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1  | INTRODUC TION

Cyanobacteria are gram-negative photosynthetic prokaryotes com-
prising more than 1,000 species of unicellular and multicellular mi-
croorganisms belonging to the class Cyanophyceae under the orders 
Gloeobacterales, Synechococcales, Oscillatoriales and Nostocales 
(Komarek, Kastovsky, Mares, & Johansen, 2014). It's dominance in 
eutrophic aquatic ecosystems is associated with a variety of fac-
tors particular to cyanobacteria, including possession of phycobilins 
(Sobiechowska-Sasim, Ston-Egiert, & Kosakowska, 2014), produc-
tion of gas vesicles (Walsby, 1994), ability of certain species to fix 
nitrogen (Fay, 1992), and algae growth inhibition attributable to the 
ability of cyanobacteria to produce allelopathic chemicals (Gantar 

et al., 2008; Pflugmacher, 2002). Recent global warming, coupled 
with nutrient loading in waterbodies, has catalysed the buildup of 
cyanobacteria blooms resulting in others producing harmful cya-
notoxins, such as the genus Microcystis (Amorim, de Moura-Falcao, 
Valenca, de Souza, & do Nascimento Moura, 2019; Sivonen & 
Jones, 1999). Toxins produced by cyanobacteria are both secondary 
metabolites and diverse, including microcystin (MC) and nodularins 
cyclic peptides that inhibit protein phosphatases.

MC, the most frequently occurring and widespread cyano-
toxins, are formed within algal cells, mainly from cyanobacterial 
blooms which are released into the water column (Merel et al., 2013; 
Sivonen & Jones, 1999). During a cyanobacteria bloom event, MC re-
main within cells, only being emitted when cells are lysed as a result 
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Abstract
Microcystins are part of algal toxins produced intracellularly within algal cells, being 
in the family of hepatotoxic cyclic peptides from various species of blue-green algae. 
Blue-green algae are widely abundant in many equatorial eutrophic lakes, including 
Lake Victoria, with microcystin mainly from cyanobacterial blooms released into 
the water column, with different effects along the aquatic ecosystem trophic levels. 
Depending on the length of exposure and exposure route, microcystin effects on fish 
can include embryonic hatching perturbations, reduced survival and growth rates, 
changes in behavior, osmoregulation, increased liver activities and heart rates, as well 
as histopathological effects. While bioaccumulation is confirmed among fish, biomag-
nification along food webs is debatable. Lake Victoria the second largest freshwater 
lake in the world, and the source of livelihoods to millions reported near the gulf and 
shore MCs of 190 ± 51 to 543 ± 26 ng MC/g DW, respectively. Little is known, how-
ever, on the effects of microcystin on the Lake Victoria fishery and, ultimately, on the 
human population against the WHO recommended human microcystin intake levels 
of 0.04 µg/kg, thereby being the basis for this review.
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of natural cell death and senescence, with neurotoxic, hepatotoxic 
or dermatotoxic effects. The emission of toxins also may be propa-
gated by evolutionary-derived or environmentally mediated circum-
stances, including allelopathy or relatively sudden nutrient limitation 
(Merel et al., 2013).

Cyanobacteria is wildly seen in many equatorial eutrophic lakes, 
including Lake Victoria, because of elevated temperatures and 
eutrophication which accelerates algal growth and breakdown, 
culminating in the release of toxins. The released cyanotoxins, 
with MC being the most frequently detected, constitute part of 

the biological water contaminant pathways for fish, livestock and 
human beings through water, aquatic vegetation and fish intake 
(Chorus & Bartram, 1999; Sivonen & Jones, 1999; Zhang et al. 2009; 
Badar et al., 2017). On a global scale, MC exhibits more than 90 vari-
ants of toxicity identified to date, with MC-LR being the most toxic 
and frequent (Pearson, Mihali, Moffitt, Kellmann, & Neilan, 2010). 
Thus, they have a potential negative impact on the food web with 
these effects increasing via bioaccumulation in the food web 
(Chen, Xie, Guo, Zheng, & Ni, 2005). Microcystins-LR, which is a 
water-soluble MC variant, remains relatively chemically stable in 

