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ABSTRACT

Burgers equation: u, + UUx = luxx is a nonlinear partial differential equation which arises

in model studies of turbulence and shock wave theory. In physical application of shock

waves in fluids, coefficient 1 ,has the meaning of viscosity. For light fluids or gases the

solution considers the inviscid limit as 1 tends to zero. The solution of Burgers equation

can be classified into two categories: Numerical solutions using both finite difference and

finite elements approaches; the analytic solutions found by Cole and Hopf In both cases

the solutions have been valid for only 0 ~ 1 ~ 1. In this thesis, we have found a global

solution to the Burgers equation with no restriction on 1 i.e. 1 E (- 00 , 00). In pursuit

of our objective, we have used, the Lie symmetry analysis. The method includes the

development of infinitesimal transformations, generators, prolongations, and the invariant

transformations of the Burgers equation. We have managed to determine all the Lie

groups admitted by the Burgers equation, and used the symmetry transformations to

establish all the solutions corresponding to each Lie group admitted by the equation.

These solutions, which are appearing in literature for the first time are more explicit and

more general than those previously obtained. This is a big contribution to the

mathematical knowledge in the application of Burgers equation.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Lie group analysis is a mathematical theory that synthesizes symmetry of differential equations.

This theory was originated by a great Norwegian mathematician of the nineteenth century

known as Sophus Lie[13]. Lie pioneered the use of groups of transformations called Lie

groups in the study of symmetry properties of differential equations with a view to their

solutions. He discovered that the known ad hoc methods of integration of differential

equations could easily be derived by his theory of continuous groups. He further, among other

things, gave a classification of differential equations in terms of their symmetry groups, thereby

identifying the set of equations which could be integrated or reduced to lower- order equations

by group theoretic arguments. Lie's basic idea was to find all the Lie groups of a given partial

differential equation (PDE) such that any solution of this PDE is transformed into another

solution by the coordinate transformations of the respective Lie groups; i.e. all the groups with

respect to which the set of solutions of the PDE is invariant. The solutions which results from

this procedure are generally referred to as Lie symmetry solutions.

In this study we apply Lie symmetry analysis in the solution of the Burgers equation:

(1.1.0)
(

The Burgers equation mentioned above is one ofthe most difficult nonlinear PDE to be

solved analytically. The equation appears in various physical applications. For example it

models weak shock waves in compressible fluid dynamics. It is a one-space dimension version

ofNevier Stoke's equations of fluid dynamics.



1.2 Statement of The Problem

The exact solutions of the Burgers equation:

can be classified in two groups as:

a)Numerical solutions

i) Finite Difference

ii) Finite Elements

b) Analytic solutions.

In numerical solutions, the values of the constant A are restricted to A E [0,1].

In fact when A < 0.001, computation by means of the exact solution is not practical because

of the slow convergence of the Fourier series Ames[2 ].The analytic solution has so far only

been givev for A= 1, Hopfand Cole [5] , Lamb[ 12], Raunch [22],and Gandarias [6].

In the physical application of shock waves in fluids, A has the meaning of viscosity. Thus the

solution considers the inviscid limit i.e., (A ~ °) of the Burgers equation.

An attempt has also been made by Gandarias [ 6] to obtain potential symmetries for the

Burgers equation and the corresponding local solution for only, A = 1 .

Popovych and Nataliya [21] obtained the infinitesimal symmetries for Burgers equation r:

for only A=I. Both Mitchel and Griffins [15], and Roy [32] obtained stable numerical solution

of the Burgers equation for A E [0,1]and the numerical solution became unstable for the values

of A outside the interval [0,1] .

But it is not known what happens when A ~ -00 or when A ~ 00 .

To answer this question there is a need to find global solutions for A E (-00, 00).
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Thus we have attempted III this study to solve the Burgers equation: U t + uUx = AUxx

for A E (-00,00) , analytically, using Lie symmetry analysis.

1.3 Objectives of The Study

The objective of this study was to find the global solution ofthe Burgers equation

U t + uUx = AUxx for an arbitrary A i.e. for - 00 < A < 00, using Lie symmetry analysis.

1.4 Significance of The Study

The results of this study provides an alternative method for solving the Burgers equation for

A E (-00,00) and other similar nonlinear partial differential equations. This is a significant

contribution to the knowledge and further research.

1.5 Literature Review

The nonlinear algebraic theory of generalized solutions for large class of nonlinear PDE was

originated by Rosinger [ [23],[24] ] who has since developed the theory further, culminating

in the publication of four research monographs [ [25],[26],[27],[28] ]. In these monographs

the algebraic theory, complete with applications in the study of nonlinear PDE, is well

presented. Some of the major results obtained by Rosinger in this line of research include:

- The solution of the celebrated impossibility results of Schwatz [35 ] regarding the

multiplication of distributions of Rosinger [30]

- The characterization of all possible nonlinear algebraic theories of generalized functions [29]

-The global solution of arbitrary nonlinear analytic PDE [27 ]
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Lie symmetry groups for classical solutions of nonlinear PDE can be extended to symmetry

groups for global generalized solutions. Nonlinear Lie group theory for global generalized

solutions of nonlinear PDE was started by Rosinger [ [27],[31] ]. In collaboration with

Michael Oberguggenberger [17] of Innsbruck, Austria, they have published a research

monograph on the solution of continuous nonlinear PDEs through order completion Group

Invariance of such global solutions have also been developed by ,Walus [38] and, Rudolph [33].

So far, some of the major results obtained by Rosinger and his collaborators are:

• The first nonlinear Lie Group theory of global generalized solutions of nonlinear PDEs

• Three solutions to Hilbert's fifth problem considered in its full generality

• The first solution of .Lewy problem of solvability of smooth PDEs.

The use of Lie Symmetry Analysis of differential equations in solving nonlinear PDEs was

studied by Omolo-Ongati [19]. He particularly gave a stability approach to exact solutions of

nonlinear PDEs provided by symmetry groups.

Ames, Lohner and aAdams [3] studied group properties the nonlinear wave equation

». = [j(x,u)ux 1·
Torris and Valenti [37] studied the unperturbed nonlinear wave equation

»; = [j(x,u )uJt. for f· > O,f" *- O. In their solution ,they assumed that f. > O,f" *- O.

But Omolo-Ongati [20] later showed that these assumptions made were unnecessary since the

conditions present themselves naturally. He provided Lie symmetry solutions for approximate

nonlinear hyperbolic equations.

Ibragimov [10 ] developed some invariant and symmetry solutions for heat equation and, for

Burgers related equation but only for ..1, = 1. Hopf [7] studied Lie groups and their inversions

as applied to PDEs. Stephani [36] made an attempt to solve the Burger's equation by first

transforming the symmetry groups of the equivalent heat equation using Lie-Backund
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symmetry analysis. But in his method, the solution only consider the value of ..1,E [0,1] as III

the numerical methods.

Lie symmetry solutions for nonlinear first order ordinary differential equations was developed

for category of Abel's differential equations. Schwarz [34 ] gave an algorithm for computing

infinitesimal symmetry for Abel's equation. Ibragimov [ 8 ] ,Ibragimov and Kolsrud [9]

attempted to find some potential infinitesimal symmetries for an equation similar to the Burgers

.No corresponding solutions were obtained.

The literature available shows that all the attempts, both numerical and analytic, to solve the

Burgers equation have assumed the value of constant A, between ° and 1 i.e. 0::;..1, ::;1.

In this study we have attempted to find exact solutions of the Burgers equation which is true

for any real constant ..1,:- 00 < ..1,< 00 ,using Lie symmetry analysis.

1.6 Research Methodology

The concept of Lie group theory has been used in solving the Burgers equation. These include:

Lie groups of transformations; infinitesimal transformations; prolongations; infinitesimal

generators and general applications of Lie groups to the solutions of differential equations.

Finally, Lie invariant symmetry has been applied in obtaining exact solutions to the given
)

Burgers equation.
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CHAPTER 2

BASIC CONCEPTS

2.1 Lie Groups of Transformations

We first give the basic concept of a group.

Definition 2.1.1

A group G is a non empty set of mathematical elements with a composition ¢ defined

between the elements satisfying the axioms:

(i) closure property:

\lx,YEG,¢(X,y) EG..

(ii) associative property:

\lx,y,zEG ,¢(x,¢(y,z)) = ¢(¢(x,y ),z) EG.

(iii) identity property:

::J! identity element e E G such that:

\Ix E G,¢(e,x) = ¢(x,e) = x

(iv) inverse property:

\Ix E G,

::J! inverse element, X-I EG,¢(X-I,x)=¢(x,x-I)=e

Definition ,2.1.2

Let

)

lie in a region D c R" .

Consider the set of transformations;
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x* = X(x,&) (2.1.1)

defined for each xED depending on real parameter e where e ESe R.

Suppose

¢(&,5)

defines a composition law of parameters e , 5 E S then (2.1.1) forms a group of

transformations on D if

(i) for each

&ES,X*ED

(ii) S with ¢ forms a group G.

(iii) x* = x when e = e i.e. X(x,e) = x

(iv) ifx*=X(x,&) and x**=X(x*,5) then x**=X(x,¢(&,5))

that is the group transformation from x to x * via s , followed by

x * to x ** via, 5 is equivalent to a single transformation from x to x ** VIa ¢(£, 5).

We say, a group of transformation which depends on a single real parameter

e defines, one-parameter (s) Lie group of transformations if in addition

(v) e is a continuous parameter i.e. e E S is an interval in R.

(vi) X is infinitely differentiable with respect to X in D and e E S.

(vii) ¢(&,5) is C'" continuous.

Example 2.1.1

Consider a one-parameter ( s) group of transformations

x* = X(x,&)= x +&

Checking for the properties of a one-parameter (z') Lie group of transformations,
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we have

x* = X(x,&)= X(x,O) = x.

x** = X(x*,8)= x*+8 = x+(&+8)= x+¢(&,8)

Clearly

x* = X(x, e ) defines a simple group on G .

Hence x* = X(x, &) is a Lie group of transformations.

Example 2.1.2

For the two-dimensional group of transformations

x* = X(x,y;&)= (x+&,~),
x+&

it is evident that

x*=x+&,

and

y*=~
x+&

We therefore arrive at

x** = X(x*,8)= x*+8 = x+(&+8)= x+¢(&,8),

x*y*y**= =xy(x+¢(c,8))
x*+8

and

X(x,y;O) = (x,y). .

Hence the transformation

X(x,y;&)= (x+&,~)
x+&

forms a Lie group of transformations.
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2.2 Determination of Infinitesimal Transformations

Let

x* = X(x,&)

be a one-parameter (&) Lie group of transformations with identity e = 0 and law of

composition ¢.

Application of Taylor expansion about e = 0 grves

* _ ( )_ () [ax(x,&)] &2 [ax(x,&)]x - X X,& - X x,O x+& + - + .
a& 5=0 2! a& 5=0

(2.2.1)

If we let

;:(x)-- [axa(:,& )]0=0':> G 0 then (2.2.1) becomes

(2.2.2)

The transformations

x* = x + &c;(x) in (2.2.2) is known as the infinitesimal transformation of the one-

parameter Lie group of transformations (2.1.1).

The components of c;(x) are called the infinitesimals of (2.1.1)

The symmetry of a group G is a Lie group of transformations which maps solutions into

solutions, Stephani [36].

That is, image )1(£) of any solution y(x) of a differential equation IS agam a solution of

the differential equation.

Example 2.2.1

Consider one-parameter (&) Lie group of transformations

x* = x+ ex
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and

y* = y + 2cy + &2 Y -I < e < 00

We see that

X(x,y;&)= (X*,y *) = ((I +& )x,(1 +& Y y)

and from (2.2.2 ) that the corresponding infinitesimal is given by

~(x,y)= [DX(X,y;& )]
D& 6=0

[
DX(X* *)]= ,y = [(x,2(1+&)y)L=0= (x,2y)

D& 6=0

Lemma 2.2.1

X(x;& + ~&) = X(X(X;&);¢(&-I,& + ~&)) (2.2.3a).

Proof

X(X(X);¢(&-I,& + ~&)) = X(x;¢(&,¢(&-I,& + ~&))

= X(x; ¢(¢(&, &-1), e + ~&))

= X(x; (¢(O, e + ~&))
= X(x;& + ~&)

Theorem 2.2.1 [Lie's first fundamental theorem]

There exists a parameterization rk) such that the Lie group of transformations (2.1.1) is

equivalent to the solution ofthe initial value problem (NP) for the first order differential

equations

dx* = ~(x*)
dr (2.2.3b).

with initial conditions x* = x, when t: = 0 (2.2.3c).

In particular rk)= !a(&')d&' (2.2.3d).
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() 8¢(&,8) I
where a & = ( r)=( _I )88 e,o e= .«

(2.2.3e).

and a(O) = 1. (2.2.3f).

[&-1 denotes the inverse of e

Proof.

First we show that (2.1.1) leads to (2.2.3b), (2.2.3c), (2.2.3d), (2.2.3e). Expand the left-hand side

of (2.2.3a) in a power series in Se about Se =0 so that

8X(x; s)
X(x;& +/).&) =x*+ /).&+0((/).&)2) (2.2.3h).

8&

where x * is given by (2.1.1) .Then expanding ¢(e-I, e + /).&) in a power series in /).&

about Se =0 we have

(2.2.3i).

where a( &) is defined by (2.2.3e). Consequently, after the right-hand side of (2.2.3a). in a

power series in Se about /).& =0, we obtain

X(x;& + /).&) = X(x*;¢(&-I,& + /).&))

= X(x*;a(&)/).&+0((/).&)2))

= x* +a(&)~(x*)/).&+0((/).&)2)). (2.2.3j).

Equating (2.2.3h) and (2.2.3j ) we see that

x*= X(x;&) satisfies the initial value problem for the system of differential equations

dx*- = a(&)~(x*)
d&

(2.2.3k).
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with x*= x, at e = o. (2.2.31).

From (2.2.2) it follows it follows that a(O) = 1. The parameterization r(c)= 1ate'sde' leads

to (2.2.3b,c).

Since oC;(x), i = 1.2.3 ,n is continuous, it follows from the existence and uniqueness
ox;

theorem for an (IVP) for a system of first order differential equations, that the solution of

(2.2.3b,c), and hence (2.2.3k,1), exists and is unique. This solution must be (2. 1.1),which

completes the proof.

From the above theorem, without loss of generality, we assume that a one-parameter (s)

Lie group of transformations is parameterized such that its laws of composition

¢(&,5) = &+5

and

&-1 = e,where e = 0 is the neutral element. That is the one-parameter Lie group of

transformations (2.1.1) now becomes;

with initial conditions x* = x, at e = 0 (2.2.4)

where C;(x) is the infinitesimal of (2.1.1)

Example 2.2.2

Considering the groups of translations
x* =x+& (2.2.4a)

y*=y, (2.2.4b)

the law of composition here is ¢(&,5) = &+ 5, and &-1=- e .
Applying lemma (2.2.1) and theorem (2.2.1) we obtain
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a¢(&,5) = 1 and hence a(&) == 1.
a5

Let X = (x.v;»),

Then the group (2.2.4a,b) is X(x,y;&) = (x + &,y).

Thus ax(x,y;&) = (1,0). Hence ';(x,y) = aX(x,y;&) 1,,=0 = (1,0)
a& a&

Consequently (2.2.3k,l) become

dx* dy*
-=1,-=0
d& d&

(2.2.4c)

with x* = x, y* = y, at & = 0 (2.2.4d)

The solution of the (NP) (2.2.4c,d) is seen to be (2.2.4a,b).

Definition 2.2.1

The infinitesimal generator of the one-parameter Lie group of transformations (2.1.1)

is the operator

v = Vex) = ';(x)V

= ';(x) [~,~,~, ,~J
ax] aX2 aX3 ax"

where (2.2.5)

V is the gradient operator defined by where

[
a a a aJV = ax]' aX

2
' aX

3
, •••••••• , aXn

with ';(x) = (.;](X)'';2 (x), ,.;" (x)).
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Theorem 2.2.2

The one-parameter Lie group of transformations (2.1.1) is equivalent to

x* = e" x = X(x, &) = I~=o
(2.2.6)

where

is defined by (2.2.5) and

v" = vvm
-
I m = 1,2,3, with vox = x,

The transformation (2.2.6) above is called Lie series

Proof.

Let

n 0
V = Vex) = I~i(X)-

i=1 ox;
(2.2.6a)

and

n 0
V(x*) = I~;(x*)-*

i=1 ox ;
(2.2.6b)

where

x* = V(x;&) (2.2.6c)

is the Lie group of transformations (2.1.1). From Taylor's theorem, expanding (2.2.6c)

about e = 0 , we get

co &k(OkV(X;&) ) 00 &k(dkX* )
x* = ~ -k! 0 k I B =0 = I -k! -d k I B =0

k-O. & k=O' &
(2.2.6d)

For any differential function F (x) ,

d n (Ok F(x*) dx. *)-' F(x*) =I * I

de ;=0 ox; de
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(2.2.6e)

dx*
Hence it follows that - = V(x*)x*,

d&
(2.2.6f)

d
2
x* d (dX*)-- = - - = V(x*)V(x*)x* = V2(x*)x*,

de' ds de
(2.2.6g)

Consequently

dk *x I k kd&k &=0 = V (x)x =V x, k = 1,2,3, . (2.2.6h)

which leads to (2.2.6).

Example 2.2.3

For the infinitesimal generator

we see that its corresponding Lie series may be obtained.

By theorem 2.2.2 we have
k k

* I'"e V
X = --x

k=O k!
y* = ,",'"

L.k=O

The infinitesimal for (x*,y *) is

c;(x) = (c;, (x,y ),c;2 (x,y))

so that

c;, (x,y) =y,c;2 (x,y) =-x

We need to find vkx and vky ; k=l ,2,3, .

a a
V=y--x-ax ay
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1 2 (I) 1 3 4 5V X=y,v X=v v x =v Y=-X,v x=-y,v X=X, v X=Y, .

1 2 3 4 5
V Y=-X,v y=-y,v Y=X,v y=y,v Y=-X, .

It is evident that

411 411-1 411-2 411-3 1 2 3v X=X,v X=-y,v x=-x,v x=Y,n=" , . (2.2.6i)

411 411-1 411-2 411-3 1 2 3v y=y,v Y=x,v y=-y,v y=-x,n=" , . (2.2.6j)

Alternating and recurrent series for the above equations (2.2.6i) ,(2.2.6j) yield

k k

* I""e V
X = --x

k=O k!

~(l-~:+:; - ~:+....}+(c- ~:+~:- ~:+.}

Thus

x* = x cos e + y sin e

y* = y cos e - x sin e

is the corresponding explicit one-parameter Lie group of transformations.

