in the form of
tables and graphs reveal that; when Hartmann number, Grashoff
number and Gamma are decreased, the velocity of the fluid
increases. The results of the study may be useful for the different
model investigations, especially, in various areas of science and
technology in which optimal inclination and free convection are
utilized.

Index Terms—MHD, Free convection, Shooting method, Non-
dimensionalisation, Runge-Kutta method.

I. INTRODUCTION

MHD flow through pipes has its relevance in many
engineering problems such as MHD power generators,

cooling system with liquid metals, petroleum industries,
geothermal energy extractions and many others. Shateyi and
Marewo[13] obtained a numerical solution for Lamina flow
along a heated stretching cylinder at the boundary. They
used method of Successive Relaxation and plotted velocity
and temperature fields for values of curvature parameter,
permeability parameter, Prandtl number and Nusselt number.
Shooting method solution for magnetohydrodynamic at the
boundary flow along a stretching cylinder was obtained by
Swati[15]. He presented solutions for stretching cylinders
without varying the magnetic field but with slip conditions
partially at the boundary. The graphs plotted showed that there
is a decrease in velocity as the velocity slip and magnetic
parameters increase. Gasljevic K. et al[6] investigated the
buoyancy effects on heat transfer and temperature profile in
horizontal pipe flow of drag reducing fluids. Opiyo R. et al
[12] obtained a numerical solution of a steady free convective
magnetohydrodynamic flow with consideration of heat and
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mass transfer along infinite sinusoidal inclined plate at the
surface boundary. Graphical out puts of the solutions from a
MATHEMATICA code is presented.

A. Problem Formulation

Consider an axisymmetric, incompressible, steady laminar
flow of an electrically conducting fluid moving along an
infinite cylindrical pipe of radius a, inclined with acute angle γ
from the vertical. The cylindrical coordinates (r, θ, z), where
r and z are the radial and axial axes of the cylinder, as in
the Figure 1. We also assumed a uniform magnetic field of
strength (Bo) with very low Reynolds number (Re) of about
2000, thus the induced magnetic field can be neglected. It is
assumed that the surface temperature of the pipe is Tw and
the temperature far from the surface is T∞ where Tw > T∞.
The buoyancy force is produced by the temperature difference
between the pipe wall temperature and the temperature of
the fluid i.e T − Tw, under the gravitational force (g). The
pressure gradient and the external forces are supposed to be
zero, and considering the efforts of Shateyi and Marewo [13],
the fundamental Continuity, momentum and energy equations
are written respectively as follows:

Fig. 1. Flow geometry and coordinate system

The above assumptions, together with boundary layer ap-
proximations, the model equations to the problem under study
are given as:
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where ur and uz are the velocity components in the r and

z directions, ρ is the density of the fluid, µ is the dynamic
viscosity of the fluid, ν is the kinematic viscosity and is
given by ν = µ

ρ , k is the thermal conductivity of the fluid,
Cp is the specific heat of the fluid, Tw is the cylinder wall
temperature, a is the radius of the cylinder, σ is the electrical
conductivity, g is the acceleration due to gravity, βt is the
thermal expansion coefficient, T is the temperature of the fluid,
T∞ is the temperature outside the cylinder and γ is the angle
of inclination of the cylinder measured from the vertical axis
The associated boundary conditions are given by:

ur = 0, uz = 0, T = Tw on r = a

and,

uz → 0, T → T∞, r → ∞

1) Non-dimensionalisation of the model equations: As the
fluid moves along the z-axis, the velocity tends to be zero,
hence the terms ∂2ur

∂z2 , ∂2uz

∂z2 and ∂2T
∂z2 can be ignored. We then

non-dimensionalise the remaining terms in the equations 2 and
3 using the following non-dimensional parameters:

ur = u∗rU0, uz = u∗zU0, Re =
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where:
U0 is the reference velocity, a is the characteristic length
from centre of cylinder, Re is the Reynolds number, Nu is
the Nusselt number, Gr is the Grashof number, Ha is the
Hartmann number, θ is the dimensionless temperature.
Note that quantities with superscript stars are dimensionless
quantities.
From equation 2:

ur
∂ur
∂r

=
U2
0

a
u

∗

r

∂u∗r
∂r∗

Similarly, expressions for the remaining terms in equations 2,
and 3 are worked out then multiply the momentum and energy
equations by a

