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Abstract

The characterization of abelian groups which could be groups of
units of a ring still remains a general problem. Previous studies
have restricted the classes of groups or rings to be considered. The
determination of the structures of the unit groups of both Galois
and completely primary finite rings has been of significant interest
in the recent past. However much of the restriction has been on
classes of finite rings of characteristic P, p* or p?, with Jacobson
radical J such that J2 = (0); and J3 — (0), J* # (0). In this
thesis, we have determined the structures of the unit groups of
commutative finite rings of characteristic p* with Jacobson radical
J such that J* £ (0), jk+1 = (0) where £ is a positive integer.
We ‘have also constructed a ring R with Jacobson radical .J which
satisfies the property Jk+1 £ (0), J*2 = (0) and determined the
structure of its group of units. Moreover, we have determined the
structﬁres of some quotient groups of the subgroups of the unit

groups of the rings constructed.
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Chapter 1

Introduction

1.1 Structure of the thesis

Chapter 1 is introductory, and basically explains the concepts of
units and zero divisors. We also give some essential results that are
fundamental to the results in the following chapters in the thesis.
Chapter 2 provides a review of some studies previously conducted
by researchers, in relation to our area of study.

Chapter 3 deals with the structure of the group of units of the ring
of integers modulo n, where n > 2.

In Chapter 4, we construct a class of finite rings. The structure of
the group of units of the constructed rings is also obtained.
Chapter 5 deals with another construction of a class of finite rings
and the structure of its group of units is determined.

In Chapter 6, we obtain the structures of the quotient groups of




the subgroups of the groups of units of the finite rings constructed
in Chapters 4 and 5.

Finally, we indicate our contributions to knowledge in Chapter 7.

1.2 Units and zero divisors

Let R be a commutative finite ring with identity 1 # 0. An element

u € R is a unit if there exists v € R such that
uv =vu=1:#0.

An element z € R is a zero divisor if there exists a nonzero element
y € R such that gy =gz =0.

A field is a ring in which the identity 1 # 0 and every non zero el-
ement has a multiplicative inverse. Let R be a commutative finite
ring and R* denotes the Ir;ultipiicative group of units of R. Then R
is local if it has a unique maximal ideal K and 1+ K C R*. Also
R is local if all the non units of R form an ideal. A completely
primary finite ring is a ring R with identity 1 # 0 whose subset of
all its zero divisors forms the unique maximal ideal. A Calois ring
1s a finite ring with identity 1 # 0 such that the set of all its zero
divisors with 0 included forms a principal ideal. For instance, Z,,
for some positive integer k, is a Galois ring with (p) as its unique
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maximal ideal. When k = 1, Z,. = F, is the field of order p and
(p) = (0) is the zero ideal which is of course maximal in F,,.

The leading role in the classification of all the finite rings with
identity possibly makes completely primary finite rings attractive
to most researchers. Similar to completely primary finite rings so
far studied, our attention has been restricted to the commutative
finite rings in which the set of all the zero divisors forms an additive
group.

Let R be an arbitrary ring (not necessarily rings considered in the
thesis), then the set of all the zero divisors of the ring is not nec-
essarily an ideal of the ring. For instance, the elements (2,3) and
(1,4) of the ring Z,®Z¢ endowed with componentwise addition and
multiplication are zero di.visorsy, but if the set of the zero divisors
were to be an ideal, then (3, 1) would be a zero divisor, an obvious
contradiction.

Lét p be a prime integer. We have constructed commutative fi-
nite rings with unique maximal ideal J such that J*! — (0) and
J¥ 2 (0) for the cases when charR — p,charR = p? and charR = pk

where k > 3. We have determined the structures of the unit groups

of the rings constructed for different cases. Moreover, we have de-




termined the structure of the unit group of a commutative finite ring
with unique maximal ideal J such that J¥*2 = (0) and J*¥*+! # (0).
The following results have been fundamental in the determination

of the structure of the unit groups of the rings studied in this thesis.

Theorem 1.2.1. (see section 1 in [7]).  If a ring R is finite,
then every left unit is a right unit and every left zero divisor is a
right zero divisor. Furthermore, every element of R is either a zero

divisor or a unit.