Example 2.2.4

Consider the infinitesimal generator,

a aV=-y-+x-.ax ay

We see that its corresponding Lie series are of the form:
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x* = ,",00
~k=O

ckVk* _ ,",00 c-y - ~k=O -----;;!y

From theorem (2.2.2) we therefore have,

1 2 (I) 1 3 4 5V X=-y,v X=V v x =V y=-X,V X=y,v X=X, v X=-y, .

1 2 3 4 5V y=X,V y=-y,v y=-X,V y=y,v y=X, .

It is evident that

411 411-1 411-2 411-3 1 2 3v x = X, v x = y, v x = -X, v x = -y ,n = , , , . (2.2.6k)

411 411-1 411-2 411-3 1 2 3v y = y, v y = -x, v y = -y, v y = x ,n = , , , . (2.2.61)

Alternating and recurrent series for the above equations (2.2.6k) ,(2.2.61) yield

x* = x cos s - y sin e y* = y cos e + x sin e

Example 2.2.5

The infinitesimal generator

00 c'v' 00 ckVk
readily yields the series: x* =I -- x y* =I y

k=O k! ' k=O k! '
where
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1 2 (I) 1 3 4 5V X = x, V X = V V X = V Y = x, V X = x, V X = x, V X = x, (2.2.6m)

1 2 3 4 5
V Y = y, V Y = y, V Y = y, V Y = y, V Y = y,............................... (2.2.6ln)

It is clear from equations (2.2.6m) , (2.2.6n) that

x* = e' x

and

Hence the corresponding explicit one-parameter Lie group of transformations are determined.

2.3 Extended Transformations (Prolongations)

To be able to apply a point transformation

x* = X(x,y; &)

} (2.3.1)y* = Y(x,y;&)

to the differential equation,

H( ,"", (n)) 0 ' _ dy (n) _ dnyx,y,y,y ,y , ,y =, y - -, ,y ---
dx dx"

(2.3.2)

we must know how to transform the derivatives /n) , that is, how to extend

(or prolong) the point transformation to the derivatives. The task here is extending on the

transformation (2.3.1) acting on

(x,y) to the (x'Y'YI'Y2'Y3 ..... YJ space, with the property of preserving the contact

conditions relating the differentials

dx, dy, dYI' dY2 , dym·· .i.e.

(2.3.3)
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From (2.3.1) the transformed derivatives are defined by

dy* = Y * I dx*, dy * I = Y * 2 dx*, dy * 2 = Y *3 dx*, dY*m =Y*m+1 dx*, .(2.3.4)

Using (2.1.0) and (2.1.1 ) it can be shown in particular, that

oY(x,y;&) oY(x,y;&)----'----'-------'-+ YI ---'---'---'-
* = dy * = Y(x .&) = ox oY

YI dx* I 'Y'YP oX(x,y;&) + oX(x,y;&)
ox YI By

(2.3.5)

(2.3.6)

Theorem 2.3.1

The Lie group of transformations (2.3.5) and (2.3.6) extend to n - th extension, n >2 ,

which is the following one-parameter Lie group of transformation acting on

19



x* = x(x,y;&)

y* = Y(x,y;&)

Yl* = 1'; (X'Y'Yl;&)

with

ay ay ay ay
~+Y~+Y~+ +Y~ax I ay 2 ayl ..... n ayn-l

=------~~--,-~~=----,--~~
ax(x,y;&) ax(x,y;&)

ax + Yl ay

For proof ,see Olver[18 ]

Example 2.3.1

Given the scaling group

x* = X(x, Y; &) = e" x

Y* = y(x, Y; & ) = e2B Y

then it's first extension Yl * is given by

ay(x,y;&) ay(x,y;&)---'--'-----'--+ Yl ---'--'-----'--
* _ dy * _ y. ( . ) _ ax ay _ B

Yl - dx* - I x,y'YI'& - ax(x,y;&) + ax(x,y;&) - e Yl
ax Yl ay

Its second extension Y 2 * is given by

(2.3.7)
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and by (2.3.7) the k - th extension becomes

By definition of the Lie group of transformations, the k - th extension or prolongation of

example 2.3.1 above, is also a Lie group of transformations. Thus the study of extended Lie

group of transformations reduce to that of infinitesimal transformations. There we need to

determine explicit formula for developing extended infinitesimal transformations and

corresponding infinitesimal generators.

Consider, the one -parameter Lie group of transformations

x* = X(x,Y;&) = x + &C;(x,y)+ 0(&2) }
(2.3.8)y* = Y(x,y;&) = y + &1](x,y) + 0(&2)

with infinitesimal

C;. (x, y) = [C;(x,y), 1](x, y)] (2.3.9)

and corresponding infinitesimal generator

a av = c;(x,Y)-+1](x,y)-ax ~ (2.3.10).

The k - th extension of (2.3.8) is given by
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x* = X(x,y;&) = x + &~(X,y)+ 0(&2)

Y* = Y(X,y;&) = Y + &7](X,y)+ 0(&2)

* _ y ( . ) _ (k)( .) (2)Yk - k X'Y'YI 'Y2 ······Yk'& - Yk + &7] X'Y'YI 'Y2 ,······Yk + 0 e

Then k - th extended infinitesimal of (2.3 .9) will be

with corresponding k - th extended infinitesimal generator

(k) a ( ) a (1)( )~ (2)( )~v =~(x,y)-+ 7] X,Y -+ 7] X'Y'YI.::\" +7] X'Y'YI'Y2.::\" +
ax By vYI vY2

Theorem 2.3.2

(k)( ) _ D7](k-l) D~(x,y)
7] X'Y'YI 'Y2 ,······Yk - - YkDx Dx

where

D a a a a a-=-+ YI-+ Y2 -+ Y3-+ Yn+I-+·······k =1,2,3, n
Dx ax By Byl By2 ay"

(2.3.l Oa)

(2.3.10b)

(2.3.10c)

(2.3.11)

(2.3.12)
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Proof

From (2.3.7), (2.3.8 ), (2.3.9 ), (2.3.10 ), (2.3.1 Oa,b,c ), we have

DY,,_I D(Yk_1+ cr/k-I) + 0(&2))

Y,,(x'Y'YI'Y2'Y3' ....'Yk;&) = D'V(DX . ) = -----=-D"-'-X---=2:--
ZI. x,Y,& D[x + &';(x,y) + 0(& )]

Dx Dx

which leads (2.3.11).

Example 2.3.2

Let us consider a rotation group having first extension YI * as

Then using (2.3.11) and (2.3.12) we obtain ,

17(J)(Xyy)=D17(O) _Y D';(x,y) = 817+y 817_y[8';+y 8';]=_I_y21
, 'I Dx 1 Dx 8x 1 ~ 1 8x 1 ~

Therefore

* - y ( . ) - (1)( ) _ (1 2)YI - 1 X,Y,YI'& -YI +&17 X'Y'YI -YI +&- -Y 1

2.4 Determination of Extended Infinitesimal Coefficient Functions ¢(••••.....)

The terms 1/) ,cp("), cp("') ,¢(••••), where *, **, ***, represent

X, t,y, xx,yy, xt, tt, xxx, xxxx, in the prolongation are expressed as functions of

cp,,;, t;u as below by using equations (2.3.11) and (2.3.12).
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¢XXX=D3x(¢-~Ux -TUt)+~Uxxxx +TUxxxt

(2.4.1a)

(2.4.1b)

(2.4.2a)

(2.4.2b)

(2.4.3b)

¢xx =»; + (2¢xu -~xx)ux -'.aUt + (¢uu -2~xu~/ ->,».», -~,/UU/

-«.»?», +(¢u -2~x)uxx -2'xUxt -3~uuxuxx -'uUtUxx -2'uuxuxt
(2.4.4a)
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*¢XX =»: +2ux¢ux +uxx¢u +U2X¢UU -UX(C;XX +2uxC;ux +uxxC;u +U2xC;UU)

-Uy(7rxx +2ux7]ux +uxx7]u +U2x7]UU)-u((rXX +2uXr,Lt +uxxru +u2XrUU)

- 2u,JC;x + uxC;u)- 2uyX (7]x +«n.): i»; (rx +»,ru)

¢" = ¢" + (2¢u, - ruu)u, - C;"U, + (¢uu - 2'fu,~, 2 - 2C;Wu,u, - 'fuuU, 3

-C;III1U,U2, +(¢u -2'f,)u" -2C;,u" -3'fuU,U" -C;uU,U" -2C;uu,u"

*¢(( =¢(( +2u(¢U( +Uft¢U +U2(¢UU -UX(C;,( +2utC;ut +UIfC;U +U2(C;uJ

-Uy(7]ff +2u(7]U( +Uf(7]u +U2(7]UU)-U(('ff( +2utrU( +uffrU +u2,rUU)

-2uX({C;( +u(C;J-2uty(ry( +u(7]J-2uf({r( +u(rJ

* 7].YY = ¢yy + 2u y¢uy + UYY¢U + U2 y¢uu - Ux (C;yy + 2u yC;uy + UyyC;u + U2 yC;UU)

- Uy (7]yy + 2uy7]UY + Uyy7]u + U2 y7]UU)- U( (ryy + 2UyrUY + Uyyru + U2 yrUU)

- 2uy)C;y + Uyc;J- 2Uyy (7]y + Uy7]J- 2Uty (ry + uyrJ

doXXXX_ D4 (do - J: - )+ J:U +If' - x If' ,:>Ux rut ,:>. =t ruXXXX(

)+

(32 do +3do +4do
U .u .UCf/Ulili U Xl.f',XUlili U xY'ULlUU

(2.4.4b)

(2.4.5a)

(2.4.5b)

(2.4.6b)

(2.4.7)

(2.4.8)

D4X{r)='fxxxx+uxruxxx+3{ uXXr,LtX +UX'fXUILt +ux2ruuxx )+
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2.5 Lie Algebras

Definition 2.5.1

Consider a k -parameter Lie group of transformations of partial differential equation with

infinitesimal generators {Vi} i =I,2,3, k

The commutator [Lie bracket] of Vi and Vj is another first order operator defined by

(2.5.1).

From (2.5.1). it follows that

lVi' vjJ= -[Vj , vJ skew-symmetry (2.5.2).

Theorem 2.5.1 [Second Fundamental Theorem of Lie]

The commutator of any two infinitesimal generators of a k -parameter Lie group of

transformations is also an infinitesimal generator, in particular

26
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where the coefficients Cllij , •••••• are called structure constants, i, j ,n = 1,2,3, ..... k

For any three. infinitesimal generators 1{,v j , VII it is always true that

(2.5.4).

For proof, see Olver [18]

Equation.( 2.5.4) is known as Jacobi's identity

Results (2.5.1), (2.5.2) and (2.5.3) yield the third Fundamental Theorem of Lie given below.

Theorem 2.5.2 [Third Fundamental Theorem of Lie]

The structure constants ,defined by the commutation (2.5.3) satisfy the relation s

11 /I
C ij =- cji (2.5.5a).

k I k I
C ij C kn + C jn C kl k I -0+c IIi C kj - (2.5.5b).

and

For proof, see Bluman and Kumei [4 ].

For infinitesimal generators {Vi} i =1,2,3, n defined above, bilinear property satisfy

the commutator equations

} (2.5.5c).

Definition 2.5.2

A Lie algebra , L ,is a vector space over some field F with an additional law of

combination of elements in L (the commutator) satisfying, skew-symmetry, Jacobi' identity,

and the bilinear properties.



Example 2.5.1

Consider the 8-parameter Lie group ofprojective transformations in R2
:

i =1,2,3, 8,8; E R with infinitesimal generator V of the form

a a
V = ~(x,y)-+ 7](X,y)-.

ax ay

From theorem (2.2.2) we obtain the generator

Then the infinitesimal generators for the corresponding Lie algebra , LS are

a a
v 5= - , V 6= x- ,

ax ay
a

v7=y-
By

a
,VS=-'By

Below is the table for the commutators of the Lie algebra LS whose (i,}t entry

a a=-2x--y-
ax By
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Other Lie brackets are computed similarly.

The corresponding Lie brackets table constructed is shown below.
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lVi'vjJ VI V2 V3 V4 Vs V6 V 7 V S

VI 0 0 -V3 -V 2 -2V3-V7 0 0 -V 6

V2 0 0 0 0 -V 4 VI - V 2 -V3-2v7

VI 0 0 -V 4 -VS V6 0 0
V 3

V4
V2 0 V4 0 0 V 7 -V 3 -V 4 -VS

Vs
V3+V7 V4 Vs 0 0 V s 0 0

V6
0 -VI -V 6 -V7+V3 Vs 0 V6 0

V 7
0 V2 0 V4 0 V6 0 -VS

Vs V6 V 3+2 V 7 0 Vs 0 0 Vs 0

Table 2 [Lie bracket for (Ls )]

It should noted that the Lie bracket table can be used for finding additional infinitesimal

generators.
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CHAPTER 3

LIE GROUPS AND DIFFERENTIAL EQUATIONS

3. lOne Parameter Groups on The Plane.
Let us consider a change of the variables x, y involving a parameter 8:

T, :x = <p(X,y,6' ), Y = lJI(x,y,6') (3. 1 .1 )

with functions <p and lJI such that

To ::X = <p(x,y,O), Y = lJI(x,y,O) (3. 1 .2 )

It is assumed that <p(x,y, 6'), and lJI(x,y,6') are functionally independent, i.e. their Jacobian does

not vanish

One can treat the equation (3.1.1) also as a transformation that carries any point P = (x, y) of

the (x,y) - plane into a new position P = (x,y) and writeP = Tc(P). Accordingly, the inverse

transformation:

(3'.1.3 )

returns P into original position P , i.e. T-1
e (p) = P.

Furthermore, the equations.(3 .1.2) means that To is the identical transformation I ,i.e.

Let T, and T 0 be two transformations ofthe form (3.1.1) with different values 6' and 8 of the

parameter. Their composition (or product) To T, is defined as the consecutive application of

these transformations and is given by

}
(3.1.4 )
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The geometric interpretation of the product is as follows. Since T, carries the point P to the

point P = Tc(P), which T s carries to the new position P = TAp), the product Z, T, is destined

to carry P directly to it's final location P , without a stopover at P . Thus, (3.1.4) means that

Definition 3. 1 .1

The one parameter family G of transformations (3.1.1)

obeying the initial condition (3.1.2 ) is called a one parameter group if G contains

the inverse (3.1.3 ) and the composition T/j ~ of all its elements; T/j T, = ~+/j •

The latter condition, invoking (3.1.4 ),may be written as:

qJ(qJ(X,y,&),/f(x,y,&), 8)= qJ(x,y,&+ 8)

/f(qJ(x,y,&) ,/f(x,y,&), 8) = /f(x,y;&+ 8)
}

(3. 1 .5).

3.2 Lie Groups and First Order Ordinary Differential Equations

Definition 3..2..1

The group of transformations (3.1.1) is termed a symmetry group of an ordinary differential

equation, dy = /(x,y)
dx

if the form of the differential remains the same after the change of variables (3.1.1 ). It means

that- rIY = /(:X,y) with the same function f as in the original equation. A symmetry group of a
dX

differential equation is also termed a group of admitted operator or an infinitesimal symmetry of
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Example 3.2.1

It is evident that the equation y' = f{y) does not alter after the transfonnationx* = x + & smce

the equation does not explicitly contain the independent variable x. Therefore the symmetry of

this differential equations is given by the group translations along the x axis, x* = x + e

with the generator X = ~
ax

Likewise the equation y' = f{x) admits the group of translations along the yaxis,

y* = y+&

with the generator X = ~By

3.3 Lie's Integrating Factor

Consider a first order equation written in the symmetric form

M(x,y)dx+ N(x,y)dy =0 (3.3.1 )

Lie showed that if

a a
X = ~(x,y )-+ l]{X,y)-ax By

is a symmetry for equation (3.3.1) then

(3.3.1a)

is called Lie's integrating factor.
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Example 3.3.1

a a
We consider X = x-- y- a symmetry generator for the Riccati's equation

ax ay

, 2 2y+y --2 =0.
x'

Substituting into (3.3.1) ~ = X,17 = -y,M = i-+,N = 1 we obtain the integrating factor
x'

x
(3.3.1a) as; f.1 = ? 2 • After multiplication of the Riccati's equation by this factor it

x-y -xy-2

becomes:

Let us rewrite it in the following form for integration:

2xd:;+ydx~ + dx = d(Inx+!In xy-2) = o.
x y -xy-2 x 3 xy+1

Th . .. ld xy - 2 ChI' c. b . he soluti f h . .e mtegration yie s: -- = -3' ence so vmg lor y, we 0 tam t e so ution 0 t e Ricatti's
. xy+1 x

equation as

2x3 +C
Y - C - constant.

- x(x3 - C)'
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3.4 Lie Groups and First Order non-linear Ordinary Differential Equations

3.4 .1 Introduction

Solving non-linear ordinary differential equations(ODEs) is dominated to a large extent by

various methods as may be seen from the collections by Kamke [ 11 ] , Murphy [ 16 ] and

Ibragimov [ 10] .

The main deficiencies of these approaches are well known Roy [ 32 ]. If an equation is not

used exactly as given, it is almost useless in most cases. Worse still if an equation cannot be

solved by applying these collections or the various methods described there, it is by no means

guaranteed that a closed form solution does not exist. For first -order equation the situation is

even more intricate because in addition to the computational complexity there is the principal

problem that there is no decision procedure for the existence of nontrivial symmetries of a

general equation of this kind.

Contrary toe ODEs) of first order, the existence of nontrivial Lie symmetries may always be

decided for higher- order equations. Some procedures concerning symmetry analysis of ordinary

differential equations may be found in standard text books publications like Olver [18], Bluman

and Kumei [4 ], Ibragimov [10 ] or Sophus Lie [13 ].

Let us now discuss the symmetry analysis. of first order (ODEs) of the form :

dy +r(x,y)= 0
dx

(3.4 .1 )

The symmetry analysis procedure will require that, r (x, y) be restricted to polynomials in y and

rational in x. The symmetries to be considered those point transformations that preserve the

structure of the given equation; i. e. the transformed equation must again be polynomial in the

pendent variable of the degree in the same degree in the first derivative.
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This requirement entails the general form x = f(u),y = g(u)v + h(u) for the admitted point

transformations; the corresponding symmetries called structure corresponding symmetries.

Abel's equation is the simplest equation in this category beyond the well known cases r(x, y)

linear or quadratic in y .

In this section we deal with the first order non linear (ODEs) known as Abel's equation. This

equation was introduced by the Norwegian mathematician Abel and is usually written as

, 3 2 0 ' dy - () fi k 0 1 2 3y + a3y + a2y + aJy + ao = ,y = -,ak = ak x or =, , ,
dx

(3.4.2 )

This equation (3.4.2 ) is referred to as Abel's equation of the first kind. A second equation

y' + /33 i + /32/ + /3JyL+ /30 = 0,
y+g

g =g(x) (3.4.3 )

which is usually known as Abel's equation of the second kind, may be reduced to (3.4.2) by

variable substitution change
1

y=--g
vex)

such that

a3 = /33g3 - a2g + /3Jg - /30

a2 = g' -3/33g2 +2/32g- /3J
aJ = 3/33g - /32
ao = -/33

(3.4.4 )

Definition 3.4 .1

The rational normal form (RNF) of equation (3.4.1) with r(x,y) rational in its arguments is the

equation with the minimum number of variable coefficients that may be obtained from it by

rational transformations in x and y.
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Lemma 3.4.1.