F I G U R E  1   Map of tropical Africa showing locations of cyanobacterial blooms (adapted from Mowe et al. 2015)
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the water column over time after their release. This can result in 
increased bioavailable extracellular cyanotoxins that can accumu-
late along the ecological food chain, resulting in animal poisoning 
and deaths worldwide (Lambert, Holmes, & Hrudey, 1994; Codd 
et al. 2005; Nizan, Dimentman, & Shilo, 1986; Fogg, Stewart, Fay, & 
Walsb, 1973). Depending on the length and route of exposure, MCs 
effects on fish can include damage or perturbation on the testis and 
ovaries, the hypothalamic-pituitary-gonadal (HPG) axis, embryonic 
hatching, survival and growth rate declines, changes in behavior, 
impaired osmoregulation, increased liver activities and heart rate, 
and histopathological effects (Lone, Koiri, & Bhide, 2015; Malbrouck 
& Kestemont, 2006; Svircev et al., 2010). Upon its ingestion, liver, 
muscle and viscera are the main MC accumulation organs. This can 
ultimately result in liver failure by inhibiting the protein phospha-
tases 1 and 2 (PP1 and PP2), leading to cellular toxicity, apoptosis, 
cancer and structural damage among others (Vaterio, Vasconcelos, 
& Campos, 2016). Lone et al. (2015) have shown that MCs exhibit 
genotoxicity attributable to their ability to damage DNA and pro-
mote tumor, while Annadotter et al. (1999) and Zhou, Hai, and Kun 

(2002) reported on the correlation between MC levels in drinking 
water and incidence of primary liver cancer (PLC).

Microcystin can affect various trophic levels in the aquatic eco-
system, with concentrations increasing with exposure period and 
environmental concentration (Schmidt et al. 2013). An increased 
periodicity and intensity of harmful algal blooms occurring in many 
aquatic ecosystems (Figure 1) has attracted global interest regard-
ing the presence of MC (Mowe, Mitrovic, Lim, Furey, & Yeo, 2015). 
Other studies have further highlighted tropical cyanobacterial gen-
era and cyanobacterial proportionality (Figure 2).

Microcystin persistence and detoxification in aquatic organisms 
is a critical focus for fishery economics and public health, with sev-
eral emerging ecological and public health issues focusing on plant 
and animal communities. This situation is attributed to the anthro-
pogenic effects, mainly nutrient loads to freshwater systems and 
the related total biomass and composition alteration of algal com-
munities (Beasley, Cook, Dahlem, Lovell, & Valentine, 1989; Galey 
et al., 1987; Hilborn & Beasley, 2015). Thus, the study of MC in Lake 
Victoria is critical to its aquatic toxicology and fauna effects in this 

F I G U R E  2   Proportion of tropical 
cyanobacterial genera out of total tropical 
cyanobacteria blooms (source: Mowe 
et al. 2015)
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lake. Accordingly, the present study (a) reviews the current state 
of research regarding microcystis in Nyanza Gulf of Lake Victoria, 
(b) identifies knowledge gaps and (c) proposes future research 
directions.

2  | MICROCYSTIN IN NYANZ A GULF OF 
L AKE VIC TORIA

Over the last three decades, Lake Victoria, the world's second largest 
freshwater lake, has experienced major water quality deterioration 
over time attributable mainly to pollution from increased eutrophi-
cation, a trend associated with urbanization, agricultural activities 
and deforestation (Hecky, Muggide, Ramlal, Talbot, & Kling, 2010; 
Kolding, Medard, Mkumbo, & van Zwieten, 2014). Nyanza Gulf is the 
most eutrophic bay of Lake Victoria (Simiyu, Oduor, Rohrlack, Sitoki, 
& Kurmayer, 2018) because of nutrient enrichment originating from 
subsistence agricultural activities (Gikuma-Njuru, Hecky, Guildford, 
& MacIntyre, 2013). The high eutrophication levels have resulted in 
regular cyanobacterial blooms, some with the potential of producing 
cyanotoxins toxic to fish (Malbrouck & Kestemont, 2006). The most 
frequently occurring cyanotoxins are the hepatotoxic microcyst-
ins (MC) emitted by cyanobacteria (Table 1), including Microcystis, 
Dolichospermum (Anabaena), Planktothrix (Oscillatoria) and Nostoc 
(Meriluoto, Spoof, & Codd, 2017).