Proof. Let x € R and assume that z is not a left zero divisor.
Let # : R — R be an additive group automorphism defined by

6(r) = zr. Then
kerf = {7“ €R':ar= 0} = {03

Therefore, 0 is injective. Since R is finite, # is also surjective. So,
there exists y € R such that zy = 1 which shows that z is a left

unit. Suppose now that there exists s € R such that sz = 0. Then
0= (szly=s{my) = s.l=5,

and therefore, = is not a right zero divisor.
A similar argument shows that if = is not a right zero divisor, then
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it is a right unit, and hence, not a left zero divisor.

The contrapositive of the above argument completes the proof. [

Theorem 1.2.2. (see section 1 in [8]). If a ring R has n > 2 left

zero dwisors (including zero), then R is a finite ring, and | R |< n?.

Proof. Suppose 0 # a is a left zero divisor in R and consider the
right ideal Ra of R. Since a is a left zero divisor in R, there exists

0 # z € R such that ax = 0, so that, for all r € R,
rlax) = (rajz = 0.

So Ra consists entirely of left zero divisors. Thus | Ra |< n. Now,
since Ra is finite, consider the surjective additive group homomor-

phism

p: R — Ra

defined by r — ra with

kerp ={y € R : ya = 0}.

2

We have R/kery = Ra, and every element of the kernel is a left

zero divisor of R (since a # 0), so that | kery |< n. Thus kere and
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" Ra are finite, so that R is finite and moreover,
| R |=| kere || Ra |< n?
O

Corollary 1.2.3. Let R be a finite ring with identity 1 # 0. Then,

every non- trivial ideal of R consists entirely of zero divisors.

From now onwards, an element of a ring R which is a right or a
left zero divisor will be called a zero divisor . Similarly, a right or

a left unit will be be called a unit.

Theorem 1.2.4. If G is a cyclic group of order n, then G = Z,, (see

[2])

Proof. Let < a > be a cyclic group generated by a and of finite
order n. If we define a map < a >— Z, by a* — k+ < n > where

k=0,1,...,n — 1, then the map is clearly an isomorphism. O
1.3 Statement of the problem

The characterization of abelian groups which could be groups of
units of a ring still remains a general problem. Previous studies

have restricted the classes of groups or rings to be considered. In



this thesis, we have determined the structures of the unit groups
of k + 1 index radical zero commutative completely primary finite
rings. A specific case of the structure of the unit group of & + 2
index radical zero commutative completely primary finite ring has
also been studied. Moreover, structures of some quotient groups of
the subgroups of the unit groups of the constructed rings have also

been determined.
1.4 Objective of the study

Our goal was to determine the structures of the umit groups of

certain classes of commutative finite rings with identity.




the units of the Galois ring GR(p"", p") are a direct sum of a cyclic
group of order p” — 1 and r cyclic groups of order p™ — 1. Raghaven-
dran [15] independently considered this case and further described
the structure of the multiplicative group of every Galois ring.

In [16], Stewart considered a problem related to that asked by Fuchs
[10] by proving that for a given finite group G' (not necessarily
abelian), there are up to isomorphism only finitely many directly
indecomposable finite rings having group of units isomorphic to G.
A study by Ganske and McDonald [11] revealed that when the local

ring R has a Jacobson radical J such that J? = (0), then

Rr=£|K|—-1>x ﬁa(w),
T =1

where n = dimg(J/J?), | 'K |= p!, and () denotes the cyclic
group of order 7.

Dolzan in [9] found all non isomorphic rings with group of units
isomorphic to a group G' with n elements, where n is a power of a
prime or any product of prime powers, not divisible by 4; and also
found all groups with n elements which can be groups of units of a

finite ring, a contribution to Stewart’s problem [16]. In [3] and [4],

Chikunji determined the structure of the group of units of the ring



R=Ry®U @V, where Ry = GR(p*", p*) is the Galois subring of
R, while U and V are finitely generated Ry— modules. The author
- further determined the generators of R*. Upon consideration of s, ¢
and A to be the number of elements in the generating sets for U, V
and W respectively, Chikunji in [5] determined in general the struc-
ture of the subgroup 1+ W of the unit group of R = Ry@U GV &W
and the structure of the group of units R* of the ring R when s = 3,
t =1, A > 1 and charR = p. Furthermore the author generalized
the structures of R* in the cases when s =2, ¢t =1; ¢t = s(s + 1)/2
for a fixed s, and p < charR < p?; s :(\2, t =2 and charR = p to
the case when the annihilator, ann(J) = J? + W, so that A > 1.