There are two different possibilities for the (RNF) of Abel's equation (3.4.2 ).

Case ( a) dy + Ai + By = 0 .
dx

dy 3 • h
Case (b) dx + Ay + By+ 1 = 0 WIt A == A(x) , B == B(x).

The coefficients A and B are determined as follows;

Introduce a new variable function v into (3.4.2 ) by

hence y' = ~'_ ( a2 )'

3a3

and equation (3.4.2 ) becomes

with

If b = 0 then first alternative is obtained by, with A = a3, B = b. ,.o

For the other alternative we introduce again a new function w by

, v' = bo w' + b'w.; ,which leads to

dw 3 1 0- +Aw +Bw+ =
dx

Equation (3.4.7) is a Bernoulli equation which reduces to

(3.4.5 )

(3.4.6)

(3.4.7 )

(3.4.8 )
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v' - 2Bv - 2A = 0 first order linear solvable:

-( fA ) - 2fBdxv=B 2 Bdx+C :B=e

Theorem 3.4.1 ( a )

The equation (RNF) dy + Ai + By= 0
dx

always admits the two nontrivial generators:

B ( ) B AV; =-A ax - Bya y ,V2 =- f-dx(a - Bya )- y aA B x y 2 y
(3.4.9 )

For proof see Schwarz [34]

Theorem 3.4.1 (b)

The equation (RNF) dy + Ay3 + By + 1= 0
dx

: A' - 3AB =/; 0

admits symmetry group with infinitesimal generator

v = 1 (3Aa. - A'yay)
A' -3AB -,

(3.4.l 0 )

(
A' )3

If and only A andB B satisfy. A= K B - 3A K =/; O. (3.4.11 )

The case when

A' - 3AB= 0

then the equation admits the generator,

1 A'y
V =-1 ax ---4 ay

- -
A3 3A3

(3.4.12 ).

For proof see Schwarz [34]
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3.4 Determination of Infinitesimal Transformations

for First Order Ordinary Differential Equations

In this subsection we seek to determine the two variable functions ~(x,y) ,7](x,y) known as

infinitesimal transformations whenever

a aX=~(X,y)-+7]-. ,
ax ay

is an infinitesimal generator for the first order ordinary differential equation

y' = f(x,y).

It therefore follows that,

Theorem 3.5.1

Given the first order ordinary differential equation

y' = f(x,y)

admits one parameter Lie group oftransfonnation with infinitesimal generator

a ax = ~(x,y)-+7](X,y)-
ax By

if and only if

y' = f(x,y)

(3.5.1 )

(3.5.2)

(3.5.3)

Thus comparing (3.5.1) and (3.5.3) the first order equation admits (3.5.2) ifand only if

(~, 17) satisfy

7](1) _7](1)= 7]x + (7]y - ~JY'- ~y (y,y - (~ II + rzfy ) = 0

hence,

(3.5.4)
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is the desired determining equation for the infinitesimal transformation (3.5.2).

dy _ dy
dx +r(x,y)-O<=> dx =-r(x,y) == f(x,y) ,replacing f by -r and

y' by - r by we arrive at

(3.5.5)

which is the d t .. .e ermuung equation for the infinitesimal transformation for the Abel's equation

dy
dx+r(x,y)=O.

J\.cccm\lng to "B\uman anc\ Kume\ ~1\ ) an':} '2>UO'2>\\\u\\Onof the form TJ = g + X or

1] = -r~ + X is known to have infinite solutions ,where as 1] = f~ yields trivial solutions.

But 1]=¢JJX)+¢J2(X)Y ,~=~(x) gives non-trivial solutions Schwarz [34].

Applying 1] ,~for the non trivial solutions on case (a); (RNF)

dy = _{ A/ + By } == _ rex, y) and further by equating to zero coefficients of, ym
dx

,setting ¢J} = 0 ,¢J2 = ¢J leads to equations

1 1
¢J + -~' + -(logA)'~ = O.2 2

(i)

(ii) (3.5.6)

or

1 1¢J + -f +-(logA)'~ = O.2 2
(i)

[f + ((log A)' - 2B)~]' = 0 (iii) (3.5.7)

Integrating (3.5.7 ) we obtain,
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Case1: C1 = O,C2 = 1 then

Case2: C1 = 1, C2 = 0 then

B fA a BfA 1 av =( - -dx )- -( - ~x+-y )-
2 A B ax A B 2 ay

Example 3.5.1

Consider the Abel's first order ordinary differential equation

yy' +2y +x = 00

yy' + 2y +x = 0 is Abe1's equation of second kind which is first transformed to

y' - xy3 - 2y2 = 0 - Abe1's equation, first kind

then further transformed into (RNF)

I 4 3 2 2 1 ° (1
0

1
0

)Y - Y --y + =
724x3 3x

of type (b).

(4322 'LJ1dy + ---y --y +1 JUX = 0
724x3 3x

Ndy +Mdx = 0 (iii)

i.e. N = 1, M =( 4 3 2 2 +1 )
- 724x3 Y - 3x Y

Then the infinitesimal generator

v-( 3A )~ _( A'y )~
A' -3AB ax A' -3AB ay
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a a
V=(-3x )ax -(3y)By :S==-3x ,l]=-3y

The Lie's integrating factor f1 for equation (ii) becomes

1
f1=--- =

s=M+l]N
[ ( 4 3 2 2 ) ]-1-3x-3y - y --y +1

724x3 3x

Multiplying equation (ii) by f1and integrating, yields the solution curve

27x

y-9x e2y+9x = C
x(2Y + 9x)

Example 3.5.2

The first order ordinary differential equation

3, 3 2 0
X Y - Y -x Y =

is an Abel type of equation.

This is Abel's equation of first kind which is first transformed to

then further transformed into (RNF)

1 3 1y' - - y - - y = 0 (ii)
x3 x

of type (a).

( 1 3 1 )1dy + - -3 Y - - y dx = 0
x x

Ndy +Mdx=O (iii)

i.e. N = 1,

Then the infinitesimal generator

v: = ( B )~ _(BBYJ~
1 A ax A By
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The Lie's integrating factor f.1 for equation (ii) becomes

[ ( 1 3 1 ) I'-y-x --y --y
x3 X

Multiplying equation (ii) by f.1 and integrating, yields the solution curve

K -2lnx

3.6 Lie Groups and Partial Differential Equations

3.6.1 Transformation Groups of Partial Differential Equations

Definition of a symmetry group for partial differential equations is the same as that for ordinary

differential equations.

Let us consider partial differential equations of the m - th order

:U( =F(t,x,u,u ,u u m), 3FI3u m =to.x u x x
(3.6.1 )

Definition 3.6.1

A set G of invertible transformations ofthe variables, t, x, u,

i = f(t,x,U,&),x = g(t,x,U,&),u = h(t,x,u,&), (3.6.2)

is called a one parameter group admitted by the equation (3.6.1), if G contains the inverse to

it's transformations, the identity i = t,x = x.ii = u, as well as the composition:

i == f(i,x,u,5) = f(t,x,u,&+ 5),

x == g(i,x,u,5) = gtt.x.u.e « 5),

u == h(i,x,u,5) = h(t,x,u,&+ 5),
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and ifthe equation (3.6.1) has the form in the new variables t,x,li. :

(3.6.3)

The function F has the same form in both

equations (3.6.1) and (3.6.3).

Again the construction of the symmetry group G is equivalent to detennination of it's

infinitesimal transformations

i ~t + &T(t,x,u), x ~ x + &~(t,x,u), li ~ u + &T/(t,x,u) (3.6.4)

obtained from (3.6.2) by expanding into Taylor series with respect to the group parameter e

and keeping only the terms linear in e . The infinitesimal transformation (3.6.4) provides the

generator ofthe group G, i.e. the differential operator

a a ax = T(t,x,U)-+~(t,x,u)-+T/(t,x,u)-
at ax au.

(3.6.5)

acting on any differentiable function J(t,x,u) as follows:

aJ aJ aJ .X(J) = T(t,x,U)- + ~(t,x,u)- + T/(t,x,u)- .The generator (3.6.5) IS called an operator
at ax au

admitted by equation (3.6.1) or an infinitesimal symmetry for equation (3.6.1). The group

transformations (3.6.2) corresponding to the generator (3.6.5) are found by solving the Lie

. di (- __ ) ax (- __ )equations - = T t ,x,u, - =; t ,x,u ,
de de

dli (- __ )- = T/t,x,U ,
d& } (3.6.6)with the initial conditions: t e=O = t, xe=o = x, ue=o = U

Any symmetry transformation of a differential equation carries over any solution of differential

equation into it's solution. It means that, just like in the case of ordinary differential equations,

the solutions of a partial differential equations, are permuted among themselves under the action
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of a symmetry group. The solutions may also be individually unaltered, then they are called

invariant solutions. Accordingly, group analysis provides two basic ways for constructions of

exact solutions: group transformations of known solutions and constructions of invariant

solutions.

3.7 Invariant Functions

Definition 3.7.1

A curve F(x, y) = 0 is an invariant curve for transformations (3.1.1) if and only if

F(i,y) = 0 whenever F(x, y) = 0

Theorem 3.7.1

) ( ) 0 is an invariant
A surface written in a solved form F(x =x/1 - f x'y'yl'y2'y3·'······yn-l =

surface for (3.1.1) if and only if

VF(x) = 0 whenever F(x) = 0 :
a av = ~(x,Y)-+17(X'Y)-a
ax Y

(3.7.1 )

For proof, see Bluman and Kumei [4]

Theorem 3.7.2

form F(x, y) = y - f(x) = 0 , is invariant curve for generatorA curve written in a solved

a a
v = ~(x,y) ax + 17(X,y) ay

if and if VF(x,y) ~ 1/(x,y)- ';(x,y )J'(x) ~ 0 }

F(x,y)=y- f(x) = 0

(3.7.2 )

whenever

For proof ,see Bluman and Kumei [4]
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Definition 3.7.2

(i) A function F(x) is said to be invariant function of the group of transformations (3.1.1)

iff for any group, F(x*)=F(x)

(ii) A curve F(x, y) = ° ,is said to be invariant curve for a one -parameter Lie group of

transformations (3.1.1) iff F(x*,y *) = ° when F(x,y) = °
Using results of (i) and (ii) we can solve (3.7.1) for the Lie group of transformations.

Example 3.7.1

We consider the Lie group of transformations,

x* = X(x,y;&) = e" x y* = Y(x,y;&) = e" y (3.7.3 )

a a
with infinitesimal generator, V = x- +y-.ax By

A curve , y - Ax = 0, x > 0, A = cons tan t, is said to be invariant curve for (3.7.3 ) since;

V(y - Ax) = x a(y - Ax) + y a(y - Ax) = -Ax + y which is only equal to zero if y - Ax = 0.
ax By

3.8 Invariance of Partial Differential Equations

In this subsection we apply infinitesimal transformations to the construction of solutions of

partial differential equations (PDEs). We will consider systems of (PDEs) and show that the

infinitesimal criterion for their invariance leads directly to an algorithm to determine

infinitesimal generators V admitted by a given partial differential equation. Invariant surfaces

of the corresponding Lie group of point transformations lead to invariant solutions (similarity

solutions) Ibragimov [10]. These solutions are obtained by solving partial differential equations

with fewer independent variables than the given (PDEs).
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First we consider a klh order partial

differential equation in the form

(3.8.1 )

where x = (x" x2' x), , XII ) denotes n independent variables, Uj denotes the set of

coordinates corresponding to all the j - th order partial derivatives with respect to x.

In fact equation (3.8.1) becomes an algebraic equation which defines a hyper -surface In

(x,U,U"U2,U).,. ..... ,UJ - space. We assume that the partial differential equation (3.8.1 ) can be

written in solvable form in terms of some eh order partial derivative of u :

)= U,","I" I". I" -. f(x,u,u"U2'U3·······,ukI 2 34 ::> •••••••••••• I I= 0, (3.8.2 )

Definition 3.8.1

Let Fr(x,U,U"U2'U3 ••••••• .u, )=0 ,r=1,2,3 .l (3.8.3)

be system of differential equations. The system is said to of maximal rank if Jacobian matrix

J F,(x,u,U"U2'U3 ••••••• ». I= (aE',. , aF, J of F with respect to all the variables (x, u
j
) is of

ax; 8ukj

Definition 3.8.2

The one-parameter Lie group of transformations

x *= X(x,U;&) (3.8.4)

U* = U(x,U;&) (3.8.5)

leaves the partial differential equation (3.8.1) invariant if and only if its k - th

extension,

47



* * * * *x ,U ,U1 ,U2 , Uk

invariant.

Theorem 3.8.1

Let G be a Lie group of transformations acting on m - dimensional manifold M . Let

F: M ---+ Rl ,I ::::;m , define a system of algebraic equations

Fr{x l= 0 ,r = 1,2,3 .1

and assume the system is of maximal rank.

Then G is a symmetry group of the system if and only if

V[ F,.{x ) l= 0 ,r = 1,2,3 .1 whenever F,.{x )= 0 for every infinitesimal generator

V of G.

For proof ,see Olver [18 ].

Theorem 3.8.2

Let

Fr(X'U'UI'U2'U3 •••.••• 'Uk )=0 ,r=1,2,3 .l

be a system of partial differential equations of maximal rank defined on M .If G IS a group

of transformations acting on M and

V(k)[ Fr(X,U(k) ) ] = 0 ,r = 1,2,3 .1,

where

for every infinitesimal generator V of G ,

then G is a symmetry group of the system of partial differential equations

Fr(X,U(k) ) = 0, r = 1,2,3, ,1 .

For proof ,see BIuman and Kumei [4 ]
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Now we give a criterion for the invariance of a

partial differential equation.

Theorem. 3.8.3

Let

Fr(X,U(k) ) = 0 be a non degenerate system of partial differential equations.

Let

(3.8.6 )

be the infinitesimal generator of the one-parameter Lie group of transformations

(3.8.4) , (3.8.5)

and let

V(k) = ~i(X,U)~+ 7J(x,u)~+ 7J/)(x,u,uJ~+ .
aXi au au,

........... +7J(k)i
J
i, ....ik(X,U,u"u2, .....uk) a

au.. .
'J'Z') lk

(3.8.7)

be the corresponding k" extended infinitesimal generator of (3.8.6) where

(3.8.8)

(3.8.9)

ij =1,2,3, ,n jor,j=1,2,3"k with k=1,2,3, in terms of(~(x,u),7J(x,u)).

Then a connected local group of transformations G ofthe form; (3.8.4), (3.8.5) IS a

symmetry group of the system of partial differential equations

if and only if

49



V(k)[~(X,U(k)) ]=0 ,r=1,2,3 .I,wheneverF(x,u(k) )=0

Proof

Sufficiency condition.

We assume that

V(k)[ Fr(X,U(k) ) ] = 0 ,r = 1,2,3 .1, whenever F(X,U(k) ) = 0, such that

(3.8.10)

Fr(X,U(k) ) = 0 is a non degenerate system of partial differential equations, for every

infinitesimal generator V of G .

Then we need to prove that group G is a symmetry of system of partial differential equations

~(X,U(k) ) = O.

Since the system of equations Fr(X,U(k) ) = 0 is non degenerate i.e. is of maximal rank then

by theorem 3.8.2 , V (k) the k - th extension of V leaves F,(X,U(k) ) = 0 invariant and

hence G is a symmetry of system of partial differential equations

Fr(X,U(k) ) = 0

Necessity of this condition.

We assume that

Fr(X,U(k) ) = 0 is a non degenerate system of partial differential equations and that a

connected local group oftransformations G ofthe form; (3.8.4), (3.8.5) acting on open

subset Me X x U is a symmetry group of the system of partial differential equations

We need to prove that

V(k)[ ~(X,U(k) ) ] = 0 ,r = 1,2,3 / , whenever F(X,U(k) ) = O.
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From theorem 3.8.1 it suffices to prove that the subset SF = { F(X,U(k) ) = 0 }is an invariant

subset the prolonged group action G (k) whenever G transforms solutions of the system to

other solutions.

Using local solvability, let u = I(x) be a solution of the system defined in a neighborhood

ot Xo such that U~k \ = \f(XO))\.k) .

If g is a group element such that g(k)~O,uo(k)) is defined, then by approximately

shrinking the domain of the definition of I,we can ensure that the transformed function

1= g.f is a well defined function in a neighborhood of Xo ' where

Since G is a symmetry group, u = I(x) is also a solution to the system.

More so by the condition of prolonged group action,

In general

Hence transformed point ~;,U}k)) must again lie in SF ,thus F(x;,uY) ) = 0 .

So without loss generality we obtain,

V(k)(Fr(x,U(k))) = 0 ,r = 1,2,3, ..... ,1 , given that F(X,U(k) ) = o.

This completes the proof.
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3.9 Invariant Solutions

If a group of transformations maps a solutions into itself, we arrive at what is called a self-

similar or group invariant solution [ Ibragimov [10], Stephani [36] ].

Given the infinitesimal symmetry (3.6.5) of equation (3.6.1) the invariant solution under the

one -parameter group generated by a generator V are obtained as follows.

We calculate two independent invariants JI = k(x,t) and J2 = .LL(x,t,u)by solving the equation

er iu orV(J) == r(t,x,u)-+q(t,x,u)-+ry(t,x,u)- = 0at ax au
(3.9.1)

or its system of characteristics

dt dx du (3.9.2)
q(x,t,u) ry(x,t,u)r(x,t,u)

Then we designate one of the invariants as a function of the other e.g.

(3.9.3)

and solve (3.9.3 ) with respect to u .Finally we substitutes expression for u .in equation (3.6.1)

and obtain ordinary differential equation for the unknown function ¢(k) of one variable. This

procedure reduces the number of independent variables by one .

Example 3.9.1

We discuss the invariant solutions of the heat equation u t = U xx under the group generated by

a a
the infinitesimal generator X = 2t- - xu-.

ax au

It can be easily shown that the heat equation u t = U xx admits the infinitesimal generators

a a a
VI = - , v2 = - ,v3 = u- ,ax at au

a a
V =x- +2t-

4 ax at '

a a a 2 a [ 2]~
Vs = 2t- - xu -, V 6 = 4tx- +4t - - 2ut + x u

ax au ax at au
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There are two independent invariants for X . One of them is t , while the other is obtained

from the characteristic equation

xdx + du =0
2t u

Integrating the equation yields the invariant

2x

J = ue" .Consequently one seeks the invariant solution in the form J = rjJ(t) , or

Now substitute this expression into the heat equation u 1 = U xx .We have the first order

ordinary differential equation

drjJ+ !L=O
dt 2t

C
It follows that rjJ(t)= Jt' C - consant .