MC toxicity is based on the strong inhibition of the protein 
phosphatases (PP1 and PP2a), disturbing cytoskeleton formation 
in eukaryotic cells. Microcystin is associated with high eutrophi-
cation levels associated with increased nutrient concentrations 
and phytoplankton growth (Markensten, Moore, & Persson, 2010), 
resulting in hypoxic conditions in the lake. Several researchers, in-
cluding Sitoki, Kurmayer and Rott (2012), reported positive results 
regarding the presence of microcystin in Lake Victoria, linking it 
with seasonality (Figure 3). Miles et al. (2013) reported the presence 
of putative microcystin analogues in his study of Mwanza Gulf in 
Lake Victoria. Recent studies by Simiyu et al. (2018) found the pres-
ence of higher microcystin levels (62 ± 7 ng/g fish dry weight) in 
Nyanza Gulf (Kisumu bay) of Lake Victoria, compared to the open 
waters of the Rusinga Channel (14 ± 0.8 ng MC/g). These studies 
confirm higher cyanobacterial blooms within Winam Gulf, Mwanza 
Gulf and Murchison Bay (Ochumba and Kibbara, 1989; Sekedende 
et al. 2005; Haande et al., 2007). Semyalo, Rohrlack, Naggawa, and 
Nyakairu (2009) studied the presence of microcystin in Nile tilapia 
within Murchison Bay, finding a positive correlation of microcystin 
in fish gut with that in the water. He also noted an increase in micro-
cystin-emitting cyanobacteria in Lake Victoria may have resulted in 
increased intake of microcystin in filter-feeding Nile tilapia (Table 2).

It is also worth noting, however, that fish such as tilapia are likely 
to have a detoxification system able to metabolize ingested toxins 
to less toxic states (Wiegand et al., 1999). Despite the likelihood of 
detoxification, other studies also have confirmed toxin accumula-
tion in tissues, especially among planktivorous organisms, through 
ingestion of toxic microcystis in their diet and via food web transfer 

(Li, Chung, Kim, & Lee, 2004; Xie et al., 2004). The increased tox-
ins and their effects to human and the aquatic environment are of 
great concern within freshwater systems. Severe MC exposure to 
fish has proved to result in high incidences of liver necrosis, growth 
retardation, impaired reproductive ability and mass mortalities 
(Malbrouck & Kestemont, 2006; Ochumba, 1990). These effects re-
sult from several factors, including reduced oxygen levels in the lake 
with a negative effect to the overall productivity of the lake. Fish 
and contaminated water are among the key MC exposure routes to 
humans, especially when the WHO recommended daily intake limit 
of 0.04 µg/kg for fish and 1 µg/L for water intake are exceeded 
(Jia, Luo, Lu, & Giesy, 2014; Okello, Portmann, Erhard, Gademann, 
& Kurmayer, 2010; WHO, 2003). Microcystin may not immediately 
pose a health threat to human beings upon consumption, but has 
potential long-term negative implications.

Despite the likelihood of continued ingestion of cyanobacteria 
by fish, even in the presence of microcystin which ultimately accu-
mulates in fish tissue (Zhao, Zhu, Yang, Gan, & Song, 2006), research 
has confirmed that fish have the ability to physiologically deal with 
microcystin through biliary excretion (Sahin, Tencalla, Dietrich, 
& Naegeli, 1996), and behaviorally through lowering their feeding 
rate in the existence of toxic algae (Keshavanath et al., 1994). On 
the other hand, fish may change their behaviour to consume large 
amounts of cyanobacteria as a means of controlling the blooms in the 
lake (Datta & Jana, 1998). Substantial ingested quantities, however, 
may accumulate in fish livers and muscles, subsequently being trans-
ferred along the food web (Lance et al., 2014). Semyalo et al. (2009) 
recommended examination of microcystin accumulation at differ-
ent levels in the fish food web in order to better understand the 
effects. Nile tilapia, being a generalist feeder, usually accumulates 
substantial quantities of microcystin in its diet. Previous research on 
tilapia diets in Lake Victoria have demonstrated cyanobacteria (es-
pecially microcystis sp.) can constitute about 30% of the phytoplank-
ton community (Haande et al., 2007; Semyalo et al., 2009). Simiyu 
et al. (2018) noted the level of microcystin in Lake Victoria depends 
on the location, with open waters containing lower concentrations 
(56 ± 56 ng MC/g DW), compared to gulfs and shore areas (190 ± 51 
to 543 ± 26 ng MC/g DW). Substantial quantities of microcystin ab-
sorbed by fish accumulates in the liver and muscles, subsequently 
being transferred up the food chain.