In this thesis we have determined in general, the structures of the
unit groups of k + 1 index.radic.al zero commutative finite rings

together with a specific case when J**2 = (0). Moreover, some

structures of the resultant quotient groups have also been deter-

mined.




Chapter 3

Preliminary Results

We discuss some results for (Z,)*, n > 2. It is also useful to note
that addition and multiplication of the elements in R; x ... x R, are

done componentwise in this chapter.
3.1 The Chinese Remainder Theorem

The Chinese Remainder Theorem from elementary number theory
asserts that if my, mg, ..., m, are integers that are coprime in pairs,
and ay,ay, ...,a, are integers, then there exists an integer a such

that @ = a;(mod m;) for each i = 1,2, ..., s.

Definition 3.1.1. The ideals I,, and I,, of a ring R are said to be

comaximal if I+ I, = R.

In terms of rings, the Chinese Remainder Theorem is stated by
the following theorem.
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Theorem 3.1.1. ('see [13] or [17]) Let Iy,..., I be ideals in a ring

R. The map R — R/I} X R/I, x ..R/I,, defined by
r— (T+.[1,T+[2,...,7‘—|—Ik)

is a ring homomorphism with kernel I, N I, N ... N I,,.
If for each i,j € {1,2,....k} with i # j, the ideals I, and I; are

comazimal, then this map is surjective and

LHNnLN..N Iy = 11.12...[]c,

o

S0
R/(Il.IQIk) = R/([l ﬂfg P ﬂ[k) = R/Il X R/Ig K g K R/[k

The following result is due to Chikunji [3].

Lemma 3.1.2. (see [3]) Let Ry and Ry be finite rings. Then every

(ring) isomorphism between Ry and Ry restricts to an isomorphism

between R and Rj.

However, it is not always true that if R} and R are isomorphic,
then the rings R qnd Ry are isomorphic as may be illustrated by
the following:

(Z3)* = {1,2} = (Z4)* = {1, 3}, while Z3 and Z, are non-isomorphic
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rings.

- Proposition 3.1.3. (see [2]) Suppose Ry and Ry are finite rings

each with identity 1 # 0. Then

(R % Ry)“=R; x B3

0o

Proof. Let (r1,72) € (Ry x Ry)*. Then, there exists
(81,82) € (R1XR2)* such that (’Fl,’l"2>.($1,32) = (7'181,7"282) = (1, 1)

In other words

(R1 % Rg)* = {(r1,m2) | 11 € R} and 7, € R}}

= R} x R;.

g

The mentioned result can be extended inductively to prove that
if R is the finite direct product of a family of rings R;, 71 = 1,2, ..., n,
then the group of units R* of the ring R consists of the elements of

the form (ry,79,...,7,), where each r; is invertible in R;, that is

R*=Ri xRy x..xRy




The following result is a consequence of Theorem 3.1.1, Lemma

- 3.1.2 and Proposition 3.1.3.

Corollary 3.1.4. (Chinese Remainder Theorem for Multiplicative
Groups). = Let n be a positive integer and let pi*ps>...pe*, be its

factorization into powers of distinct primes. Then
Zy & Zp(lxl X Zpt;z X en X szk

as rings, so in particular we have the following isomorphism of

multiplicative groups,
(ZTL)* g (Zp(lxl)* X (ZPSZ)* K X (Zka)*

Proposition 3.1.5. Let n E Z*. Then the number of elements of

(Z,,)* is p(n) where ¢ denotes the Euler ¢ function.

Proof. If we compare orders of the two sides of the isomorphism in

Corollary 3.1.4, we obtain the formula

p(n) = o) e(Ps?)...0(pg*)

for the Euler ¢- function. This in turn implies that ¢ is a multi-

plicative function , namely p(ab) = ¢(a)@(b), whenever a and b are
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relatively prime positive integers.
The value of ¢ on prime powers p® is easily seen to be
@(p*) = p*~'(p — 1). From this and the multiplicativity of ¢ we

obtain its value on all positive integers. O

<

Remark: Corollary 3.1.4 is also a step towards a determina-
tion of the decomposition of the abelian group (Z,)* into a direct

product of cyclic groups.
Corollary 3.1.6. Let p be a prime. Then (Z,)* is cyclic.