U2
0

and a
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respectively.
Neglecting the *’s and with appropriate substitutions of Re,
Ha, Nu, Gr, the equations 2 and 3 metamorphoses to;
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2) Similarity transformation: The similarity transformation
converts the non-linear partial differential equations into the
set of nonlinear ordinary differential equations. Define a 2-D
stream function, ψ(r, z) by;
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in which the equation continuity is satisfied identically.
We now introduce the following non- dimensional similarity
variables to obtain a similarity solution:

η(r, z) =
r2 − a2

2a

√
U0

νz
, ψ(r, z) =

√
νU0z (af(η)) and

θ(η) =
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Hence η is a similarity variable, U0 is the reference velocity,
θ(η) is the non-dimensional temperature, and f

′
is the velocity

of the fluid.
The above variables are used to convert the partial differential
equations, equations 4 and 5 into a system of ordinary
differential equations of order 3 and 2 respectively. We get
the nonlinear system of ordinary differential equations as
shown below:

1
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With the following boundary conditions:

f(0) = 0, f ′(0) = 0, f(η) → 0, as η → ∞, θ(0) = 1,
(8)

f ′ → 0, θ → 0, as η → ∞ (9)

where prime indicates the differentiation with respect to η.
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B. Method of Solution- Shooting method

The shooting technique is very key when solving the
boundary problems. This is a method that converts a boundary
value ordinary differential equation into a system of ordinary
differential equations of order one which are then solved as
Initial value problem (IVP). We evaluate the solution of the
IVP obtained at the second boundary point and then compare
its value with the actual boundary value provided. An attempt
is made to vary the assumed initial condition iteratively until
the required boundary conditions of the solution are Satisfied.
The main task is to solve the equations as IVPs.
We begin by letting

f
′
= w = g1(η, f, w, z) f(0) = 0

w
′
= z = g2(η, f, w, z) w(0) = 0

z
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3
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Similarly, Equation 7 is converted into initial value problem
as shown below:
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TABLE I
EFFECTS OF γ , HARTMANN AND GRASHOFF VALUES ON VELOCITY

PROFILE

γ values Hartmann values Grashoff values
Zero π/6 π/7 π/8 10 11 12 0.5 0.8 1
0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.06 0.047 0.049 0.050 0.048 0.050 0.049 0.056 0.052 0.049
0.12 0.085 0.088 0.091 0.086 0.089 0.088 0.104 0.094 0.088
0.18 0.112 0.119 0.124 0.116 0.117 0.115 0.143 0.126 0.115
0.24 0.128 0.139 0.147 0.136 0.135 0.131 0.174 0.148 0.131
0.30 0.135 0.150 0.161 0.146 0.141 0.135 0.197 0.160 0.135
0.36 0.131 0.151 0.166 0.146 0.137 0.128 0.210 0.161 0.128
0.42 0.117 0.143 0.163 0.137 0.122 0.111 0.215 0.153 0.111
0.48 0.094 0.126 0.150 0.119 0.096 0.083 0.213 0.135 0.083
0.54 0.061 0.100 0.130 0.091 0.060 0.045 0.202 0.108 0.045
0.60 0.021 0.067 0.102 0.054 0.015 0.002 0.184 0.073 0.002

The resulting initial value problems in each case are fur-
ther solved by applying the shooting technique [11], which
incorporates the Runge-Kutta fourth order method.

II. RESULTS AND DISCUSSION

The influence of the key physical parameters under investi-
gation on the velocity fields are shown in Figures 2 to 4.
Figure 2 shows how γ affects the horizontal velocity field.
This parameter has significant influence within the dynamic
area around the surface. Away from this dynamic area, we
note that the velocity field rises as γ decreases. The effect of
free convection parameter on the horizontal velocity is also
displayed in Figure 3. It can be observed that an increase
in the Grashoff number decreases the velocity boundary layer.
Hence, this causes the subsequent decrease of the fluid velocity
along horizontal flow. The transverse velocity field is also
affected by the Magnetic parameter as shown in Figure 4.
This velocity field is significantly influenced by varying the
Hartmann number within the dynamic area. However, away
from this dynamic area, the fluid tends to the tangential
position because as Hartmann number increases, the velocity
decreases.