Hence the invariant solution IS

2C x

U = -e 41 C - consant
Jt '

Example 3.9.2

We examine the invariant solutions of the partial differential equation u 1 = uUx + Uxx

a a a
under the group generated by the infinitesimal generator V = x- + 2t - - u-

4 ax at au

Note that the partial differential equation U 1 = uUx + u.tx ' admits the infinitesimal generators

a
v=-
I at

a a a
v =- v =t--

2 OX'3 ax au

a a av4 = x- +2t- -u- ,
ax at au
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a .» [ ]av =tx- +t - - ut+x -.
5 ax at au

" '1 va 2a aFor the infinitesima generator 4 = x- + t- -U-,
ax at au

the corresponding characteristic system
dx dt du= ==
x 2t u

provides the following invariants; a =Jr ,Jl =uJi .

Consequently one seeks the invariant solution in the form

u = llf/(a) ,a =Jr . Substituting u, U 1 ,ux , u xx into the partial differential equation

u = u u + u ,we arrive at the second order variable coefficients ordinary differentialf x xx

equation

Integrating once, one has

Let C=O

then we obtain the invariant solutions of the partial differential equation

u1 =>», +u.tX as,

2 e 41

u = Jm fJ + erf(~J ,fJ arbitrary cons tan t. .

2Ji
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3.10 Group Transformations of Solutions

The method is based on the fact that a symmetry group transforms any solutions of the equation

in question into solutions of the same equation. Namely, let (3.6.2 ) be a symmetry

transformation group of the equation (3.6.1), and let a function u = <D{x,t) solve the

equation (3.6.1). Since (3.6.2) is a symmetry transformation, the above solution can also be

written in the new variables: u = <D{x,i).

If u , x , i are group transformations of the partial differential equation (3.6.1) with u , of

the form u = \}'{u,x,t,e), for some explicit function \}' , then applying the_ inverse mapping, the

new symmetry solution it is defined by ii = \}'(<D(ge-I(x),ge-\t);ge-I (x),gc-I (i),e-I ) where

u = <D(x,t) is any known solution of(3.6.1).

Having solved equation (3.6.6) with respect to u we obtain a one parameter family (with a

parameter E) of new solutions to the equation (3.6.1 ) as

(3.10.1)

Example 3.10.1

a 2 a aConsider the infinitesimal generator Vs = xt - + t - - (tu + x) - admitted by the partial
ax at au

differential equation u t = uUx + uxx•

The Lie equations have the form di = i2, ax = xi du = -(iu + x)
de de ' de

Integrating these equations yield the groups,

_ x - t
X=-- t =--

I-et' I-Et
,Ii = u(I- et)-ex

Hence we obtain the inverse mappings,

- l() X - l( ) tx-x=--,r t =--
I+Et I+et

1 _ EX
u=--u+--
, I-et I-Et

; if = <D(x,t) , u = \}'{u,x,t,e) and finally our new solution based on the mverse groups,

--I
X = x --I t,t =--

1+&t
,u = u(l- &t)- EX takes the form

1+ a
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and we obtain the new symmetry solution

~ -EX 1 [X -..u(x,t) = -- + --<D -- ,-- ,
1+&t 1+&t 1+&t 1+&t

where <D[ x ,t ] is any known solution ofthe equation.

Example 3.10.2

We examine the groups admitted by the heat equation U t = U xx and its corresponding new

o 0
symmetry solutions under the infinitesimal generator X = 2t- - xu- .

ox OU

h· . h h fi ax 2- dIi (--)T e Lie equations ave t e orm, - = t, - = - xu
d& d&

Integrating these equations yield the groups,

-_ -(GX+c
2t).-( )- ( ),u - ue .u u.x.t,s = \f' u,x,t,&X= x+2&t ,i =t

Hence we obtain the inverse mappings,

x-1(x)=x-2&t ,i-l(t)=t ,u=ue(cx+&2t}

If u =<D[ x ,t ] is any known solution of the heat equation then

Ii = e-5+c
2
t<D(x - 2&[,1) is the transformed function in this case and without any loss of

generality, we obtain

as the new transformed solution.

Example 3.10.3

( 2 2 2) 0 0 0 0Consider the infinitesimal generator v = x - y + t - + 2yx- + 2xt - - xu-
8 ox Oy ot OU

d . db h . 1diff . 1 . 02U 02U 02U 0a mitte y t e partia 1 terentia equation -2 - -2 - -2 = .
ot ox oy
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b h h h " 1diff "1 "a
2
u a

2
u a

2
u 0 d " hIt can e sown t at t e partia 1 terentia equation -2 - -2 - -2 = a nuts t e

at ax ay

infinitesimal generators

a
v] =- ,

ax

v -8 - (
2 2 2) a a a ax - y +t -+ 2yx-+2xt- -xu-

ax ay at au '

a ( 2 2 2)a a a
V9 =2xy-+ -x + y +t -+2yt- - yu-,

ax ay at au

a a (2 2 2)a av = 2xt - + 2yt - + x + Y + t - - tu-
JO ax ay at au'

a
v]] =u- ,

au
a

Va = a(x,y,t)- Va = a(x,y,t)aU
For the infinitesimal generator

(
2 2 2)a a a av = x -y +t -+ 2yx-+2xt- -xu-

8 ax ay at au'

the Lie equations have the form

dt 2---= xt
dE '

ax -2 -2 -2 dY 2- dli (--)
dE = x - y - t , dE = xy, dE = - xu

Integrating the corresponding Lie equations yield the groups:

Then the inverse mappings are;
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--J
X

If u =<D[x,Y,t ] ;is any known solution of the wave equation with u = ~(u,x,t,&) then

i.e.,

is a new symmetry solution.

The next chapter illustrates the basic methods for determination of infinitesimals ,infinitesimal

symmetry and symmetry transformations where we discuss: Korteweg-de-Fries, two-

dimensional wave and the Boussinesq equations.
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CHAPTER 4

DETERMINATION OF SYMMETRY OF PARTIAL

DIFFERENTIAL EQUATIONS

In this chapter we illustrate the procedure for determining symmetry of partial differential

equations by discussing examples involving ; Korteweg-de- Vries, two-dimensional wave and

Boussinesq equations.

4.1 Korteweg-de-Fries Equation

Korteweg-de-Fries equation is a nonlinear third order partial differential equation of the form

(4.1.1 )

We need to determine its infinitesimals, infinitesimal generators and all the groups it admits.

This equation arises in the theory of long waves in shallow water and other physical systems.

Here the required symmetry groups of transformations are of the form

t* = T(t,x,u;s), x* = X(t,x,u;s), u* = U(t,x,u;s)

with corresponding infinitesimals

J:( ) = aX(t,x,u;s) I ( ) = aT(t,x,u;s) I d.( ) = aU(t,x,u;s) I
'=' t,x,u as &=0' t: t,x,u as &=0 'f/ t,x,u as &=0

We let the generator V ,of (4.1.1 ) be of the form

a a a
V = c;(t,x,u)-+r(t,x,u)-+rjJ(t,x,u)-

ax at au

(4.1.1a)

(4.1.1b)

We determine all the coefficient functions c; .t ,rjJso that the corresponding one-parameter Lie

group oftransformations t* = T(t,x,u;s), x* = X(t,x,u;s), u* = U(t,x,u;s) form a symmetry

group of (4.1.1 ).

For the symmetry condition to be satisfied by (4.1.1) then
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;such that V(3) is the third prolongation with

() a a a a a av 3 = ~(t,x,u)-+r(t,x,u)-+rjJ(t,x,U)-+l( -+ 7]t -+ tt" --+
ax at au aux aUt auxx

a a a a a a a7]XI__ + 7] It_+7]xxx __ +7]XIX__ +7]xxt__ +7]tlX--+.7]ttt--
auxt auIt auxxx auxtx auxxi au ttx au tit

Equation (4.1.2 ) becomes

[a a a x a I a~(t,x,u)-+r(t,x,u)-+rjJ(t,x,U)-+7] -+ 7] -+
. ax at au aux aUt

7]xx_a_+ 7]XI~+ 7] It~+7]xxx _a_+ 7]XIX_a_+
auxx au xt auIt auxxx auxtx

7]xxt_a_+7]tlx_a_+.7]tlt~ ][ au + a
3
u +uau ]=0.

au au au' at 8,y3 8'yxxt ttx ttt -"'-'"

This can further be simplified to give

a [aU a3u aU] a [au a3u aU]~(t,x,u)- -+-+u- +r(t,x,u)- -+-+u- +
ax at ax3 ax at at ax3 ax

a [aU a3u aU] x a [aU a3u aurjJ(t,x,u)- -+-+u- +7] - -+-+u-]+
au at ax3 ax aux at ax3 ax

xxx a [aU a3u aU] xtx a [aU a3u aU]+7] -- --+-+u- +7] -- --+-+u-
auxxx at ax3 ax auXIX at ax3 ax

(4.1.2)

(4.1.2i)
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(4.1.2ii)

Here we differentiate partially with respect to the partial variables Ut' Ux'

Uxx' Utt' Uxt' Uxxt' Uxxx' Uxtx' Uxtt' uttt' and u,t,x as algebraic variables.

We obtain the infinitesimals condition to be

which must be satisfied whenever ut = -u xxx - uu x •

When (2.4.1a), (2.4.2 a),and (2.4.7) are substituted into (4.1.3) we obtain:

(4.1.3i)

On replacing Ut by - U xxx - uu x wherever it occurs ,and equating the coefficients ofthe various

monomials in the first, second and third order partial derivatives of U ,we obtain the resulting

determining equations for the infinitesimals for the Korteweg -de Vries equation (4.1.1): to be
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Monomial terms Equation

(i)

LU =0 (ii)

2
Uxx : - 3~u =0 (iii)

(iv)

(v)

(vi)

(vii)

2», : 3¢uux=0 (viii)

(ix)

(x)

Solutions of equations (i)-(x) yield the infinitesimals ~, L, ¢ as follows:.

(4.1.4a)

(4.1.4b)

(4.1.4c)

We express ): L A. in the standard basis form as':>' ,'r

(4.1.5)
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We form the corresponding Lie algebra of the basis generators VI , v2 , V3 , v4 in (4.1.5) of the

fonn

~a ~a ~a -
Vi = ~i ax + 'i at +tPiau : ~i' fi, tPi are the coefficients Ci in the standard solutions

of ~ " , tP. Hence the Vi'S i = 1,2,3,4 are obtained from the tabulation in equation (4.1.5) as

follows:

a
VI =- ,

ax
a a

V =-+ t-
3 au ax'

(4.1.6)a
v2 =-,

at
a a a

V =x- +3t- -2u-
4 ax at au '

4.2 Lie Groups Admitted by Equation (4.1.1)

The one-parameter groups Gi admitted the by the infinitesimal generators, Vi ' are determined

by solving the corresponding Lie equations which yield groups (4.2.1) shown below

We now use VI , v2 , V3 , v4 to solve for each Gi •

Thus

(4.2.1a)

a
v2 =-;G2: X(x,t,U;&)~ X2(x,t+&,u)

at
(4.2.1b)

a a
V3 =-+ t-;G3: X(x,t,U;&)~ X3 (x+&t,t,u+&)

au ax
(4.2.1c)

a a a ()v, =x- +3t--2u-;,G4: X(x,t,U;&)~ X4 eCx,e3Ct,e-2Cu
ax at au

(4.2.1d)
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4.3 The Wave Equation

The wave equation described in two dimensions is of the form

a2U a2U a2U _ 0------
at2 aX2 0;2

(4.3.1)

We need to determine its infinitesimals, infinitesimal generators and all the groups it admits .

.We let the infinitesimal generator V for (4.3.1), be of the form

a a a a
V = ~(t,x,y,u)-+r(t,x,y, u)-+7](t,x,y,u)-+rp(t,x,y,u)-

ax ar 0; au
(4.3.2)

Then we now determine infinitesimals ~ .t , 7] , rp so that the corresponding one-parameter

Lie group of transformations,

x* = X(t,x,y,U;&), y* = Y(t,x,y,U;&) , r* = T(t,x,y,U;&), U*= U(t,x,y,U;&)

form a symmetry group of(4.3.1).

We know that the equation

(4.3.3)

is the symmetry condition for (4.3.1) and we observe that V(2) is the second prolongation

. (2) _ a a a a x awith V - ~(t,x,y,u)-+r(t,x,y,u)-+ J.1(t,x,y,u)-+rp(t,x,y,u)-+7] -+
ax ar 0; au au

x

Hence equation (4.3.3) becomes
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a a a a x a[ ;(t,X,y,U)-+T(t,X,y,U)-+ f.1(t,x,y,U)-+rp(t,x,y,U)-+ry -+ax aT ay au aux

which takes the form;

(4.3.3a)

Thus we obtain the infinitesimals condition to be

(4.3A)

which must be satisfied whenever Utt= Uxx + Uyy •

When (2A.5a), (2AAb) and (2A.6b )are substituted into (4.3 A)

we obtain:
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¢fI +2u/pu, +UfI¢U +U2,¢UU -U«~fI +2ut~u' +UfI~U +U2t~UU)

-Uy(1]fI +2u,1]ut +u/f1]u +U2t1]UU)-U'('tt +2ut'ut +UfI'U +U2t'UU)

-2uxt(~t +ut~J-2uty(1]t +ut1]J-2utt('t +ut,J

-[ «. +2UX¢lLt +Uxx¢u +U2X¢UU -UX(~XX +2uX~lL< +uxx~u +U2t~uJ

-Uy(1].U +2ux1]ux +uxx1]u +U2x1]UU)-Ut(,XX +2ux'ux +uxx'u +U2X'UU)

-2uxx(~x +ux~J-2uyx(1]x +ux1]J-2uu('x +uxz-J ]

-[ ¢yy +2uy¢UY +uYY¢U +U2y¢uu -Ux(~yy +2uy~UY +Uyy~U +U2y~UU)

-Uy(1]yy +2uy1]UY +uyy1]u +U2Y1]UU)-Ut(,yy +2uy,UY +uyy'u +U2y,UU)

-2uyxky +uy~J-2uyy(1]y +uy1]J-2uty(,y +uy,J ]= 0

(4.3.5)

On replacing U/f by Uxx + Uyy wherever it occurs ,and equating the coefficients of the various

monomials in the first and second order partial derivatives of U ,we obtain the resulting

equations for the Wave equation (4.3.1) as tabulated below i.e.

Monomial terms Equation

=0 (i)

2U xxx 'U =0 (ii)

2
Uxx -3): =0':>u (iii)

'U =0 (iv)

(v)

(vi)

(vii)

(viii)

(ix)

1 (x)

The solutions of (i)-(x) yield the infinitesimals ~ '" 1] , ¢ as below, Bluman and Kumei [4 ].
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(4.3.6 a)

(4.3.6b)

(4.3.6c)

(4.3.6d)

a is an arbitrary solution of the wave equation.

We express C;, I ,'7 ,¢ in the standard basis form:

We form the corresponding Lie Algebra of the basis generators

~a ~a ~a ~a ~ ~~~
Vi = c;i ax + '7i ~ +Ii at +¢i au : c;i , '7i' Ii' ¢i are the coefficients ci in the standard

solutions of c; ,I ,'7 ,¢ .

Hence the Vi'S are obtained from the tabulation as follows:
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(
2 2 2)0 0 0 0X - Y +t -+ 2yx-+2xt- -XU-,

OX By ot OU

o ( 2 2 2)0 0 0
V9 = 2xy-+ -X + Y +t -+2yt- - YU-,

OX oy ot OU

o 0 (2 2 2)0 0
V = 2xt-+ 2yt-+ X +y +t - -tu-
10 OX By in OU'

(4.3.7 )

o 0
V11=U-, va=a(x,y,t)-va=a(x,y,t)

OU OU

4.4 Lie Groups Admitted by Equation (4.3.1)

The one-parameter groups Gi admitted the by the infinitesimal generators, Vi ,are determined

by solving the corresponding Lie equations which give the groups as below, see 01ver[18]

o
v1 =-; G1: X(x,y,t,U;&)~

ox
(4.4.1a)

o
v2 =-;G2: X(x,y,t,U;&)~

oy
(4.4.1 b)

o
V3 =-;G3: X(x,y,t,U;&)~

ot
(4.4.1c)

(4.4.1d)

(4.4.1e)

o 0
V6 =t- +x-; G6: X(x,y,t,U;&)~

ox ot
(4.4.lf)
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a a
V7 =t-+y-; G7: X(x,y,t,U;&)~

By at
(4.4.1g)

(
2 2 2)a a a av = x -y +t -+ 2yx-+2xt- -xu-' G :

s ax By at au' s

X(x,y,t,U;&)~ Xg( ------'-~,----~~ , 2~ 2 2 2)'
1-2&x-& \t -x - Y

(4.4.lh)

a ( 2 2 2)a a a
V9 = 2xy-+ -x + y +t -+2yt- - yu-; G9

ax ay at au

X(x,y,t,U;&)~ X9( -------r------..,.

(4.4.1 i)

a a (2 2 2)a
VIO = 2xt-+ 2yt-+ x + y +t -

ax By at
a

-tu-; GIO:
au

t+ & &2 - X2- y2) I 2 ( 2 2 2))
2 ( 2 2 2)' U'V 1- 2&t - s t - x - Y1- 2& t - e \t - x - y

(4.4.1j)

a
VII =u-; GI1: X(x,y,t,U;&)~

au
(4.4.1k)
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4.5 Boussinesq Equation

The fourth order nonlinear Boussinesq partial differentiation equation is described by

(4.5 .1).

where a, jJ, c non zero- real parameters.

We need to determine its infinitesimals, infinitesimal generators and all the groups it admits.

The required groups of transformations will be of the form:

t* = T(t,x,u;&), X* = X(t,x,U;&), U* = U(t,x,U;&) (4.5 .2).

with corresponding infinitesimal transformations ¢, ~, t , where;

J:( ) = oX(t,x,U;& )1
~ t.x.u ax £=0 , ( ) _ oT(t,x,u;& )1

T t,x,u - at £=0'
d..( ) = oU(t,x,U;& )1
Of' t,x,u 00 £=0

The infinitesimal generator of (4.5 .1) is

a a av = ~(t,x,u)-+r(t,x,u)-+¢(t,x,u)-
ax at au

(4.5 .3).

with once ,twice ,thrice and four times extended generators respectively as

¢XX(t,X,U,Uf,UX,UXf'UU'UXX)_o-.
aUxx

V(3) = v(2) +¢tIt _O_+¢flx _0_+ rpxlx_o_+¢xxx _0_
00 III 00 fix auxtx 00xxx
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where rl ,rt' ,rt ,rt', are known functions ofthe derivatives of ¢ ~ r and variables

here subscripts denote partial differentiation

By theorem 3.8.3 we have,

V(4)F = V(4)[ (u - au - RU )- 2c(u 2 + UU )] = 0 when F = 0 and so we obtainII xx /-"xxxx x xx

(4.5.4).