Proof. This is the multiplicative group of the finite field Z, and its

structure is well known. O

Corollary 3.1.7. Let n > 2 be an integer with factorization

n = p'po?..pek in Z where py, pa,...,pr are distinct primes. We
have the following isomorphisms of (multiplicative) groups:

(1) (Zn)" = (Zym)* x (Zy22)" X ... % (Z, )"

(1) (Zae)* is the direct product of a cyclic group of order 2 and a
cyclic group of order 2972, for all o > 2.

(i1) (Zp)* is a cyclic group of order p*~'(p—1), for all odd primes

D.
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Proof. The isomorphism in (i) follows from the Corollary to the
Chinese Remainder Theorem (Corollary 3.1.4).

The isomorphism in (iz) is well known (see [15]).

If p is an odd prime, then (Zy)* is an abelian group of order
p®~!(p—1). The Sylow p— subgroup of this group is cyclic. The map
Zy« — Z, defined by a + (p®) — a + (p) is a ring homomorphism
(reduction mod p) which gives a surjective group homomorphism
from (Z,«)* onto (Z,)*. This latter group is cyclic of order p — 1
(see Corollary 3.1.6). The kernel of this map is of order p®~!, hence
for all primes g # p, the Sylow g- subgroup of (Z,«)* maps isomor-
phically into the cyclic group (Z,)*. All Sylow subgroups of (Z,a)*

are therefore cyclic, so (i27) holds, completing the proof. O

Remark: The above isomorphisms describe the group theo-
retic structure of the automorphism group of the cyclic group, Z,,
of order n since Aut(Z,,) = (Z,)*. In particular, for a prime p, the
automorphism of the cyclic group of order p is cyclic of order p — 1.
The following result is an interesting arithmetic consequence of

Corollary 3.1.6

Corollary 3.1.8. Let n € Z". The prime number p divides an
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integer of the form n® + 1 if and only if p is either 2 or an odd

prime congruent to 1 modulo 4.

b Proof. The statement for p = 2 is trivial since 2 divides 12 +1. If p
is an odd prime, we note that p | n? + 1 is equivalent to n? = —1 in
Z,. This in turn is equivalent to saying that the residue class of n
is of order 4 in (Z,)*. Thus p divides an integer of the form n? + 1
if and only if (Z,)* contains an element of order 4. By Corollary
3.1.6, this group is cyclic, hence it contains an element of order 4 if

and only if 4 divides its order, p — 1; that is p = 1(mod 4). O



Chapter 4

A class of finite rings I

In this chapter, we study the unit groups R* of a commutative finite
ring R of characteristic p*, with unique maximal ideal .J such that
R/J = GF(p"), J*! = (0) and J* # (0), for some prime integer p

and positive integers k& and r.

4.1 Construction A

Let Ry be the Galois ring of the form GR(p*", p*) and let u; € R,
where 1 <4 < h so that R = Ry ® Rou; @ ... ® Rouy, is an additive
abelian group. On the additive abelian group, define multiplication

by the following relations:
ulu] =0 (1 L9 < h);rou,- = U;Ty, To € Ro;pk°1ui 7é 0.

Theorem 4.1.1. The additive abelian group R defined above is a

commutative finite ring with identity (1,0,0, ...,0)
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Proof. From the given definition of multiplication in R, we see
clearly that if (rg, 7, ..., ) and (s, 51, ..., sp) are any two elements

in R, then
(ro,m1, ez T ) L8, iy v k) = (T80, TS, + T180, s TSh + TRSp).

We verify that the given multiplication turns the additive abelian
group into a commutative ring with identity (1,0,0, ..., 0).
Let
(ro,71,...,74) € R,

then

(ro, 71, cors 8} (L O ey ) = (ro, 71, -
So (1,0,0, ...,0) is the multiplicative identity of R.
We now show that the multiplication is associative.