Fig. 2. Effect of γ on Velocity Profile
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Fig. 3. Effect of Gr on Velocity Profile

Fig. 4. Effect of Ha on Velocity Profile

III. CONCLUSION

The study focused on the numerical solution for steady
Magnetohydrodynamic flow along an inclined cylinder under
the influence of varied magnetic field. The study found out
that optimal inclination plays a key role since it affects
flow velocity. The rate of transfer also reduces considerably
by increasing the Grasshoff number. Further, an increase in
magnetic parameter decreases the velocity. The physics of flow
through inclined cylinders can be applicable in a number of en-
gineering and scientific situations with the help of the present
model. The results of the study may be useful for the different
model investigations. The results of the current investigation is
of great importance in various areas of science and technology
in which optimal inclination and free convection are utilized.

REFERENCES

[1] Abdelmeguid A.M and Spalding D.B Turbulent flows and heat trans-
fer in pipes with buoyancy effects, A Journal of fluid mechanics,
1979;94(2):383-400.

[2] Alam M.S et al. MHD free convective heat and mass transfer flow past an
inclined surface with heat generation, Thammasat international journal
of science and technology , 2006;11 (1): 1-9.

[3] Anjali S.P. et al.Effect of magnetic field on Blasius and Sakiadis flow
of nano fluids passed an inclined plate, Journal of Taibah university for
science,2017;5(4):1-27.

[4] Babatunde A. and Peter B. Magnetohydrodynamic convection fluid and
heat transfer in an inclined micro porous channel, Non linear Engineer-
ing,2019;8(1):755-763

[5] Chen C-H et al. Heat and mass transfer in MHD flow by natural con-
vection from a permeable inclined surface with variable wall temperature
and concentration, Acta mechanical journal ,2004;71(172):219-235.

[6] Gasljevic K. et al. Buoyancy effects on heat transfer and temperature
profile in horizontal pipe flow of drag reducing fluids, International
Journal of heat and mass transfer, 2000;43(23):4267-4274.

[7] Hasnain et al.Buoyant displacement flow of immiscible fluid in inclined
pipe, Journal of fluid mechanics, 2017;29(5):661-687.

[8] Hartmann J.and Lazarus F.Experimental investigation on the flow
of mercury in a homogenous magnetic field, Mercury dynamics,
1937;15(7):3367-3380.

[9] Majid et al. Effects of buoyancy on heat transfer in supercritical water
flow in a horizontal round tube, Journal of heat transfer, 2005;127(8):897-
902.

[10] Maruf Hasan et al. MHD free convection flow passed an inclined
stretching sheet with considering viscous dissipation and radiation, Open
journal of fluid dynamics , 2017;7(2):152-168.

[11] Manyonge A.W et al.Numerical solution of nonlinear boundary value
problems of ordinary differential equations using shooting technique,
Journal of innovative Technology and education, 2017;4(1):29-36.

[12] Opiyo R. et al. Numerical computation of steady buoyancy
driven MHD heat and mass transfer past an inclined infinite plate
with sinusoidal surface boundary conditions, Applied mathematical
sciences,2017;11(15):711-721.

[13] S.Shateyi and G.T.Marewo. A numerical approach for the laminar
boundary layer flow and heat transfer along a stretching cylinder em-
bedded in a porous medium with variable thermal conductivity,A Journal
of Applied mathematics,2013; ID576453.

[14] Shikha K. et al. Numerical investigation of nanofluid heat transfer in an
inclined stretching cylinder under the influence of suction/injection and
viscous dissipation, International journal of nano mechanics science and
technology, 2019;10(1):29-49.

[15] Swati M. MHD boundary layer slip flow along a stretching cylinder,Ains
Shams Engineering Journal , 2013;4,317-324.

[16] Varma S. et al. Diffusion-thermo and aligned magnetic field effects
on free convection on flow passed inclined porous plate with first
order chemical reaction, Journal of electrical and electronic engineering,
2017;12(3):25-33.

[17] Yeng-Yung T.and Sheu-Jang S. Effects of buoyancy and orientation on
the flow in a duct preceded with a double step expansion,International
journal of heat and mass transfer, 1998;41(17):2687-2695.