The infinitesimal condition (4.5.4) reduces to equation,

(4.5.5).

with ¢tt, r ,¢xx ,¢xxxx defined as in section 2.4 of chapter 2.

Substituting equations (2.4.2a), (2.4.4a), (2.4.5a) and (2.4.8) into equation (4.5.5), we obtain

equation,
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[ ¢tt + (2¢ut - Tuu)ut - ~ttUr + (¢uu - 2Tut ~t
2

- 2~utUrUt - TuuUt
3

- ~uuUrU2t + (¢u - 2Tt)utt - 2~tUW - 3TuUtUtt - ~uUrUtt - 2C;uUtUrt - 2c¢uu

- (a + 2cu)[ «.+ (2¢Xlt - ~,U)uX - TxxUt + (¢1I11- 2~,nt ~X2 - 2TXllUXU/ - ~,tltU/

-TlIlIUX
2
U/ +(¢Il -2~x)uu -2TXUX,-3~lIuXuU -TlIU/Uu -2TIlUXUX/ ]

)+3( ( )}3
Uu+UxUxx

(4.5 .Sa).
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Equating to zero the coefficients of the monomial terms, we end up with a minimum of32

equations in the partial derivatives of infinitesimals ; , t , rjJ which yield:

(4.5.6a. )

(4.5.6b. )

(4.5.6c. )

see Mehrnet Can [14]

The infinitesimal generators V; are expressed as:

aV; =-,at v; = 2t~+ x~- [a- 2U]~.at ax c au (4.5.7)
a

V2 = ax'

The terms rjJ(') ,rjJ("), rjJ(•••• ) in the prolongation are expressed as functions of

rjJ,;, t ,u as in chapter 2, section 2.4.

4.6 Lie Groups Admitted by Equation (4.5.1)

The one-parameter groups Gi admitted the by the infinitesimal generators, Vi ,are determined

by solving the corresponding Lie equations which yield groups as follows:

a
V; = -; G1: X(x,t,U;&) ~at . (4.6.1a)

a
V2 =-;G2: X(x,t,U;&)~ax (4.6.1b)

where b is arbitrary solution of the Boussinesq equation.
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Remark. All the three groups admitted by the Boussinesq equation (4.5.1) namely

G,: X(x,t,U;&)~ X,(x,t+ &,u)

G2: X(x,t,U;&)~ X2(x+&,t,u)

G3: X(x,t,U;&) ~ X3 (e" x.e": ,(e2
" - : b)U) ,

are trivial groups.
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CHAPTERS

THE BURGERS EQUATION
In the solution of Burgers equation, the solution function of the generalized heat equation

becomes apart of coefficient in the infinitesimal generators.

We therefore begin this section by first obtaining the solution of the generalized heat

equation

5.1 The Generalized Heat Equation

Generalized Diffusion heat equation is defined by

au = It a
2
u

at ax2

Here the required Lie groups of transformations are of the form

t* = T(t,x,u;&), x* = X(t,x,U;&), u* = U(t,x,U;&)

(5.1.1)

with corresponding infinitesimals

J:( ) = aX(t,x,U;&) I ( ) = aT(t,x,u;&) I "-( ) = aU(t,x,U;&) I'=' t,x,u &=0' T t,x,u &=0 'f't,x,u &=0& . & &
We let the generator V ,of (4.1.1) be

a a a
V = ;(t,x,u)-+r(t,x,u)-+¢(t,x,u)-

ax at au
(5.1.2)

We want to determine all the coefficient functions ; .t ,¢ so that the corresponding

one-parameter Lie group of transformations

t* = T(t,x,u;&), x* = X(t,x,U;&), u* = U(t,x,U;&)

form a symmetry group of equation (5.1.1).

Extended transformations of equation (5.1.1). with n=2 are of the form
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The infinitesimal generator of equation (5.1.1 ).is

a a av = ~(t,x,u)-+r(t,x,u)-+rp(t,x,u)-
ax at au

with once and twice extended generators respectively as

«(I) _ I a x a. v - v + 1] (t,x,u,upux)- + 1] (t,x,u,upux)-
aul aux

Thus,

V(2) J:( ) a ( ) a d.( ) a x a I a xx a xt a tt a= '=' t,x,u -+r t,x,u -+'f' t,x,u -+1] -+ 1]-+ 1] --+ 1] --+ 1]-
ax at au aux aUI auxx aUxI autt

For the symmetry condition to be satisfied by equation (5.1.1) then

V(2)[ au -A a
2

u l= 0
at ax2

such that V(2) is the second prolongation with

(5.1.3)

V(2) J:( ) a ( ) a d.( ) a x a I a xx a xt a tt a= '=' t,x,u -+r t,x,u -+'f' t,x,u -+1] -+ 1]-+ 1] --+ 1] --+ 1] -.
ax at au aux aUI aUxx aUxI aUtt

Equation (5.1.3) becomes

[ J:( ) a ( ) a d.( ) a x a I a \"X a <I a tt a
':> t,x,u -+r t,x,u -+'f' t,x,u -+1] -+ 1]-+ 1]'--+ 1]'--+ 1]-

ax at au ou , aUI aUxx aUxI aUtt

which simplifies to

a a a
[ ~(t,x,u)- [ul -AUxx ]+r(t,x,u)- [UI -AUxx ]+rp(t,x,u)- [Ut -AUxx ]+fu & au

17x~ [u - AU ]+171
~ [u - AU ]+17xx_a_ [u - AU ]+"a I xx "a I xr "~. I xxv, UI =:

(5.1.3a)

1]XI~ [ul - AUxx ]+1]11 ~ ] [ul - AUxx ] = o.
aUxI aUII
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From equation (S.I.3a) we readily obtain the infinitesimals condition to be

n' - AqXX = 0 (S.1.4)

which must be satisfied whenever ut = AUxx .

The terms 1](*) ,1](**), 1](***) in the prolongation are expressed as functions of

cP,C;, t,U as in chapter 2.

When equation (2.4.1a) and (2.4.4a) are substituted into equation (S.1.4) we obtain;

CPt-C;tUx +(CPu -rt)ut -C;uUxUt -ruut
2

}

= A[ ': +~2¢m~ ,;" )" -_<"u, + ~"" - 2';," ~" - 2<m:,U, - ';""u.'_
<», », (CPu 2C;x)u.'(X 2rxu" 3C;"u,u'(X t>»; 2r"u,u,,]- 0

(S.1.4a)

On replacing ut by AUxx wherever it occurs ,and equating the coefficients of the various

monomials in the first and second order partial derivatives of U ,we obtain the resulting

equations for the Lie symmetry group of the heat equation (S.1.1):

Monomial terms Equation

uxutx -2Ar" =0 (a)

Utx -2Ar =0 (b)x
2 -A2r ©Uxx "

=-ru

2 - A2r"u =0 (d)U xUxx

«»; -AC; = - 2A2r.nr -3AC; (e)u "
Uxx 2AC;x -Art+Acp" =ACPu -Ar (f)xx

3
- AC;"" =0 (g)Ux

2
2A{nr ACP"u (h)Ux =

Ux -C;t - 2ACP =- AC; (j)
Xli xx

1 CPt=ACPxx (k)

Subscripts indicate partial derivatives.

First (a) ,and (b) ,with A:I; 0 => t: be just a function t only i.e. r =r(t). Then from (e)
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TXlI=0 and so ~1I= 0 i.e. ~ does not depend on u since ~ = ~(x,t) . Equation (f) gives

2~x = Tt therefore ~xx = 0 so clearly ~ is linear in x i.e. ~=a{t)x + b{t).

1
Also (f) => ~ =-TtX+O"{t) where.rr is some function of t only.

2

~ ~;(t)x + bit) }

~ =-TtX+O"{t) .
2

(5.1.4.1)

1
a{t)=.-T" b{t)= O"{t).

2

Using (h) we find that fjJUlI=0.

that is

So fjJ is at most linear in u.

i.e. fjJ=p{x, t)u + a{x, t) (5.1.4.2)

. for some functions fJ{x, t) ,a{x, t) .According to (j) therefore,

- ~t - 2AfjJxu =- A~xx' - ~t - 2AfjJxlI =0 since 2~xx = Txt = 0 => ~xx = 0 ,

so ~, =- 2AfjJxlI = 2AfJx·

~, = 2AfJx

but ~ =a{t)x + b{t)

So fJx = - 2~ [~t]= - 2~ [ [at{t)x+bt{t) ]=- 2~ [ ~ TttX+O"t{t) ] ,

1 1 1 ]
fJx = - 2A [~t]= - 2A [ 2TttX+O"t{t)

fJx = __ 1 [~t]= __ 1 [at{t)x+bt{t)]
2A 2A

(5.1.4.3)

(5.1.4.4)

(5.1.4.5)

integrating equations (5.1.4.4) ,(5.1.4.5) we obtain

fJ = - _1 [.lTttx
2 +rr, (t)x ]+ p{t)

2A 4

P = _1_TttX2 __ 1 O"t{t)x+ p{t)
-8A 2A

P = _1_atx2 __ 1 bt{t)x+ p{t) ...
-4A 2A

(5.1.4.6)

(5.1.4.7)

Finally ,equation (k) requires that both p{x, t) and a{x, t) be solutions of the generalized heat

equations,
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= p{x,t)u + a{x,t). (5.1.4.8)

Thus

tPt= /Jt (x,t)u + at (x,t)

«.= /Jxx(x,t)u + axx (x,t)

(5.1.4.9)

(5.1.4.10)

and by equation (5.1.1) Pt {x,t)u + at (x,t )=A{ Pxx{x,t)u + axx (x,t) ) . Equating coefficients of

u" and other terms we obtain

Pt{x,t)=A/Ju{x,t) , (5.1.4.11a)

at{x,t)=Aau{x,t) (5.1.4.11b)

Using equations(5.1.4.6), (5.1.4.8) uponequations(5.1.4.11a),(5.1.4.11b) we arrive at

Pt = [ _1_rl/tx2 __ 1 O"tt{t)x+ Pt{t) ] , (5.1.4.12)-8,.1 2,.1

Pt = _1_attx2 __ 1 btt{t)x+ p,{t) (5.1.4.13)-4,.1 2,.1

1 1
so A/J,u =-4"rtt, or AP,u =-"2a, and (5.1.4.11a) ~

_1_rtttx2 __ 1 O"tt(t)x+ Pt{t) = -~rtt-8,.1 2,.1 4

_1-attx2 __ 1 btt{t)x+ Pt{t)= -~at{t) ...-4,.1 2,.1 2 and on equating coefficients of x"

we obtain

thus r ,is pure quadratic and a ,b, 0" are linear, functions of t respectively.

We may therefore write

a{t) =ao+a,t

b{t) = bo +b,t

1 1
Pt{t)= -"2at ~ P (t)= -"2a{t)

(5.1.4.14)

(5.1.4.15)

(5.1.4.16)
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If a ,b are substituted into equation (S.1.4.1) we amve at

Using equations (S.1.4.6) ,(S.1.4.8), and substituting a, = al .b, = b, ,

p (t)

we obtain,

p(x,t) = _ ~A alx2 - 2~ b.x - ~ [ ao +a/ ]+ a2

Finally, with rjJ= p(x, t)u + a(x, t) ;

For consistency we set,

And hence with, V = ~(x,t,u)~ +r(x,t,u)~+rjJ(x,t,u)~ax at au

¢ = (c, - c, ~ - 2c,' - c, ~} +a{x,') :

a is an arbitrary solution ofthe generalized heat equation.

We express ~,r, rjJ the infinitesimals of (S.1.1) in the standard basis

VI V2 V3 v4 Vs V6 va
-l- -l- -l- -l- -l- -l- -l-

~ = 1.cI + 0.C2 + 0.C3 + C4x + 2cst + 4c6tx + O.Ca = CI + C4x + 2cst + 4c6xt

t: = O.C1 + Lc, + O.C3 + 2.c4.t + O.Cs + 4.c6 i? +O.Ca = c2 + 2ci + 4c6t2

xu [ 2U]c¢= O.C1 + O.C2 + l.c3u + O.C4 -l.cs - + - 2tu -x - 6 + Ca·a
A A

(S.l.Sa)

(S.1.Sb)

(S.1.Sc)

(S.1.6)
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We fonn the corresponding basis generators Vi'S of the form

-a _a -a -
Vi = ~i ax + ri at + ¢i au : ~i , Ti' ¢i are the coefficients c, in the standard solutions

of ~ ,r ,¢ .

Hence Vi'S the infinitesimal synunetries of equation (5.1.1) are obtained from the tabulation

as follows:

a a a
VI = - , v2 = - ,v3 = u- ,

ax at au
a a

V =x- +2t-
4 ax at '

(5.1.7)a x a a 2 a [ 2 U ]_a
Vs = 2t- - -u -, V 6 = 4tx- + 4t - - 2ut+ x -

ax Aau ax at Aau

5. 2 Lie Brackets of Equation (5.1.1)
ill evaluating the Lie brackets (commutators) for the Lie algebra of the

infinitesimal symmetry (Vi); we have

=( ~ )( 2t~-x~~ ) -( 2t~-x~~ ) ( ~ )
ax ax Aau ax Aau ax

a=-u-=-v
au 3

a a a a a a
= ( - )( x-+2t- )-( x-+2t- )( - )

at ax at ax at at

a=2- = 2v
at 2

(a) ( a 2 a (X2 J a ) ( a 2 a ( X2 J a ) ( a= - 4tx-+4t -- -+2t u- - 4tx-+4t -- -+2t u- -)
at ax at A au ax at A au at

a a a .
= 4x-+8t- -2u-= 4v -2v

ax at au 4 3
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(ax a ) ( a 2 a (x2 ) a )= 2t- --u- 4tx-+4t -- -+2t u-
ax A au ax at A au

a a a=-8t-+8t- -0-=0
at at au

Other Lie brackets are computed in the similar way.

The corresponding Lie brackets table is constructed as shown below.
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VI V2 V3 V4 V5 V6 Va

lVi , Vj J

VI 0 0 0 VI -V3 2V5 Vax

V2 0 0 0 2V2 2v I 4v 4 -2 V 3 Va /

/
V3 0 0 0 0 0 0 -Va

V4 -VI -2 V 2 0 0 V5 2V6 Va'

V5 V3 -2v I 0 -V 5 0 0 Va"

V6 -2 V 5 2 V 3 -4v 4 0 -2 V 6 0 0 Va'"

Va
-Va -V Va -Va' -Va" -Va'" 0a/

T5.1 [Lie bracket for La]
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5.3 Lie Groups Admitted by Equation (5.1.1)

The one-parameter groups Gj admitted the by the infinitesimal generators,

by solving the corresponding Lie equations which give the groups as indicated below:

(5. 3.1a)

a
v2 =-;G2: X(x,t,u;£)~

at
(5.3.1b)

X3 (x,t, e"u) (5.3.1c)

(5.3.1d)

a x a ( ) ( -'-(a +o'I})
V5 =2t- --u-; Gs: X x.t.u;e ~ Xs x+ Zst.t.u.e->ax .,1, au (5.3.1e)

a ? a [ 2U ]av = 4tx - +4r - - 2ut + x - _. G :
6 ax at .,1, . au' 6

X(x,t,u;£)~
(

(-<:x' ) J
X6 X , t ,u.JI_4c:t/A(,-4£1)

1- 4a 1-4a
(5.3.1f)

a
Va = a(x,t)- : Ga: X(x,t,u;£)~

au
(5.3.1g).

5. 4 Group Transformations of Solutions of equation (5.1.1)

By symmetry group inversion theory of section 3.10 of chapter 3 , if each G, is a symmetry

group and u = <D(x,t) is a known solution of the generalized heat equation (5.1.1), then the

functions uj below are also solutions of equation (5.1.1), Olver[18]:
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~ m( -Ii -21i)U4 = '!-' e x,e t

. _a
2

( )~ _ 1 ,1,(1 +41i1)m X t
U6 - e '!-' ,

.Jl+4Et 1+4Et 1+4Et

iia = <D(x,t)+ sa(x,t)

We note that groups GI , G2, G3 , G4, are merely translations and scaling i.e. trivial groups. It

is only Gs' G6,which are the non trivial groups.

5. 5 Invariant Solutions of The Generalized Heat Equation
If a group transform maps a solutions into itself, we arrive at what is called a self-similar or

group invariant solution.

Given the infinitesimal symmetry (5.1.7) of equation (5.1.1) the invariant solutions under the

one -parameter group generated by the infinitesimal generator V are obtained as described in

section 3.9 of chapter 3.

We calculate two independent invariants JI = k(x,t) and J2 = J..l(x,t,u)by solving the equation

or aJ erV(J) == r(t,x,u )-+S-(t,x,u )-+r;(t,x,u)- = 0
at ax au

or its system of characteristics

dt dx du
(5.5.1 )r(x,t,u) s-(x,t,u) r;(x,t,u)

Here we consider the group transformations that arise from all the infinitesimal generators of

the generalized heat equation;

av =-
I ax

a a
, v2 = - ,v3 = U - ,

at au
a a . a x a

v = x- +2t- v = 2t- --u-
4 ax at'S ax Aau'

Case 1

Invariant solution under transformation generated by generator a
VI = - , has system of

at
characteristics
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dt dx
---
I 0

Integrating the equation ,we obtain x =a x = J1 and

u = ¢(x).

Substituting u t = 0 ,uxx = ¢" :¢' = d¢ into the generalized heat equation
dx

We obtain the solution

u = ¢(x) = ex + d . (5. 5.2)

Case 2

Invariant solution under transformation generated by generator a
v=-

2 ax ,has system

of characteristics

dt dx
---o 1

Integrating the equation ,we obtain t = a t = J1 and u = ¢(t).

Substituting u t = ¢' 'Uxx = O:¢' = d¢ into the generalized heat equation
dt

One obtains the solution u = ¢(t) =k

Case 3

(5.5.3)

Invariant solution under transformation generated by generator a
v = u- ,has system of

3 au
characteristics

dt dx du
-=-=-o 0 u

Integrating the equation ,we obtain u = eC a = t, J1 = x

as invariants and so we set, U = ¢(t).