Let

(T07T1) "')rh)a (50) 815 L) Sh)7 (tO)t17 sy th) (S R

19




Then

(s 15 05 TR (805 81, 5051 85 ) (s B 5 wons T5))
= (70,71, ..., Tn)(Soto, Sot1 + S1to, ..., Sotn + Snto)
= (ToSoto, roSot1 + rosito + r1Soto, ..., ToSoln + ToSkto + ThSoto)
= (roSoto, ToSot1 + (ToS1 + T180)t0, -+ ToSotn + (ToSh + ThS0)to)
= (T80, 7051 + 7150, --» T0Sh + ThS0) (to, t1, -, th)

= ((7"0,7‘1, ...,’I‘h)(SQ, Sy 5 ey Sh,))(t(),tl, ...,th)

showing that multiplication is associative.

Moreover,

((ro, 1, s Th) + (805 815 -y Sk)) (F0s E1, oy Th)
= (ro + So,71 + S1, ---s ' + S1) (0, b1, - th)
= (roto + Soto, Tot1 + Sot1 + T1to + S1toy .oy Toln + Sotn + Thto + Snto)
= (roto, rot1 + rito, .-, Totn + Tato) + (Soto, Sot1 4 Sito, -, Sotn + Sato)

= (7’0,7’1, "‘)Th)(t07tla ---)th) + (307 S1yeeey Sh)(t())tl) -"7th)'

20




and

(70,715 -y Th) (0, 1, vy SB) + (to, 1, -y 1))
= (70,71, .-, 7h) (S0 + to, 81 + 1, ..., Sp + tp)
= (r080 + Toto, Tos1 + Tot1 + r1So + T1to, ..., ToSk + Totn + ThSo + Tato)
= (7050, 7081 + 7180, -, ToSh + ThS0) + (Toto, Tot1 + T1to, ..., Totn + Tato)
= (70,715, Th) (50, 51, .-, Sn) + (70, 71y ooy Th) (F0y E1, -y E1).

So, the multiplication is both right and left distributive over addi-
tion. Hence the multiplication turns the additive group into a ring.

The ring is commutative because

(10,715 -y Th) (S0, S1, -+, Sh)
= (7‘080, T0oS1 + 180, .-, T0SH + ThSO)
= (507"0, SoT1 + S170, -5 SoTh + shro)
= (80, 815 sy Sh)(T'o, Tk ...,Th).
This completes the proof. O

Remark: In order to simplify our work, we shall write

R=Ry® Rou1 @ ... ® Rouy,

= {ao + a1u1 + ... + apun | ag, a; € Ry, ws =0,(1 € 4,70 < H)}

21




Proposition 4.1.2. The ring R is completely primary of charac-
teristic p*, and

(1) J =pRy® Rouy @ ... ® Roup,

(i) J? = p’ Ry ® pRou1 @ ... ® pRouy,

(i5i) J*! = p* 1Ry @ p* 2 Rouy & ... ® p* 2 Ryuy

() J* = p*Ro ® p* Rouy & ... ® p* 1 Rouy

(v) J*1 = (0)

Proof. First, we show that char R = p*, for some prime p and
positive integer k.

Since char Ry = p*, then for every y € Ry, p*y = 0. But

R = {yo+yiur + ... + ynun | Y0, ¥ € Ro, wu; =0,(1 <i,5 <h)}.

Now, suppose p® € R where s < k and g, is not a member of pR,.
Y

Then, by the distributive property in R,

P’ (Yo + y1ur + ... + ypun) = p°yo + py1ur + ... + pypus # 0.

The same argument holds for any other positive integer less than
p*. So char R = p*.
With the obvious identifications, we can think of Ry as a subset

of R. Now, it follows immediately from the way multiplication has
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been defined that if

J=pRy® Rou; © ... ® Roup,

then
J? = p’Ry ® pRouy @ ... ® pRouy,
J*1 = p* IRy @ p* 2 Rouy @ ... @ p" 2 Rouy,
J* =p"Ry ® p" ' Rowy @ ... ® pF L Ryun,
and that

J(P*Ro®p" T Rous@...@p* " Roun) = (p* Ro®p* ™' Rows @...p" " Rowy) J

= (0).

Hence

Jk+1 as (0)

Also from the definition of multiplication, it follows that

RJ = JR C J so that J is an ideal. Suppose there is an ideal
K D J, then by Theorem 1.2.1, K contains a unit z € R such that
zz7! = 2712 = 1. So K = R. Therefore J is the unique maximal

ideal in R since any maximal ideal distinct from J contains a unit.