3  | BIOACCUMUL ATION AND 
BIOMAGNIFIC ATION

Bioaccumulation refers to the buildup of substances such as toxins 
or other chemicals in the body of an organism. It occurs when an 
organism ingests a substance at a rate faster than which it is elimi-
nated through catabolism and excretion. This means the longer 
the biological half-life of a toxic substance, the higher the risk of 
chronic poisoning, even in spite low levels of the toxin in the envi-
ronment. Studies have confirmed the intensity of toxin accumulation 
is not only based on a species feeding guild but is also dependent on 
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the environmental toxin concentration and rate of accumulation in 
a fish relative to depuration (Ibelings & Chorus, 2007; Kozlowsky-
Suzuki, Wilson, & da Ferrão-Filho, 2012). MC bioaccumulation has 
been confirmed to exhibit different pathological effects on different 
fish species, with phytoplanktivorous species being more tolerant to 
MC effects (Xie et al., 2004).

In contrast, biomagnification refers to the increasing concen-
tration of a substance within the tissues of organisms existing at 
successively higher levels in a food chain. This occurs as a result of 
persistence of the substance, food chain energetics and/or or low 
or non-existent rates of internal degradation or excretion. The toxin 
levels usually build up along the food chain. Nevertheless, there is 
inadequate knowledge on toxin biomagnification (Flores, Miller, & 
Stockwell, 2018; Kozlowsky-Suzuki et al., 2012). Although recent 
studies have proved fish and human accumulation of toxins is as-
sociated with the environmental concentration of particular toxins, 
coupled with the exposure period (Gurbuz, Uzunmehmetoglu, Diler, 

Metcalf, & Codd, 2016; Jia et al., 2014), the MCs concentration up 
the trophic level is limited because of toxin depuration (Ferrao-Filho 
and Kozlowsky-Suzuki, 2011; Zhang et al. 2009). It is important to 
note, however, that different studies have resulted in conflicting 
outcomes in relation to microcystin accumulation up the trophic 
levels because of their spatial temporal trends (Snyder, 2015; Xie 
et al., 2005; Zhang et al.2009).

4  | MICROCYSTIN IMPAC TS IN FISH

Enhanced production of cyanotoxin-producing cyanobacteria is 
associated with nutrient loading into waterbodies primarily re-
sulting from human activities. Anthropogenic nutrient inputs to 
freshwater systems has continued to shift the total biomass and 
composition of algal communities and subsequently fish, par-
ticularly for eutrophic freshwater lakes. Cyanobacteria blooms 

F I G U R E  3   Proportion of different 
cyanobacterial toxins out of total number 
of tropical toxic cyanobacterial blooms 
(source: Mowe et al. 2015)

Genus

Selectivity index (log Q)