Substituting u t = ¢' ,uxx = O:¢' = d¢ into the generalized heat equation
dt

We obtain the solution u = ¢(t) =k

Similarly if u = ¢(x) then we obtain solution as

(5.5.3a)

u = ¢(x) = cx+k (5.5.3b)
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Case 4

Invariant solution of heat equation under transformation generated by the generator

a a h f characteristiv4 = X - +2t -, as system 0 c aractenstics
ax at

dt dx
---
2t x

1

Integrating the equation ,we obtain xt 2 = a and

3

U =¢{a).at =-r1t-2x
1

a = t 2x

Substituting U t = ---;- ,uxx = r1¢" :¢' = d¢ ,into the generalized heat equation (5.1.1)
- da

2t2

we obtain the equation

r + a¢' =0
2A

(5.5.4)

According to Wylie [42] equation (5.15.4) reduces to

b =e4A ando , } (5.5.5)

Ifwe set c= 0 into equation (5.15.5) and finally integrating it ,we obtain

KJ; [x)¢(a) = 4Ji erf 25
where the error function erf(x) is defined as,

2 r 2
erf(x) = J; .b «: du

and the complementary error function erfc(x) defined as

erfc(x) = l-erf(x) = ~ re-u2 du, see Abramowitz and Stegun [1 ].
"\I1C

Hence we obtain,

u = ¢(a)= c~ erf( ~)
4"\1 A 2"\1 A!

(5.5.6)
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Case 5

Invariant solution under transformation generated by the infinitesimal generator

e x 0
Vs =2t- --u-ox A OU

has , system of characteristics

dx
2t

dt Mu
=o -xu

Integrating the equation ,we obtain ue+" = a ,t invariant, and

X2

U = ¢(t). e-HI

Substituting U I ,uxx :¢' = d¢ into the generalized heat equation (5.1.1)
dt

we obtain the equation

which on integration yields

X2

C --
Hence u = .Jt. e HI

Case 6

Invariant solution under transformation generated by the infinitesimal generator

o 20 [ 2U]0
V 6 = 4tx- +4t - - 2ut + x - -,ox ot A OU

has system of characteristics

dx
4x

-Mu
2 •

2AtU+ux

1 d 2tUA +x2uIntegrating ,we obtain xe t = a an J1 = ----
A

u = ¢(aX

Substituting u t ,uxx into the generalized heat equation (5.1.1), we get

¢" + A(x,t)¢' + B(x,t)¢ = 0

(5.5.7)
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which reduces to the first order linear equation

where

a*= (2ILt+X2
)2 -2t2(1+1L)

2

t2e--;(2ILt+x2)

a a a
VI = - , V2 = - , V3 = u- ,

ax at au

(5.5.8)

5.6 Symmetry Solutions of Equation (5.1.1)

Hence we get

a2

¢(a) = C f e-Z-a* da where

Finally we arrive at the solution

According to section 3.10 of chapter 3, symmetry transformations convert known solutions

into new solutions, Bluman and Kumei[4 ],Olver[18].

We consider the group transformations that arise from the infinitesimal generators admitted by

equation (5.1.1);

a a a x a
V = 2x- +4t- v. = 2t- --u-

4 ax at') ax ILBu'

a ? a [ 2U]0
V = 4tx- +4r - - 2ut + x -

6 ax at IL Bu'

thus

a
v2 =-;G2: X(x,t,U;&)~

at

a a
v4 = x- +2t-; G4: X(x,t,U;&)~

ax at
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a x a ( )Vs =2t- --u-; Gs: X x.t.u;e ~
ax A. au

a 2 a [ 2U] av =4tx- +4t - - 2ut+x --' G :
6 ax at A. au' 6

X(x,t,U;&) ~ X6l x , t ,u.Jl- 4&t)A(~~:ct))J1-4&t 1-4&t
We note that groups G1 , G2, G3 , G4, are merely translations and scaling i.e. trivial groups. It

is only Gs' G6,which are the non trivial groups.

Thus the genuine and therefore significant transformation groups we consider are only

Gs and, G6•

Casel

First we consider the group G, :

xu a ( )v = 2t~ ---; Gs: X x.t.u;« ~
5 OX A. au

Then the new symmetry solution of(S.I.I) under Gs becomes

(-a +E't)
U = </J(x-2&t,t)e A (S..6.1)

whenever u = </J(x,t)is a known solution ofthe generalized heat equation, see Olver [18]

Solution (i)

Consider the simple invariant solution of generalized heat equation. u = c

Substituting u = c into (S.6.1) we get

(S.6.1i)
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Solution (ii)

Inserting invariant solution u = ex into (5.6.1) we obtain,

(-a +,,21)
u={ex-2est)e }.

Solution (iii)

e
Inserting invariant solution u = Ji. e 4J.t into (5.6.1) we obtain,

JX-211 )2
4J.t .e

Solution (iv)

C..k (x JInserting invariant solution u = --erf --4JX 25
into (5.6.1) we obtain,

C I ( 2 J (-a +,,21)-yn X- Et }.
u = r-::: erf rr: e4-yA 2-yAt

Solution (v)

Inserting invariant solution

CA..k ( ~.ra*]
U(X,t) = ( )J erf xe' r;;

2M + X2 2a * A -y 2
A

+C]---
(2At + x2

)

into equation (5.6.1) we obtain,

( ]fii*]CA..kerf (x - 2Et)e7 .52 C A

u(x,t) = [ ( )J + ]
2At + {x - 2st Y2a * A (2At + (x - La )2)

(5.6.lii)

(5.6.liii)

(5.6.liv)

(5.6.1 v)
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Case 2

Secondly we consider the group G6:

X6( x , t ,u.JI-4&1)-«~:281))J ,fromwhich we develop new
1-4&1 1-4&1

X(x,t,U;&)~

symmetry solutions of equation (5.1.1):

-Ii X2

u(x,t)=<l>( x , t ) ~eA(1+481)
1+ 4&1 1+ 4&1 1+ &I

where <l>(x,t) is a known solution, of the generalized heat equation (5.1.1).

Solution (i)

(5.6.2)

Consider the simple invariant solution of generalized heat equation, u = e

Substituting u = e into equation (5.6.2) we obtain,

_£ x2

C -<(1+481)
U = .JI + &I e

Solution (ii)

inserting invariant solution u = ex into equation (5.6.2) we obtain,

(5.6.2i)

-EX2

( ) ex 1 -<(1+481)u x,t = e
1+ 4&1 .JI + &I

(5.6.2ii)

Solution (iii)

Inserting invariant solution e
U= .Jt.e HI into equation (5.6.2) we obtain,

c.Jl + 4&1
u(x,t)= . .Jt e

(1+41i)x2
-<(1+481) (5.6.2iii)

Solution (iv)

c.[; (x)Inserting invariant solution u = --erf -- + C24.[i 25
into equation (5.6.2) we obtain,

[c.[; ( x J
u(x,t)= 4.[ierf ~4At(1+4&1)

-E x2

+ C] 1 e-<(J+481)
2 r;-:--:-vI + &I

(5.6.2iv)
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Solution (v)

. . . 1· () CA-J; i( ~f;;*JInsertmg mvanant so ution u x, t = ( )J er xet r;;
2A-t + X2 2a * A- -V 2

into equation (5.6.2) we obtain,

(

J+4ct ~*J? X --va·c

(1+ 4& t )-CA-J; erf e t r;;
1+4&t -n

u(x,t) = [ + CJ
(2A-t(1 + 4&t)+ X2 )J2a * A-

(5.6.2v)
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5.7 Lie Group Solution of The Burgers Equation

The Burgers equation we are solving which is referred to as (1.1.0) in chapter 1 is the partial

differential equation

A - real parameter

Here the required symmetry groups of transformations are of the form

t* = T(t,x,u;&), x* = X(t,x,U;&), u* = U(t,x,U;&)

with corresponding infinitesimals

.f:( ) = oX(t,x,U;&) \ ( ) = oT(t,x,u;&) \ A,( ) = oU(t,x,U;&) \
':> t,x,u 0& E=O' r t,x,u 0& E=O''/' t,x,u 0& E=O

We let the generator V ,of (1.1. a ) be of the form

o 0 0
V = ~(t,x,u)-+r(t,x,u)-+rjJ(t,x,u)-

ox ot ou

We determine all the coefficient functions ~ , t ,rjJso that the corresponding one-parameter

Lie group of transformations

t* = T(t,x,u;&), x* = X(t,x,U;&), u* = U(t,x,U;&)

form a symmetry group of equation (1.1.0 ).

Extended transformations of equation (1.1.0 ) with n=2 are of the form
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The infinitesimal generator of equation (1.1.0) is

a a av = ~(t,x,u)-+r(t,x,u)-+¢(t,x,u)-
ax at au

with once and twice extended generators respectively as

(I) a a a x av = ~(t,x,u)-+r(t,x,u)-+¢(t,x,u)-+7] -+& & au aux

(5.7.1)

(5.7.2)

where 7]1, n", n" ,7]XX , are known functions of the derivatives of ¢ ,~, r and variables,

Here subscripts denote partial differentiation.

From equation (1.1.0), F=u
1

+uux -AUxx =0

By theorem (3.8.3.) it follows that

(5.7.3)

when F = 0 ,and so we obtain

The infinitesimal condition above reduces to
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(5.7.4.)

with n',n' ,n" defined in section 2.4 of chapter 2.

Substituting 1]t , 1]x, 1]xx into equation (5.2.4), we obtain equation

- A[ «: + v«. - ~xx)ux - txxUt + (¢>1I1i - 2~xll ~x 2
- 2rxuuxut - ~lIuU}

- v.»:». + (¢>u- 2~x)uxx - 2rxuxt - 3~lIuxuxx - ruutuxx - 2ruuxuxt ] = 0 (5.7.4a)

Equate to zero the coefficients of monomials in the first and second partial derivatives of U

and on substituting ut +vu, = AUxx; ut = AU xx -uxx; UUx = AU xx -ut; wherever it occurs

in (5.7.4.a) we arrive at the determining equations:

(a)

(b)

©

(d)

(e)

(f)

-A(d. -2~ )= 0'Puu ~Xll (g)

», :(¢>11 =". )-(¢>11 -~x )+Arxx -( ¢>11-2~x )= 0

ux: ¢>-~t-A(2¢>xll-~xx )=0

(h)

(i)

(j)

(k)

(1)
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(m)

We see that (a) ,(b) ,and (c):::::> T, ~ , are independent of u ,using (j) then T , is further

independent of x and so T = T (t) only but, ~ ,= ~ (x, t ) . Equation (g) :::::>

¢ is linear in u

i.e. ¢ = f3 (x, t ~ + a (x, t ) (5.7.4.1)

.From equation (e) we obtain

¢u=TI-~x (5.7.4.2)

and (h) :::::>

«, = -TI + 3~x

Then equation (5. 7.4.2 ) add equation (5. 7.4.3 ) , we arrive at

(5.7.4.3 )

(5.7.4.4 )

Similarly equation (5.7.4.2 ) subtract equation (5.7.4.3) gives,

T( = 2~x (5.7.4.5 )

Partial differentiating equation (5.7.4.5) with respect to , x we get,

T IX = 0 = 2 ~ xx thus, ~ xr = 0 :::::>

~ = a(t)x + b(t).

Applying equation (5. 7.4.4) on ¢ we obtain

p(x,t) = T/ - ~x (5.7.4.6 )

(5.7.4.7 )

Differentiating partially equations (5. 7.4. 6) , (5. 7.4. 7) ,we obtain

f3x = TIx -~xx = -~xx (5.7.4.8 )
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(5.7.4.9)

(5.7.4.10 )

Equations (5.7.4.8 ) ,(5.7.4.9)

Px = ~xx = 0

imply;

(5.7.4.11)

It follows from equation (5.7.4.11 ) that c; is linear X and, P is independent of X and

therefore depends on, t , only i.e.

fJ = rt + k

~ = a(t)x+ bet)

Equations (5.7.4.1) ,(m) give

PI = )"Pxx

(5.7.4.12 )

(5.7.4.13 )

(5.7.4.14 )

(5.7.4.15 )

Equations (5.7.4.14), (5.7.4.15) implies a ,p are solutions of heat equation.

Equations (5.7.4.14), (5.7.4.7) implies that,

(5.7.4.16 )

Differentiating partially twice equations (5.7.4.7), (5.7.4.14)

Pff = ).,fJxxt = 3)" ~XXXI = 0

we get

(5.7.4.17 )

(5.7.4.18)

Comparing equations (5.7.4.17 ), (5.7.4.18) we get

(5.7.4.19 )

Comparing equations (5.7.4.6 ), (5.7.4.7) we get

fJ = ~x (5.7.4.20)

Differentiating partially twice equation (5.7.4.6 ) ,we get
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(5.7.4.21)

Differentiating partially twice equation (5.7.4. 19) ,we get

(5.7.4.22 )

Comparing equations (5.7.4.21), (5.7.4.22) we get

(5.7.4.23 )

From equation (5.7.4.23) we deduce that

r is purely quadratic in t ,and ~ is linear in both, X and t.

We note that f3 is linear in t hence we deduce:

~ =m+ nx+ It+ jxt (5.7.4.24 )

(5.7.4.25 )

(5.7.4.26 )

Differentiate partially equations (5.7.4.24 ), (5.7.4.25), (5.7.4. 26) and substitute into

equations (a),(h) and (e).

On comparing the coefficients of, x and t. t x , u, tu we get:

1= O,no= 2n + i, ,nl = - j ,II = j.m, = -n; m ,mo arbitrary.

For uniformity we set mo = cl ,m = c2 .i; = c3 ,n = c4 ,j = Cs

Hence the relations (5.7.4.24), (5.7.4.25) ,(5.7.4.26) yield the infinitesimals r, ~ ,¢ as:

~ = c2 +c4x+csxt

r = cl + (c, + 2c4)t + cst2

¢ = c3 -c4u+CSx-c/u + a(x,t): at = laxx

(5.7.5a)

(5.7.5b)

(5.7.5c)

a , is an arbitrary solution the generalized heat equation.

We express ~,r, ¢ in the standard basis .
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V1 V2 V3 V4 Vs Va

-!- -!- -!- -!- -!- T
~ = 0'C1 + 1,c2 + 0,C3 + C4X+ c.tx + O,Ca

T = I.c, + O,C2 + I.c.z + 2.c4t+ l.cst
2 +O'Ca (5.7.6)

¢=O'C1 + O'C2 + l.c, -1.c4u + l.cs(X - tu) + l.c .a
a

We form the corresponding basis infinitesimal generators -.' s of the form

-a _a -a -
Vi = ~i ax + Ti at + ¢i au : ~i' Ti' ¢i are the coefficients ci in the standard solutions

of ~ ,T, ¢ .Hence V1 ,V 2 ,V 3 ,V 4 ,V S ,Va are listed below as the infinitesimal

generators for the Burgers equation.

5.8 Lie Brackets of The Infinitesimal Generators of The Burgers Equation

The set (Vi) of the generators of the Burgers equation forms a Lie algebra, we therefore

construct a Lie bracket table for (Vi)'

A Lie bracket lVi ,Vj J for any two operators, Vi' Vj is give by;

Construction of the Lie brackets table for the infinitesimal generators (Vi);

employs the definition
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a a a a a a a a a=( - )[ x- +2t- -u- ]-[ x- +2t- -u- ]( - )=2( - )=2vat ax at au ax at au at at J

a a 2a a a 2a a a=( - )[tx-+t --[ut-x]- ],-[tx-+t --[ut-x]-]( -)at ax at au ax at au at

a a a=x- +2t- -u- = vax at au 4

a a a a a a a a a= ( - )[ x- +2t- - u- ]-[ x- +2t- - u- ]( - ) = ( - ) = v2ax ax at au ax at au ax ax

Other Lie brackets are computed in the similar way. On application of skew symmetry

property of the Lie brackets, Lie brackets table is fully constructed as shown below.

101



lV; , -, J VI V2 V3 V4 Vs Va

VI 0 0 V2 2V2 V4 Vax

V2 0 0 0 V2 V3 Va,

/
V3 V2 0 0 2vS-2v3 Vs -Va

V4 -2 V 2 -V 2 -2vS+2v3 0 0 Va'

Vs -V 4 -V3 -VS 0 0 Va"

Va -Va -V Va -Va' -Va" 0a,

TableS,8 [Lie brackets for La]
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5.9 Lie Groups Admitted by Equation (1.1.0).

The one-parameter groups G; admitted the by the Burgers equation, are determined by

solving the corresponding Lie equations

dl ax
VI :- = 1; v2: - = 1;

de de
ax _- di -2

vs: - = xt, - = t ,
d& d&

ax -
v3:-=t,

d&
du _ -_
-=x-tu
d&

aa dl-
-=1' V :-=2t
ds '4 de '

dli _
-=-U'
d& '

ax _
-=X
d& '

with initial conditions :[&;0 = t, x&;o = x, li&;O = U

which lead to;

VI ;GI: X(x,t,U;&) ~

V2 ;G2: X(x,t,U;&) ~

V3 ;G3: X(x,t,U;&) ~

Vs ;Gs: X(x,t,U;&) ~

Va;Ga: X(x,t,U;&) ~

X ( e 2& -&)4 e X, e t,e U

x t
Xs(-- ,-- ,u(I-&t)+ s x)

1-&t 1-&t

Xa(x,t,U+&a(x,t)) ;

5.10 Group Transformations of Solutions

By symmetry group inversion theory of section (3.10) of chapter 3 , if each G; is a symmetry

group and U = <l>(x,t) is a solution of the Burgers equation (1.1.0),then

transformation groups of the Burgers equation (1.1.0), solve the equation (1.1.0).

The above solution can also be written in the new variables: li = <l>(l,X}
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If U ,X ,t are group transformations of the Burgers equation (1.1.0) with U ,of the form

u = 'l'(U,x,t,E), for some explicit functiorr'P ,then applying the_ inverse mapping, the new

where U = <1>(x,t) is any known solution of (1.1.0).