We now show that J is indeed pRy @ Rouy @ ... © Roup,.
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Let @ € Ry with « not a member of pRy and s € J. We have

(a4 s)P =af +t (withteJ)

=a+v (with v € J).

But then (a+v)P~! = 1+¢ (with ¢ € J) and (1+¢)”"" = 1. Hence

a + s is invertible. Since | J |= p(k(h+1)_1)r -
| (Ro/pRo)* + J |= (p — 1)plkth+D)=Dr,

it follows that (Ro/pRo)* + J = R — J and hence all the elements
outside J are invertible. Therefore R is completely primary and

satisfies the given properties. O

Let R be a completely primary finite ring of Construction A,
with maximal ideal J such t'hat jk“ = (0), J* # (0). Then R is of
order p*+17 and the residue field R/J is the finite field GF(p"),
for some prime integer p and positive integers k, h and r. A concrete
model of Ry is the quotient Zx[z]/(f) where f € Z,x[z] is a monic
polynomial of degree 7 irreducible modulo p. Then it can be deduced
from the main theorem in [6] that R has a coefficient subring Ry
of the form GR(p*",p*) which is clearly a maximal Galois subring -

of R. A trivial case is GR(p*, p*) = Z,+. Notice that since R is of
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order p*A+I and R* = R~ J, then | R* |= p*(h+D)=1r(pr 1) and
|1+ J |= pkt+D=Ur S6 1 4 J is an abelian p— group. Thus
R* =(abelian p— group) x (cyclic group of order | R/J | —1)

In the sequel, the following result due to Chikunji [4] will be useful.

Proposition 4.1.3. Let R be a completely primary finite ring (not
necessarily commutative). Then the group of units R* of the ring R
contains a cyclic subgroup < b > of order p" — 1 and R* is a semi

direct product of 1 +J and < b > .

Since the rings of Construction A are commutative, we deduce
from the above Proposition that if A is a cyclic group of order

| R/J | —1, then
RR=AQ+N=ZAx(1+J)

a direct product.

Remark: In order to clarify our work we shall begin each sec-
tion by determining the structure of the group of units of the ring
R = Ry ® Rou; @ ... ® Rouy, where Ry = GR(pF, p*) is the Galois
ring of characteristic p* and order p*. In other words, we determine
the structure of the groups of units of the ring when r = 1. We
then proceed to determine the structure of the group of units of R

25
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for any positive integer r.

4.2 Units of rings of characteristic p
Let & =1 so that Ry = Z,, is a Galois ring. Then
R=17,® Zpty & ... ® Zoptip

Proposition 4.2.1. If h = 1, then the unit group of the ring defined

in this section is cyclic of order p(p— 1) for any prime integer p.

Proof. Given that k = 1 and h = 1, we notice that | Z, ® Z,u |= p?

and | J |=p. So
| R |=p*—p=p(p-1).

Suppose a1 + asu € (Z, ® Zyu)* we seek to show that if a; + asu

generates (Z, ® Zpu)*, then (a; + apu)P®*~V = 1. But
(Zp ® Zpu)* = {a1 +aou | a1 € (Z,)", ax € Zy}

So, let a; + asu € (Z, ® Zyu)* with maximum possible order. We

claim that the order of a1 + agu, is
pif p=2
o(a; + agu) =

p(p—1) if pis odd

26




This is true because, if p = 2, then

(a1 + agu)? = (a1 + agu)(a; + asu)
= a? 4 ayapu + agua; ( since u? = 0)
= a2 + 2a1a9u ( since (Zy ® Zou)* is abelian)
= a7 ( since char (Zy ® Zou) = 2, and 2u = 0)

=1 ( since a; € (Z3)*)
Now, suppose p is odd. Then, since u? = 0,

(a1 + apu)? = af + (¥ "ag + &} 2agar + ... + azal ™M u
= a® + p(a® ay)u ( since (Z, ® Z,u)* is abelian
1 1 P P

= a} ( since char(Z, ® Z,u) = p, and pu = 0).
Now

o = oy
= a; ( since a; € (Z,)*)
Therefore,
1

(a1 + agu)P®™V = b~

= 1 ( since a; € (Zp)*).