Lake Mburo Murchison Bay

Minimum Mean Maximum Minimum Mean Maximum

Microcystis 3.56 3.92 3.99 2.99 3.87 3.99

Anabaena — 1.26 0.93 3.06 −1.22 1.75 3.64

Aphanocapsa 2.06 2.14 2.21 N/A N/A N/A

Other cyanobacteria — 0.39 0.89 3.48 −0.22 −0.11 0

TA B L E  2   Selectivity index log Q of 
major cyanobacteria groups found in the 
diets of Nile tilapia fish in Lake Mburo 
(n = 22) and Murchison Bay, Lake Victoria 
(n = 44; N/A = not available; Source: 
Semyalo et al., 2011)
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in highly eutrophic lakes can provide a rich and abundant source 
of nutrients for fish, including Roach (Rutilus rutilus), Silver carp 
(Hypophthalmichthys molitrix) and Nile tilapia (Oreochromis niloti-
cus) (Bwanika, Chapman, Kizito, & Balirwa, 2006; Chen, Xie, 
Zhang, Ke, & Yang, 2006; Kamujunke, Schmidt, Pflugmacher, & 
Mehner, 2002). This is not always the case (Bednarska, 2006), 
however, since blooms are often dominated by colonial and 
filamentous forms that can cause mechanical interference for 

zooplankton grazers and clogging of gills in fish (Landsberg, 2002), 
leading to a decreased food web and subsequent fish population. 
The presence of aqueous and cell-bound cyanotoxins in a fish diet 
is not good for their morphology, physiology, behaviour and ulti-
mately their survival (Malbrouck & Kestemont, 2006). The pres-
ence of cyanotoxins such as microcystins can induce stress in fish 
(Baganz, Staaks, Pflugmacher, & Steinberg, 2004) that can in turn 
lead to low foraging rates (Beveridge et al., 1993). Different effects 

TA B L E  3   Microcystins detected by LC–MS2 (Method A) with and without thiol derivatization in standards and in extracts from 
Microcystis bloom in Lake Victoria (BSA6)a

Underivatized sample
Mercaptoethanol 
derivative

MEMHEG 
derivative

Abundance in 
sample

Rt (min) [MH] +m/z Microcystin Status Rt (min) [MH]+ m/z
Rt 
(min)