XI (x,t +E,U)

x = X" t = t + CO U = u, , X-I = X 1-1 = t - C U-I = U, ,

U(X,t,U,E) == 'l'(U,x,t,E) ~ 'l'(x,t,u,E) = U

Then the new symmetry solution UI, is defined by

- \TJ(m(--1 --I\ --I =-1--I) m(--I --I) m( )ul = T W x ,t }X ,t ,E = w x ,t = w x,t - E

Similarly

U =~+_1_<1>(_X_ -_t_J
5 1+Et 1+Et 1+Et'1+Et
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5.11 Invariant Solutions of The Burgers Equation (1.1.0)

(a) The invariant solution ofthe Burgers equation ut + uUx=Auxx under the transformation

group generated by generator

V=~ax
has the system of characteristics

du dt dx- - - - - , with invariant as ¢ = t f.1 = thence
U 0 I

u=¢{t) (5.11.2)

(5.11.1)

Substituting U .u, ' Ux ' Uxx into equation (1.1. 0), we obtain

the ordinary differential equation

¢'(t)= 0

which leads to solution

U=c (5.11.3)

(b) The invariant solution of the Burgers equation ut + UUx= AU xx under the group generated by

a
generator V = -at
has the system of characteristics

du dt dx . h .. d. h
-=-=- WIt mvanant as 'f' =x f.1 =x , ence

U 1 0'

U = ¢(x)

Substituting U .u, ,U x ,U xx into equation (1.1.0), we obtain

the ordinary differential equation

A¢,,{t )- ¢¢'= 0 .( 5.11.4)

Integrate it twice, we get

J 2M¢ Jdx where C IS a constant.
¢2 +C

Hence we obtain the solution:
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2A
C = 0U=--

X+C1

(5.11.5)

kx+C
u=ktan 1:

2A
(5.11.6)

sx+C
U = -scoth 1

2A
C < 0: C = _S2 (5.11.7)

(c) The invariant solution of the Burgers equation ut + UUx=AUxx under the Galilean

transformation group generated by generator

a aV=t-+-
ax au

has the system of characteristics

du dt dx- - - - - , with invariant as rp= t satisfying
lOt

U = x + rp(t) ,with
t

Substituting U .u, ,ux ,uxx into equation (1.1.0), we obtain

the ordinary differential equation

rp'(t)+ rp= 0 .
t

(5.11.8)

Integrate it, we get

x c
U= ---

t t
(5.11.9)

(d) The invariant solution of the Burgers equation ut + UUx=AUxx under the group of dilation

group generated by

a a av = 2t- +x- -u-
at ax au

has the system of characteristics
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du dt dx
-----
-u 2t x

such that the invariant a takes the form

(5.11.10)

and so

(5.11.11)

Substituting U .u, 'Ux ,uxx into equation (1.1.0), we obtain

the second order ordinary differential equation with variable coefficients

A¢/' + ¢ + a¢' ¢¢' = 0 .
2

(5.11.12)

Integrate it, we get the first order nonlinear equation

(5.11.13)

which is Abel's (Riccati's) equation of the first kind.

We integrate it to , yield solution

a2

U = [ .Jt C3 - (2.J2A r\It;~e2 erf(a) JI : C = 0 (5.11.14)

(e) The invariant solution ofthe Burgers equation u( + UUx=AUxx under the transformation

group generated by

2 a a ( )_av = t -+xt-+ x+tu
at ax au

has the system of characteristics

du dt dx
x - tu t2 xt

such that the invariant a is defined as

x x ¢,-=C=a ,u=--- (5.11.15)
t t t

Substituting U .u, ,ux ,uxx into equation (1.1.0), we obtain

the second order ordinary differential equation

.A¢" +¢¢' = 0 . (5.11.16)

Integrate it, one has the first order nonlinear equation
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We integrate it, to give solution:

¢ = 2At
X+C1t
x 2,.1,

u=----
t x+tc1

c=e

U = x _ k.J2 tanh[.J2kx + C ]: C = k2 : C > 0
t t 2At 2

t: [ J2rx] 2¢ =r-..;2tan C3 --- : C=-r
2At

.c-.o

x r t: [ J2rx]' 2U = ----..;2 tan C --- : C =-rt t 3 2,.1,t .c-.o

}
.c s o

(5.11.17)

:C=o
(5.11.18)

(5.11.19)

(5.11.20)

(f) The invariant solution of the Burgers equation Uf + UUx=AUxx under the infinite-dimensional

a
group generated by generator va = OJ au: OJ t = A OJ xx .

2
X

C --
(i) OJ= -e 4..1.fhas the system of characteristics

Jt
du dt dx hi h is i . d b h-=-=- , W lC IS mvanant un er ot t ,x
(J) 0 0

and we integrate to give,
2

X

u[ J-te-4..1.f¢(t) Jl=a ,.u=¢(t):a=constant

which we reduce to equation
2

X

U = J-t e- 4..1.f ¢(t ) .

(5.11.21)

(5.11.22)
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Substituting U ,ut ,ux 'Uxx with e = 1 into equation (1.1.0), we obtain

the ordinary differential equation

cp'== dcp
dt

Integrating the above equation leads to

and finally we get

2 -l 4k 4.<1 11 .z., 2 r:
U =-e4At[e (4At+x)..;t +K

Ji
(ii) V OJ= (j)~ : OJt = AOJxx' OJ = ex has the system of characteristicsau
du dt dx- - - - -, which is invariant under both t ,x
ex 0 0

and on integrating ,gives

ux-I=a ,J1=cp(t):a=t

which leads to equations.

u = xcp(t),. or u = xcp(x).

Casel

u = xcp(t).

Substituting u .u, ,ux ,uxx into equation (1.1.0), we obtain

the ordinary differential equation

Integrating the above equation leads to cp(t) = (t - etl ,and finally we get

u(x,t) =x(t - et

(5.11.23)

(5.11.23a)

(5.11.24)

(5.11.25)

(5.11.26)

(5.11.27)

(5.11.28)

(5.11.29)
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ease2

u = x¢(x).

Substituting u ,u, , u x , u.tx into equation (1.1. 0), we obtain

the ordinary differential equation

x:t¢"+2:t¢' _.!!:..-[X2¢2] =0
dx 2

¢'= d¢ .
dx

i.e. :t'!!:"-(xf )+:t¢' _.!!:..-[X2¢2] = 0
dx dx 2

(5.11.30)

We integrate the above equation to get

(5.11.31)

or

¢'+~¢ -[~]=~c
x 2:t x

(5.11.32)

This is Bernoulli equation which yields

¢= 6:t : with C = 0,
6CAx-X4

(5.11.33)

hence

6:t
U=---

6c:t _x3
(5.11.34)

(...) a
III V{j)= (0-au : co, ~ AW II : W ~ k{x, t)eif[l{ x, t)xe;] has the system of characteristi cs

du dt dx hi h i . d b h-=-=- , w C IS mvanant un er ot t ,x
(0 0 0

and on integrating, we get

u = ox ,f1 = ¢(t) : a = t or c = ¢(t) , (5.11.35)

which leads to equations

u = (O¢(t) , .( 5.11.36)

Substituting u .u, ,ux ,uxx into equation (1.1.0), we obtain

the ordinary differential equation
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ljJ' == dljJ
dt

.( 5.11.37)

This is a Bernoulli or Abel's equation, hence .(5.3.37) reduces to

ljJ' +OJ
x

ljJ2=0 (5.11.38)

(5.11.39)

and finally we get

.( 5.11.40)

Ck(X,t)erJ(I(X,t)Xe; J + L

u=------~----~---
C3 +F(x,t)

.,. .( 5.11.41)

(iv) V.~11)! : 11),~ AI1) n :11)~ J1.eif[ xv'ii] has the system of characteristics

du dt dx hi h i . d b h-=-=- , W lC IS mvanant un er ot t ,x
OJ 0 0

and on integrating, we get

u =ox; ,f1 =ljJ(t) : a =t or c =ljJ(t) (5.11.42)

which leads to equations.

U = OJljJ(t) ,. or U = OJljJ(x)

Substituting U 'Ut ,U x ,U xx into equation (l.1.0), we obtain

the ordinary differential equation

rj/ + [ 11),-:Wrr ]¢+W, ¢' ~O ljJ' == dljJ
dt

(5.11.43)

This is a Bernoulli or Abel's equation, hence

ljJ' + +OJ
x

ljJ2=0 (5.11.44)

and finally we obtain
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C3 + F;(x,t)
., (5.11.45)

: OJt = AOJ,u ,OJ = c has the system of characteristics

du dt dx
-----
cOO

which is invariant under both t ,x

and on integrating ,gives

u = a ,fl = ¢(t): a = t (5.11.46)

which leads to equations

.u = ¢(t),.or u = ¢(x). (5.11.47)

Casel

u = ¢(t),

Substituting u .u, 'Ux ,u,u into equation (1.1.0), we obtain

¢/(t)= 0 which leads to trivial solution

U =c (5.11.48)

Case2

U = ¢(x) ,

Substituting U .u, 'Ux 'U,u into equation (1.1.0), we obtain

the second order ordinary differential equation

A¢" - ¢¢/= 0 . (5.11.49)

Integrate it, we get the first order nonlinear equation

(5.11.50)

We integrate it, and obtain solution:

-2A
¢=-

x+c,
-2A

U=--
x+c,

:C=O
(5.11.51)
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rjJ = k tan[ kx + c2] C = e
2At

u = k tan[ kx + c2] C = k'
2At

.c s o

.c , o

rjJ = rcoth[c3 + rx] C = _r2
: C < 0

2At

[ rx ] 2U = rjJ = rcoth C3 + - C = -r :C < 0
2At

(5.11.52)

(5.11.53)

We consider the infinitesimal generator

5.12 Symmetry Solutions of The Burgers Equation (1.1.0)

a 20 [ ]0
Vs =tx-+t - + x-tu -,

ax at au

of the Burgers equation as the only non trivial symmetry ;

Gs: X(x,t,u;£)-+ Xs(_x- ,_t_ ,u(I-£t)+ sx)
1-£t 1-&t

which has the groups:

- x - t - (1 )x =-- ,t =-- ,u =U =a + EX.
I-a I-a

We apply the _inverse mapping, in section 3.10 of chapter 3.

If u ,x ,t are group transformations of the partial differential equation (3.8.1) with U ,of

the form u = tp(u,x,t,&), for some explicit function tp , then the new symmetry solution ii is

defined by ii = tp(<l>(ge-\X),ge-1 (t)}ge-1 (x),ge-1 (t),&) where u = <l>(x,t) is any known

solution of (3.8.1).

If u = <l>(x,t) is any known solution of (1.1.0) then,

u = <D(x,!) , ii = tp(<l>(ge-1(x),ge-\t)}ge-1(x),ge-1(t),&)
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and finally our new solution based on the inverse groups,

--I X --I tx = -- t = -- ,u = u(1- &t)+ &X takes the form
1+&t' 1+&t

ii = \f'(<1>(gc-1(x),gc-\t)} gc-I (x),gc-I (i),& )

and we obtain the symmetry solution of equation (1.1.0) as

&X 1 [X t]u(x,t)=-- +--<1> -- ,-- ,
1+&t 1+&t 1+&t 1+&t

(5.12.1)

where u = <1>(x,t) is a known solution ofthe Burgers equation.

Solution (i)

Consider the simple invariant solution of the Burgers equation. u = C

Substituting u = K, say K = A into equation (5.12.1) we obtain,

. &X 1u(x,t) = -- + ,,1,[--]
1+&t 1+&t

Solution (ii)

Inserting invariant solution

(5.12.2)

-2,,1,
u=--

x+c1

into equation (5.12.1) we obtain,

&X 1 [-2A(1+&t) ]u(x,t)=-- +--
1+ a 1+ &t x + c1 (1 + &t)

Solution (iii)

Inserting invariant solution u = k tan[ kx + C2 ]
2At

u(x,t)=~ +_I_[ktan[kx +c]
1+ a 1+ a 2At

(5.12.3)

into equation (5.12.1) we obtain,

(5.12.4)

Solution (iv)

Inserting invariant solution u = r coth[ C3 + ;~ ] into equation (5.12.1) we obtain,

u(x,t) = _&X_ +[_1_] rcoth[c
3

+__ rx__ ]
1+&t 1+&t 2,,1,(1+ &t)

(5.12.5)
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Solution (v)

Inserting invariant solution u = x - !5.......fitanh[..fikx + - into equation (5.12.1) we
t t 2Ai 2

obtain,

u(x,t) ==: + [_1_][ x _ k(1 + &t)..fi tanh[ ..fikx + c] ]
1+&t 1+&t t t 2At(1+&t) 2

(5.12.6)

Solution (vi)

Inserting the invariant solution of the Burgers equation

x r c; [ ..firx ]u =---,\/2 tan C ---t t 3 2,.1,t into equation (5.12.1) we obtain

u(x,t) = ~ + [_1_] [ x _ r(1 + &t)..fi tan[c _ ..firx] ]
1+ st 1+ st t t 3 2,.1,t

(5.12.7)

Solution (vii)

a2

Inserting invariant solution u = [ Ji C3 - (2.J2A t J[; e2erf{a) ]-1 into equation (5.12.1)

we obtain,

fS ~-2

ex 1 t -I tn z; 1
u(x,t) = - + [-][ - C3 - (2.J2A) - e 2 erf{a) ]-

1+&t 1+&t 1+&t 1+&t
(5.12.8)

Solution (viii)

2
x

+K]
1

Inserting invariant solution u = - e H(-Ii
into equation (5.12.1) we obtain

ex 1 [u(x,t) = -- + [--]
1+&t 1+&t

2
x

.,2

-l 4,1.(1+&1)2 e 4iJ(I+/&) 1

[

(4,1.(I+&I)r+x2)~
e I+a (5.12.9)1 e 4,1.(1+&1)2(

~1:&t

+K ]

Solution (ix)

Inserting invariant solution u{x, t) = x{t - ct
Into equation (5.12.1) we obtain,
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u(x,t) = ~ + [_1_] [x{t - c(1+ &t)t]
I+Gt I+Gt

Solution (x)

(5.12.10)

Inserting invariant solution
6,.1,

u=---
6cA _x3 into equation (5.12.1) we obtain,

E:X 1 [ 6,.1,(1+ Gt)3
u(x,t) = -- + [--]

I+Gt I+Gt 6cA(1+ Gt)3 _x3

Solution (xi)

(5.12.11)

Inserting invariant solution
x Cu=---
t t

into equation (5.12.1) we obtain

E:X 1 [X - c(1 + e t)u(x,t) = -- + [--]
I+Gt I+Gt t

Solution (xii)

Inserting invariant solution

(5.12.12)

Ck(x, t)eif( /(x, t)xe; ) + L
u=-----~--~-

C3 + F(x,t)

into equation (5.12.1) we obtain,

EX 1 ck(x, t)erf(l(x, t)Xe!) +L
u(x, t) = -- + [--] -------'---=-----'--

I+Gt I+Gt C3 +F(x,t)
(5.12.13)

Solution (xiii)

Inserting invariant solution

C3 + F; (x,t)
into equation (5.12.1) we obtain,

K {;erf( x ~A(I+Gt»)+L
E:X 1 ~--';:I (1 + Gt) 4t

u( x, t) = -- + [--] ---'---------:=--------'--
I+Gt I+Gt C3 +F;(x,t)

Solution (iv)

(5.12.14)

Inserting invariant solution
x 2,.1,

u=----
t x + tCI
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into equation (5.12.1) we obtain,

u = [ x _ 2,.1,(1 + & t) ]
t x+ tCI

(5.12.15)

5.13 General Symmetry Solutions of the Burgers Equation (1.1.0)

Consider the Lie groups GI, G2, G), G4, Gs admitted by equation (1.1.0)

a
VI = -; GI : X(x,t,U;&)~

at

X2 (x+ &,t,u)

a 2a a ( ) x tVs = tx+- +t - (x-tu)-; Gs: X x.t.u;» ~ Xs(-- ,-- ,u(1-&t)+ ex)
ax at au l-&t l-&t

We transform solution (5.12.1) using G)

Thus

EX 1 [X tu(x,t)=--+--<D -- ],
1+&t 1+&t 1+&t '1+&t

is further mapped by G) into a new solution

2 2 1 2 2&X- e t-& [ ] [X-&t-& tu(x,t) = + -- * <D
1+&t 1+&t l+&t

(5.13.1)

where u = <D[x,t] as a known solution of the Burgers equation (1.1.0).

Solution (i)

Consider the simple invariant solution of the Burgers equation. u = C

Substituting u = K, say K = A into (5.13.1) we obtain,

( )
e X - 2&2 t - e + A

uxt =------
, 1+&t

(5.13.2)
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Solution (ii)

Inserting invariant solution
-2,,1,

U=--
x+c]

into (5.13.1) we obtain,

e x - 2&2 t - e + [ _1_ ]* [ - 2,,1,(1+ &t) ]u(x,t) = ----
1+ st 1+ a x - &2t2 - e t + c] (1+ &t)

(5.13.3)

Solution (iii)

Inserting invariant solution u = k tan[ kx + C2 ]2,,1,t into equation (5.13.1) we obtain,

( ) &X-2&2t-& [ 1 ]*[k [k(X-&2t2_&t) c]u x,t = + -- tan + 2
1+ a 1+ a 21t

(5.13.4)

Solution (iv)

Inserting invariant solution u = reoth[ C3 + ;~ ] into equation (5.13.1) we obtain,

&X-2&2t-& [ 1 .]* h[C r(x-&2t2_&t)]u(x,t)=----- + -- reot +------
1+ &t 1+ a 3 2,,1,(1+ &t)

(5.13.5)

Solution (v)

Inserting invariant solution u = x - k J2 tanh[J2kx + c?](( 2,,1,(- into (5.13.1) we obtain,

( ) &X-2&2(-& [ 1 ]*u x.t = + --
1+&t 1+&t

[ x - &2(2 - &( - k(1 + &() J2 tanh[J2k(X - &2(2 - &() + C
2
] ]

( 21t
(5.13.6)

Solution (vi)

Inserting the invariant solution of the Burgers equation

x r t: [ J2rx ]u =---",2 tan C ---
(( 3 2,,1,t into equation (5.13.1) we obtain
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( ) e X - 2&2 t - e [ 1 ]*u x,t = + --
1+&t 1+&t

[ X-&2t2-&t-r(I+&t).J2tan[c _ .J2r(X-&2t2_&t)] ]
t 3 2A t

(5.13.7)

( ) e X - 2&2 t - e [ 1
U x,t = + --

1+&t 1+&t
t

'1+ e t

Solution (vii)
a2

Inserting invariant solution u = [ Ji C3 - (2.J2A t .,Jt; e2 erf(a) ]-1 into equation (5.13.1)

we obtain,

( ) s X - 2&2 t - e [ 1
U x,t = + --

1+&t 1+&t
(5.13.8)

Solution (viii)

Inserting invariant solution u +K]

into equation (5.13.1) we obtain

e x - 2&2 t - e + [ __1_ ]*u(x,t) = -----
1+&t 1+&t

(5.13.9)

where

Solution (ix)

Inserting invariant solution u(x,t) =x(t - ct
into equation (5.13.1) we obtain,

u(x,t)= &X-2&2t-& +[ _1_ ]*[(X-&2t2_&t)(t-c(l+t1)tJ
1+&t 1+&t

(5.13.10)
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Solution (x)

Inserting invariant solution
61

U=---
6c1 _x3 into equation (5.13.1) we obtain,

s X - 2&2t - e + [ __1_ ]* [ 61(1 + &t)3 ]u(x,t) = -----
1+ &t 1+ a 6c1(1 + &t)3- (x - &2t2 - &t)3

Solution (xi)

x c
U= ---

t t

&X-2&2t-& +l __1_ l" [ X_&2t2 -&t-c(l+&t)u(x,t) = -----
1+&t 1+&t t

Inserting invariant solution into equation (5.13.1) we obtain

Solution (xii)

Inserting invariant solution

Ck(X,I)eif(I(X,,)Xe;) + L
u=----~--~-

C3 +F(x,t)

into equation (5.13.1) we obtain,

Ck(X,t)erf(I(X,t)Xe~) + L
e X - 2&2t - e [ 1 ]u(x,t) = ----- + -- * ----'------'---

1+&t 1+&t C3 +F(x,t)

where
- 2 2X= X-& t =et

Solution (xiii)

Inserting invariant solution

into equation (5.13.1) we obtain,

( ) e X - 2&2t - e [ 1
u x,t = + --

1+&t 1+&t

K (;erf( x ~1(1 + &t)) + L
]* ~"il (1+ &t) 4t .