27




Hence (a;+agu)P?~Y) = 1, for any prime p, proving that (Z,®Z,u)*

is cyclic. O

Remark: Let R be a ring defined in this section. If » = 1, then
R has Jacobson radical J, and J? = (0) so that p € J, where p is a
prime integer. The structure of R* has been determined completely
by Ganske and McDonald [11]. For the sake of completion, we state
and prove it here in a different way. We begin with the case when

=,

Proposition 4.2.2. Let R be the ring defined in this section. If

r=1, then
Zrifp=2
R &
Zy_1 x Z) if pis odd
Proof. If k = 1, then it can easily be shown that

J={swui+..+spun|s €Zy u;€R, 1 <i<h}

and J? = (0). Since p € J, pm = 0, for any m € J. Also | J |= p"

for some positive integer h, such that | R* |=p"(p — 1). But
R= {'80+81u1+...+8huh | Sg € (Zp)*,si Elp e R, 154 < h}.

Suppose p = 2.
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Let y € (Zy)* and consider the element 1 + yu; € R*. Then

(14 yu1)?® = 1+ 2yu; ( since v? = 0)

=1 ( since charR=2 and 2u; = 0).

So 1+ yu; generates a cyclic subgroup of R* of order 2.

Next, consider the element 1 + yu; + yug € R*. Then

(14 yuy + yug)? = 1+ 2yu; + 2yuy( since u;u; = 0)

=1 ( since charR=2 and 2u; = 0).

So 1 + yu; + yup generates a cyclic subgroup of R* of order 2.
Continuing in a similar manner up to the element 1+4yu; +... +yuy,
we see that 1 4+ yu; + ... + yuy, also generates a cyclic subgroup of
R* of order 2. Since R* is al.aelian‘, each cyclic subgroup is normal,
the intersection of any pair of the cyclic subgroups is the identity
group and the order of the group generated by the direct product
of the h cyclic subgroups coincides with | R* | . Hence, the direct
product of the cyclic subgroups exhausts R*.

Suppose p is odd.

Then it is well known that R* =< b > X (1 + J) (see [4]). We note
that < b >= R*/(1 + J). It now remains to show that 1 + J is

isomorphic to a direct product of i cyclic subgroups, each of order
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.
Consider the following A elements of 1 + J.
= 1+ yuy,

1+ yuy + yug,

1+ yuy + ... + yup, where y € (Z,)*

Clearly each of the elements generates a cyclic subgroup of 1+ .J of
order p. Since 1+J is abelian, each of the cyclic subgroups is normal.
Moreover the order of the group generated by the direct product of
the h cyclic subgroups coincides with | 1+J | . So the direct product
of the subgroups exhausts 1+J. Therefore | R* |=|< b >| x | 1+ J |

and this completes the proof. O

We now generalize the structure of the unit groups of the rings
defined in this section for any positive integer 7.
Let Ry = F, = GF(p"), the Galois field of ¢ = p" elements. Let

u; € R, (1 < i < h) such that

R=F,®Fu &.. &Fu,

the Jacobson radical

J=Fqu, & .. @0 Fqu,
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and

J? = (0)

~ The multiplication in R is given by the relations u;u; = 0;

%'Oui = ,;rp, where rg € Rg and 1 <14,5 < h.

Since R* is a direct product of the cyclic group, say A of order
p" — 1 by the group 1+ J of order p", it suffices to determine the

structure of 1 + J. In this case
1+ J=14+Fu; & ... ® Fgup.

We shall compare our result to the following result due to Ganske

and McDonald.

Proposition 4.2.3. (see [11]) If r > 1 and h > 1, then

rh
R =<|K|-1>x]]ew),
i=1

where h = dimg(J/J?), | K |=p", e(p) denotes the cyclic group of

order p.