[MH] + 
m/z Standard BSA6

1.8 1,038.5 MC-RR (3) Confirmed 1.81 1,116.5 2.59 1,394.5 Major Major

3.3 1,031.5 [Asp3]MC-YR (20) Tentative 3.35 1,109.5 4.1 1,387.5 ND Minor

3.46 1,063.5 [Mser7]MC-YR (14) Tentative NR – NR – ND Major

3.51 1,013.5 [Mser7]MC-LR (15) Tentative NR – NR – ND Major

3.59 1,031.5 [Dha7]MC-YR (21) Tentative 3.49 1,109.5 – 1,387.5 Minor Minor

3.61 1,045.5 MC-YR (2) Confirmed 3.63 1,123.5 4.33 1,401.5 Major Major

3.68 981.5 [Asp3]MC-LR (17) Tentative 3.69 1,059.5 4.26 1,337.5 Minor Minor

3.77 995.5 MC-LR (1) Confirmed 3.71 1,073.5 4.47 1,351.5 Major Major

3.79 981.5 [Dha7]MC-LR (8) Confirmed 3.84 1,059.5 4.5 1,337.5 Minor Minor

4.02 1,009.5 MC-HilR (11) Tentative 3.93 1,087.5 4.68 1,365.5 ND Minor

4.05 1,029.5 MC-FR (12) Tentative 3.97 1,107.5 ND 1,385.5 ND Minor

4.9 953.5 MC-RA (10) Tentative 4.78 1,031.5 5.44 1,309.5 ND Major

5.01 1,031.5 [Asp3]MC-RY (16) Tentative 4.86 1,109.5 5.41 1,387.5 ND Minor

5.07 1,063.5 [Mser7]MC-RY (22) Tentative NR – NR – ND Minor

5.12 1,031.5 [Dha7]MC-RY (23) Tentative 4.94 1,109.5 5.56 1,387.5 ND Minor

5.29 1,045.5 MC-RY (9) Confirmed 5.22 1,123.5 5.79 1,401.5 ND Major

5.37 1,075.5 MC-RY(OMe) (24) Tentative 5.3 1,153.5 5.88 1,431.5 ND ND

5.44 967.5 MC-RAba (25) Tentative 5.29 1,045.5 5.92 1,323.5 ND Minor

5.93 981.5 MC-RApa(1) (26) Tentative 5.76 1,059.5 6.34 1,337.5 ND Minor

6.09 981.5 MC-RApa(2) (27) Tentative 5.89 1,059.5 6.48 1,337.5 ND Minor

6.34 995.5 MC-RL (28) Tentative 6.15 1,073.5 6.71 1,351.5 ND Minor

6.37 1,029.5 MC-RF (13) Tentative 6.22 1,107.5 6.74 1,385.5 ND Major

8.09 960.5 MC-YA (29) Tentative 7.83 1,038.5 8.52 1,316.5 ND Minor

8.36 910.5 MC-LA (4) Confirmed 7.83 988.5 8.58 1,266.5 Major Minor

8.55 1,002.5 MC-LY (6) Confirmed 8.1 1,080.5 8.72 1,358.5 Major ND

8.7 1,032.5 MC-LY(OMe) (18) Tentative 8.23 1,110.5 8.84 1,388.5 Minor ND

8.91 974.5 MC-YAba (30) Tentative 8.58 1,052.5 9.23 1,330.5 ND Minor

9.15 924.5 MC-LAba (31) Tentative 8.5 1,002.5 9.18 1,280.5 ND Minor

9.8 1,025.5 MC-LW (7) Confirmed 9.28 1,103.5 9.84 1,381.5 Major ND

10.3 986.5 MC-LF (5) Confirmed 9.59 1,064.5 10.13 1,342.5 Major ND

10.45 952.5 MC-LL (19) Tentative 9.8 1,030.5 10.21 1,308.5 Minor ND

aNR, no reaction; ND, not detected; identities considered confirmed only when peaks possessed identical retention time and mass spectral 
fragmentation to authentic standards and were considered tentative when these properties were consistent with proposed structure in absence of 
standard; retention times for thiol derivatives are for most abundanst diastereoisomer; compounds were denoted as “Major” when they constituted 
more than ca 10% of most abundant microcystin in sample; Source: Miles et al. (2013). 
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of microcystin and the potential consequences to fish have been 
reported for aquatic food webs. Malbrouck and Kestemont (2006), 
for example, reported that fish exposure to microcystin in a dose-
dependent manner in early life stages can results in perturbations 
to embryonic hatching, decreased survival and growth rates, and 
histopathological effects, including enlarged and opaque yolk 
sac, small heads, curved body and tail. They also reported that in-
gested microcystin accumulates in the liver, muscle and viscera of 
juveniles and adults and can affect fish behavior, growth rate and 
osmoregulation. Depending on the microcystin exposure route, 
the effects of microcystin concentration in the water and the food 
chain can be many and varied. Sonia and Ramanibai (2015) found a 
decrease in the body weight and death after eight days in Poecilia 
sphenops after exposing them to the cyanobacteria Microcystis 
aeruginosa in the diet at a concentration of 6 × 104 cells/ml to each 
individual fish. Exposure to microcystin can produce architectural 
changes in the liver, disturb parenchyma formation of the liver and 
enlarged hepatocytes with granular cytoplasm. Fish exposure to 
this microcystis concentration resulted in hepatocyte necrosis, 
further displaying ruptured follicle walls in the oocyte, while the 
compactness of the tissue also was disturbed. There was less yolk 
in the developing oocyte, deformed follicle cells and incidences of 
ovary necrosis. Weight loss and fish mortality was likely a result of 
a combination of stress and organ damage.

Microcystins, particularly MC-LR, a monocyclic peptide hepato-
toxin, was found to accumulate mainly in the liver of fish, as well 
as in the kidneys, gills and intestines (Mohammed & Hussein, 2006; 
Radbergh, Bylund, & Erikkson, 1991; Zurawell, Chen, Burke, & 
Prepas, 2005). Ayles et al. (1986) noted the impacts of cyanobacteria 
on fish populations is not due only to the toxins they release, but also 
to reduced oxygen levels in the waterbody resulting from as well as 
the collapse of the algal bloom. Shebulsky (1951), however, proved 
that fish death occurred even in the presence of an adequate oxy-
gen supply, indicating toxins contributed partly to the death of fish. 
With the current human health movement toward consuming leaner 
meat, many people in Kenya have embraced fish eating, particularly 
the communities living along Lake Victoria, which are known to de-
pend highly on fish as one of their staple meals, which could result 
in human exceedance of the average daily tolerance intake limit pro-
vided by World Health Organization of 0.04 μg/kg body mass per 
day for MC-LR (WHO, 1998; Chorus & Bartram, 1999). Thus, it is 
critical to assess microcystin exposure risks to human via fish con-
sumption, especially among the traditional fish-eating communities.