C3 + F; (x,t)

(5.13.11)

(5.13.12)

(5.13.13)

(5.13.14)
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Solution (xiv)

Inserting invariant solution
x 2A

u=----
t x + tel

into equation (5.13.1) we obtain,

&X-2&2t-& +] __1_ l" [X-&2t2-&tu(x,t) = -----
1+&t 1+&t t

2A(1 + &t)
(5.13.15)

5.14 Global Symmetry Solutions of the Burgers Equation (1.1.0)

Consider the Lie groups GI, G2, G3, G4 ,Gs admitted by equation (1.1.0)

a
VI =-; GI : X(x,t,U;&)~

at

a
v2 =-;G2: X(x,t,U;&)~

ax
X2 (x+ &,t,u)

a 2a a ( ) x tVs = tx- +t - (x-tu)-; Gs: X x.i.u;» ~ Xs(-- ,-- ,u(1-&t)+ EX)
ax at au l-&t 1-&t

a
Va = a(x,t)- : Ga: X(x,t,u;&)~

aU
Xa (x,t,u + &a(x,t)) ;

By symmetry group inversion theory of section (3.10) of chapter 3 , if each Gi is a symmetry

group and u = <D(x,t) is a known solution of the Burgers equation (1.1.0), then the functions

Uj below are also solutions of the Burgers equation (1.1.0), see Olver [18].

By applying the new symmetry solution inversion formula;

on each group G, we obtain the new symmetry solutions
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ill = <1>(x,t - c)

il2 = <1>(X- c,t)

il - ~ +_1_<1> [ _x_ t ]
5 -1+ct l+ct l+ct 'l+ct

ila = <1>(X,t)+ ca(x,t)

The most general one-parameter group of symmetries is obtained by considering a general

linear combination

arbitrary group transformation g as the composition ofthe transformations in the various one-

parameter subgroups G], G2, G3, G4, G5, Ga. In particular if g is near the identity, it can

be represented uniquely in the exponential form

g = exp( ca Va) * exp( c5 v,) * exp( e,V4) * exp( c3 VJ * exp( c2 V2) * exp( c] V;).

(5.14.1)

where u = <1>[x,t] as a known solution of the Burgers equation (1.1.0).

Solution (i)

Consider the simple invariant solution of the Burgers equation. u = c

Substituting u = K, say K = A into equation (5.14.1) we obtain,

(5.14.2)

Solution (ii)

Inserting invariant solution

-2A
U=--

x+c]

into equation (5.14.1) we obtain,

122



[-8
4

- 2,,1,(1+ GS:) ]

xe - (G2GS + G3)t - G3GSt - G2 + CI(1 + GSt)
(5.14.3)

Solution (iii)

Inserting invariant solution u = k tan[ kx + C2]
2At

into equation (5.14.1) we obtain,

(5.14.4)

Solution (iv)

Inserting invariant solution u = r coth[ C3 + ;~ ] into equation (5.14.1) we obtain,

G x - G G t - G «: * h[C r(xe-84
- (G3 + G2GS)t - G3GSt2 - G2) ]u = 5 3 5 3 + r cot 3 + -----"-----=--=------"-"""""-----=-

g 1 + G t 1 + G t 2,,1,(1+ Gst)
5 5

(5.14.5)

Solution (v)

Inserting invariant solution u = x - k.J2 tanh[.J2kx + C
2
] into equation (5.14.1) we obtain,

t t 2M

u = Gs X - G3Gl- G3 + [ e-e, ] *
g 1+ Gs t 1+ Gst

[
xe-84 - (G2GS + G3)t - G3GSt2 - G2 _

t -28, te -GIGS -GI

_2:'(1 + Gst) .J2 tanh[.J2k(xe-84
- (:~2+ G3)t - G3G/ - G2) + C

2
] ]

te - GIGSt - GI 2A(te - GIGSt - GI)

(5.14.6)

Solution (vi)

Inserting the invariant solution of the Burgers equation

x r r: [ .J2rx ]u = ---v2 tan C ---t t 3 2,,1, t into equation (5.14.1) we obtain
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(5.14.7)

Solution (vii)

a2

Inserting invariant solution u = [ Jt C3 - (2.J2A t.ji; e2 erf{a) J' into equation (5.14.1)

we obtain,

(5.14.8)

where a(x,t) =a(i,t)

and

Solution (viii)

x'
X 2 _[ 4k 4;"

Inserting invariant solution u = _l_e 4;\( [e (4At+x').fi + K]
Jt

into equation (5.14.1) we obtain

u = &5X-&3&5t-&3 +[~]*
g 1 + &5 t 1 + &5t

.,
x

(5.14.9)

where

124



Solution (ix)

Inserting invariant solution u{x,t)=x{t- Ct
into equation (5.14.1) we obtain,

u = 55X-5355t-53 +[~]*[i(i-c(1+5st)t]
g 1+ 55 t 1+ 55t

(5.14.10)

where

Solution (x)

Inserting invariant solution
6A

u=---
6CA _x3

into equation (5.14.1) we obtain,

co co co t co e": [ 6A(1 + 5st)3 ]
U = "5 X - °3°5 - "3 + [ ] *

g 1+ 55 t 1+ 5
5
t 6CA(1 + 5st)3 - i3

where

(5.14.11)

Solution (xi)

x C
U = ---

t t

u = 55 X - 5355t - 53 + [ e-&4 ] * [ i -c(1 + 55 t) ]
g 1+ 55 t 1+ 55t t

Inserting invariant solution into equation (5.14.1) we obtain

(5.14.12)

where

Solution (xii)

Inserting invariant solution

Ck(x, l)erf(I(X, I)xe; ) +L
u=----~--~-

C3 +F(x,t)

into equation (5.14.1) we obtain,
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(5.14.13)

where

Solution (xiii)

Inserting invariant solution

into equation (5.14.1) we obtain,
C3 + F;(x,t)

K (;erf( x ,.1,(1+ &st) J + L
e X - e e t - e e-&4 VJ:' (1+ &st) 41

U = 5 3 5 3 +[]* ~ ~
g 1+&5t ·1+&t C3 +F;(x,t)

where

(5.14.14)

Solution (xiv)

Inserting invariant solution
x 2,.1,

u=----
t x + tc,

into equation (5.14.1) we obtain,

U = &5 X - &3&/ - &3 + [ e-&4 ] * [ ~_ 2A~1 +~&s t) ]
g 1+ &5 t 1+ &5t t x + tc,

(5.14.15)

where
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CHAPTER 6
RESULTS

6.1 Tabulation of The Solution of The Burgers Equation Results
Invariant and symmetry solutions of the Burgers Equation are given in the tables below. Each

generator V; has the corresponding solution u;(x,t).

Generators of the generalized heat equation (5.1.1):

a a a
VI = - , v2 = - ,v3 = U - ,

ax at au
a a a x a

V = x- +2t- v = 2t- --u-
4 ax at' 5 ax A au'

a 2 a [ 2U ]av =4tx- +4t - - 2ut+x - -
6 ax at A au"

Generators of the Burgers equation (1.1.0):

a a a a a a a
VI = at ' v2 = ax ,v3 = t ax + au ' v4 = x ax +2t at -u au '

a 2 a a av = tx - + t - - [ ut - x ]- v = co -: co = A co
5 ax at au' a aU t xr

6.2 INVARIANT SOLUTIONS OF THE BURGERS EQUATION
From section 5.6 we see that the invariant solutions ofthe Burgers equation are:

Generator (V; )
-Ir

Invariant solutions (u)
-Ir

v;

2,.1,
u I(X,t)=--,

x+C3

kx+C,
ul (x,t) = k tan ,2,.1,

sx+ C
ul(x.t) = -scoth I2,.1, (6.6.3)

(6.6.1)

(6.6.2)

(6.6.4)
x c

u (x,t) = ---
3 t t

(6.6.5)

a2

Uix,t)= [ fi C3 - (2.J2it.Jt; e2erf(a) r (6.6.6)
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(6.6.7)
x 2A

us(x,t)= - - 2'
t tx + t C1

X k t: [J2kx ]u (X,t)=-- -v2tanh --+C ,
s t t 2At 2

X r t: [ J2rx]u (x,t) = ---v2 tan C ---
s t t 3 2At

(6.6.8)

(6.6.9)

-2A
Uw1(x,t)= --,

x+C1

UWl(X,t)= ktan[ kx + C2] ,
2At

Uw1(x,t) = rcoth[C3 + rx ]
2At

(6.6.10)

(6.6.11)

(6.6.12)

~v2/3 (6.6.13) .

(6.6.14)

.,. (6.6.15)

x2

/ -l 4k 4/J 1
U (x t) = _1 e- 4).( [e (4).(=x

2).fi
wS' Jt ] (6.6.16)+K

Ck(X,t)eif(z(x,t)x';) + L
U (x t) = -------'------'---

w6 , C F( )
3 + x,t

.,. (6.6.17)

Table 6.1 INY ARIANT SOLUTIONS OF THE BURGERS EQUATION
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6.3 SYMMETRY SOLUTIONS OF THE BURGERS EQUATION
From section 5.7, we can extract the symmetry solutions ofthe Burgers equation to obtain:

Generator Symmetry solutions (u)
(v:) -!- -!-

V; UI(X,t)=~ +_1_[ -2:1-(1+ ct) ] (6.7.1)
1+ a 1+ ct x + cJ1 + ct)

V;
u1(x,t) = ~ +_1_ [ktan[ k< +c] (6.7.2)

1+ ct 1+ a 2:1-t

V; ex 1 [ rx] (6.7.3)ul(x,t) = -- + [--] rcothC3 +
1+ ct 1+ et 2:1-(1+ ct)

V2 EX 1 (6.7.4)u2(x,t) = -- + :1-[--]
1+ct 1+ct

( ) _ EX [1] [ x - c(1 + ct) ] (6.7.5)
~

u3 x,t --- +--
1+ct 1+ct t

fS HE-'EX 1 t -I tn z; __,
V4 u4(x,t) =- +[-] [ -C3 -(2J2:1-) -e 2 erf(a)]. (6.7.6)

1+ct 1+ct 1+ct 1+ct

Vs U (x,t) =~ +[_1_] [ x _ k(l+a) ,12 tanh [ ,12k< ". ] (6.7.7)**
5 1+ct 1+ct t t 2:1-t(1+ct) 2

Vs EX 1 [X 2:1-(1+ ct) ]us(x,t)=-- +[--] --
1+ct 1+ct t x+tc1

[ x _ r(1+ a) ,12 tan[ C - ,l2rx ]l (6.7.8)**
t t 3 2:1-t

Vs EX 1
(6.7.9)**us(x,t) =-- + [--]

1+ct 1+ct

v'v2 uw2(x,t) = ~ +[_1_] [x(t-c(1+ct)t] (6.7.10)
1+ct 1+ct

v'v3 EX 1 [ 6:1-(1+ ct)3 ] (6.7.11)uw3(x,t) = -- +[--]
1+ct 1+ct 6c:1-(1+ ct)3 - x3

Vw4 K~eif( xt-(1+a) )+L
EX 1 :1- (1+ ct) 4t

uw4(x,t) =-- +[--] (6.7.12)
1+ct 1+ct C3 +~(x,t)
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z
x

v'vs ex 1 [ 1 e H(l+E1)'t *uws(x,t) = -- +[--]
1+&t 1+&t Jl:l1

.r '
44(1+61)' e 4}J(I+I&)-t 1'E;[ (44(1+E1)t+X-)- ]]e 1+61 +K (6.7.13)

v'v6 ex 1 ck(X,I)eif(1 (x, I)xe! ) +L
uw6(x,t) = -- +[--] (6.7.14)

1+&t 1+&t C3 +F(x,t)

Table 6.2 SYMMETRY SOLUTIONS OF THE BURGERS EQUATION

Remark. The solutions marked **, are regarded as non pure symmetry solutions ofthe Burgers
equation since these solutions are generated from invariant solutions corresponding to generator
Vs and are merely transformed by the same transformation G5 •

This concept may be generalized.

6.4 GENERAL SYMMETRY SOLUTIONS OF THE BURGERS EQUATION
From section 5.8, we can extract the general symmetry solutions of the Burgers equation to get:

Generator Symmetry solutions (u)
(V;) -1- -1-

u1(x,t) =
&X-2&2 t-:e -r _1_ ]* [ - 21(1 + &t) ] (6.8.1)V; 1+a 1+ et x - &2t2 - e t +c1 (1+ &t)

ul(x,t) =
&X- 2&2t=:c -r _1_ J* [ktan[k(X-&'I' -&1) +C,] (6.8.2)V; 1+a 1+a 21t

u1(x,t) =
&X-2&2 t-& [ 1 J* h[C r(x-&'I' -&1)] (6.8.3)V; + -- rcot +

1+a 1+a 3 21(1 + &t)

u2(x,t) = e x - 2&2t - e +1
(6.8.4)V2 1+a

~ &X-2&2 t - & 1 l" [(X_&2t2 -&t)(t-c(l+&t)t]u3(x,t) =
1+&t

+[- (6.8.5)
1+&t
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u4(x,t) =
&X-2&2 t-& +[_1_]*

V4 1+ a 1+&t

[J I C, - (2m)' J 17r e~'erJ{a)J' (6.8.6)
1+&t 1+&t

us(x,t) =
&X-2&2 t-& -r _1_ ]*

Vs 1+ a 1+&t

[ x - E'I' - EI - k(l + EI) J2 tanh[J2k(x - E'I' - EI) + C ] ] (6.8.7)
t 2b 2

us(x,t) =
&X-2&2 t-:c +[ _1_ ]*

Vs 1+ st 1+ st

[ X-E'I' -EI-r(I+EI) J2tan[ c _J'ir(x-E'I' -Et) ] ] (6.8.8)
t 3 2A t

( ) _ &X-2&2t-& [ 1 l" [ X_&2t2 -&t 2A{1+&t) ] (6.8.9)Vs u xt - + -- -
5 , 1+&t 1+&t t X_&2t2 -&t+tc,

uw2(x,t) = &X-2&2 t-& -l _1_ ]* [ X_&2t2 -&t-c{1+&t) ] (6.8.10)Vw2 1+ st 1+ et t

uw3(x,t) = &X-2&2 t-& -r _1_ ]*Vw3 1+ et 1+ a

[ 6A{1 + &t)3 ] (6.8.11)
6cA{1 + &t)3 - (x - &2t2 - &t)3

Vw4 KH' ~ x JA(IHt)) L
_ &X - 2&2t _ & A er (1+&t) 4t +

uw4(x,t) - + (6.8.12)
1+ &t (1+ e t)( C3 + ~ (x, t))

Vws
uws(x,t) =

&X-2&2 t= e +[_1_]*
1+&t 1+&t
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~v6

[ 1 e 4.«1 +It)2 f

Jl:~
2

i

+K ] (6.8.13)

Ck(X,t)erf(z(x,t)xeyJ + L
_G_x_-_2_G_

2
': -_G + [ _1_ ]* '------__ ~_uw6(x,t) =

1+ et 1+ a C3 + F (x, t)
(6.8.14)

Table 6.3 GENERAL SYMMETRY SOLUTIONS OF THE BURGERS EQUATION

6.5 GLOBAL SYMMETRY SOLUTION OF THE BURGERS EQUATION
From section 5.9, we can extract the global symmetry solutions of the Burgers equation to get:

Generator Symmetry solutions (u)
(~) ,J, ,J,

"s x - "3"sl - "3 e-e,
]*

~
Ug1 (x.r) =

1+"s I
+[

1 + Gst

[ - 2,.1,(1+ G5t) ] (6.9.1)
xe-o

, - (G2G5+ G3)t - G3G5t2- G2 + ci (1+ G5t)

( )_"SX-"3"sl-"3 [ e-e, ]*
~

U 1 x.t - + --
g 1+ "s I 1+ "sl

[klan[ kixe" - (E,_~.E'E,)I- E,E/ - E,) +c1 (6.9.2)
2A(te - GIG5t- G))

( ) _ e, x - "3"/- "3 (e-e,) *
~

U 1 x.t - + --
g 1+ "s I 1+ "sl

h[ C r(xe -" - (E, + E,E,)I - E,E,I' - E,) ] (6.9.3)rcot 3 + 2,.1,(1+ G5t)

( ) _ "5X - "3"sl -"3 + k-e, (6.9.4)
V2

ug2 x.t -
1+"s I
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Vs

(6.9.5)

where

co X co co t co e": [X - e(l + Cs t) ]u = "5 - "3"5 - "3 + [ ] *
g 1+ e,t 1+ ci t

where

(6.9.l0)
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r

-c K~ 1( X A(l+&st)J Le 4 -er 1/ ~ +
A (1+ &st) y 4t

+K ]

Table 6.4 GLOBAL SYMMETRY SOLUTIONS OF THE BURGERS EQUATION

(6.9.11)

(6.9.12)

(6.9.13)

(6.9.14)
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6.6 CONCLUSIONS
In this thesis, we have managed to find global solutions ofthe Burgers Equation using the Lie

symmetry approach. The solutions ( 6.9.1 - 6.9.14) are appearing here in literature for the

first time. Other previous attempts to solve this very important equation only managed to find

solutions when the coefficient A is restricted to A E [0,1]. These solutions have been

presented in terms of the infinitesimal generators V; (i = 1,2., ,5,a) and their corresponding

symmetry solutions u;(x,t) , uguCx,t) (i = 1,2, ,j = 1,2, ).

We have verified the validity of these global solutions taking cases where A = 1.

In this case the global symmetry solutions obtained compare accurately with some of the

solutions obtained by Gandarias [6] for specific values of the arbitrary constants and real

parameters e ,&. with value of A = 1.
}

In particular

(i)
-2solution (6.9.1 ) reduces to U=--

x+ f3 '

(ii) solution (6.9.2 ) reduces U=-2cotx ,

. x - x3 + 6(1 + t)3
solution (6.9.11 ) reduces to U = 3 3 '

(1 + t) - x
(iii)

which are in agreement with Gandarias [6] solutions of the form

2(-2k4 cos X - 2k/ x - 2k2ef
)

2(12k2X3+2(36ki-12k3)X + 8k
J
)

U •• =- --4-------='---------=:----=---------=------
3k2x + (36k2t-12k3)X2 + 8kJx+ 36k2t2 - 24ki+ 24k4

The solutions obtained is a contribution to knowledge in mathematics.
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