MCs detected by LC–MS2, with and without thiol derivatization 
in standards, have confirmed the presence of MC-LR, a lethal micro-
cystin, in Lake Victoria (Table 3). Among other organs, the effects of 
MC-LR on fish livers has also been noted to extend its human health 
effects, with almost similar organs affected. As fish consumption 
grows in the country against a declining fisheries capture, the risk 
of exposure to MCs through fish intake are real (Poste, Hecky, & 
Guildford, 2011). Assessment of human health impacts associated 
with limited water supply and sanitation within a given area requires 
epidemiological studies to establish dose-response relationships 

(DRRs). Although often expensive and resource demanding, this will 
link environmental variables with observable health impacts (World 
Bank, 1998). In cases where drinking water is contaminated by cy-
anotoxins, however, bottled water or different sources of water are 
likely alternatives, even though they may require more time, energy 
and possibly funds to obtain such alternatives. Three categories of 
impacts are used to estimate the monetary consequences of illness 
to society attributable to water pollution, including (a) income losses 
due to illness, (b) health care expenditures to society and/or affected 
individuals, and (c) pain, suffering and/or inconvenience experienced 
by affected individuals. The costs associated with the two first cate-
gories can be determining by directly observing these factors (Ready 
et al., 2004). Establishing quantitative epidemiological relationships 
is the main data-demanding task in comparing the benefits and costs 
of measures to reduce algal toxins. Concluding whether or not liver 
damages within a given population is a result of cyanobacterial in-
toxication requires determining which drinking water sources is con-
taminated, who drinks it, and the particular population risk levels of 
suffering liver disease, compared to those drinking water from differ-
ent water sources (Kuiper-Goodman, Falconer & Fitzgerald, 1999). 
Losses from fish sales also have direct effects on both national and 
individual revenues, as well as household nutritional requirements 
particularly around the affected areas. Monitoring of toxigenic and 
non-toxigenic algae are very costly to any nation's GDP (Reichwaldt 
and Ghadouani, 2012; Falconer & Humpage, 2005). However, the 
implications of unmonitored cyanotoxin emissions, particularly MC 
in eutrophic freshwater bodies that include Lake Victoria, can have 
far-reaching effects on aquatic ecosystem balances and human 
health.

5  | CONCLUSIONS AND 
RECOMMENDATIONS

Lake Victoria, like other freshwater eutrophic lakes, is experiencing 
cyanobacterial build-up resulting from increased nutrient loads as-
sociated with poor agricultural practices and domestic and indus-
trial wastes. Being the second largest freshwater lake in the world, 
and the largest in Africa, the lake contributes significantly to food 
security and fish species richness. There is great risk of losing the 
diversity of fish species in the lake to the effects of cyanotoxins and 
further impact human health through fish consumption and con-
taminated water use. The commercially important fish species of the 
lake, with the exception of Lates niloticus, are herbivorous, thereby 
being predisposed to high levels of cyanobacterial microcystis, de-
spite biodilution capability along food web. There is a paucity of in-
formation on microcystin biomagnification in fish. There is evidence 
of microcystin bioaccumulation in the muscle, liver and viscera of 
fish, therefore posing a health risk not only to fish performance and 
species diversity through disrupted food webs, but also to human 
health. With people embracing a healthier diet, they tend to con-
sume more fish, a lean and healthy protein source. Thus, depending 
on the intake level, they may end up exceeding the average daily 
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tolerance limit of 0.04 μg/kg body weight recommended by the 
World Health Organization. Thus, it is critical to assess the seasonal 
concentration levels of various microcystin species in Lake Victoria 
and their bioaccumulation pathways, especially for commercially- 
important fish species, in order to inform lake management and the 
fish food industry.
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