Proposition 4.2.4. If charR =p and h > 1, then

1+ J2Zx..x 72"

p p

|

h copies
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Proof. Let ay,...,a, € F, with a; = 1 such that &g, ..., € F,
form a basis for F, regarded as a vector space over its prime subfield
F,, where ¢ = p” for any prime integer p and positive integer . We
note that, for every [ = 1,..,rand 1 <i¢<h, 1+ aqu € 1+ J,
(14 oqu)? =1, (14 agug + aqqug)? = 1,...,(1 + oquy + qqug + ... +
aup)P=1,yP=1,Vye 1+ J

For positive integers ay; , ag ,...,ap With ay <p,ay <p,...,

ap < p, we notice that the equation

TT{ + au)™ 3 TTLAQ + g + oquz) )

H{(l + aquy + oqug ..+ O‘luh)a}”} -1
=1

will imply a;; =p forevery [ =1,...,7 and 1 <% < h.
If we set

Su={1+ou)* a1 =1,..,p},

So = {(14+ ayuy + qug)™ | ag = 1, ..., p}

S’” ={(1+aqu +oqug + ... + qqup)™ | ap = 1,‘...,p}

we see that Sy, So,...,5 are all cyclic subgroups of the group 1+ J

and they are each of order p.




We also notice that as each element in 1+ J raised to the power P
equals 1, then 1 + J is an elementary abelian group.
Now, since
H <14 gy >| H [< 1+ aquy + oqus |
=1

=1

I
H |< 1+ QU + aqug + ... Qup, >]= phr_
=1

and the intersection of any pair of the cyclic subgroups gives the
identity group, the product of the hr subgroups Sy, Satye., Sy is

direct. So their product exhausts the group 1+ J. a
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4.3 Units of rings of characteristic p?

Le£ r = 1 and k = 2. By the definition of multiplication
in construction A and the properties of the Jacobson radical J,
p*m =0, m € J. Therefore p* € J*.
We investigate subgroups of 1 + J in this construction.

Remark: Since R* is abelian, 1 + J is a normal subgroup of R*.

Lemma 4.3.1. For each prime integer p, 1 +pZy is a subgroup of

i ol

Proof. Let 1+ py1,1 + py2 € 1 + pZ,2 where y1,y2 € Zy2. Since
p*ys = 0, we see that (14 pys)™' =1 — pys. So
(14 pya)(1 + py2) "
= (14 py1)(1 = pys)
=1+4p(y1 — 12)
an element of 1 + pZ,.. O

Lemma 4.3.2. For each prime integer p, 1 + Zle@szui s a

subgroup .of 1+ J.
Proof. Let 1+Z?:1 a;u; and 1—}—2?:1 b;u; belong to 1+Z?:1 DZp2u;,
where a;,b; € Z,2 (1 = 1, ..., h). Since w;u; = 0, then (1+Z?:1 Byt ) =

34




1-— Z?:l bzuz So

h h
(1 + Z aiui)(l + Z biui)'l
i=1 i=1
= (1 + a1ug + aguo + ... + ahuh)(l = (blul + bottg + ... + bhuh))
=1+ (a1 — bl)ul + (ag = bg)ug + ...+ (ah — bh)uh
h
=1+ Z(ai = bl)uz
i=1
an element of 1+ 31 | ®Zeu;. O

We now determine the structure of R* of the ring given by con-

struction A ,when r = 1 and charR = p*.

Proposition 4.3.3. Let R be a ring defined by construction A. If
r =1,k =2 and J is the radical of the ring, then the group of
units of the ring is a direct product of a cyclic group of order p — 1

byl+J, wherel+J = Z, x Z;Lz for any prime integer p.

Proof. Let k = 2 and R be a ring of Construction A. Then we know

that
J =pZp ®Zp2u; @ ... © Lppuy
J? = pQsz ® pZypuy @ ... © ply2up,
and
% == {0).
35
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Moreover, R* = R— J and | R* |= p***(p— 1), | 1 + J |= p*P+L.
Since R* = Z,_; x (14 J). We need only show that 1+J = Z,, x Zzz.

- Let y € (Z,2)*. Consider the element 1+ py € 1+ J, then

(p — 1)p*y?

(1+pyf =140y +

+ o PPYP

=1 ( since char R = p?).

Therefore, 1 + py generates a cyclic subgroup of 1 + J of order p.
Now, let y € (Z,2)*.

Since char R = p? and w;u; = 0,

(1+yw)” =14 pyw

and
(14 pyur)? = 1+ p*yuy
=1 (since p*uy = 0).
Also
(1+yus +yug)? = 1 + pyuy + pyus
and

(1+ pyus + pyua)’ = 1+ p’yus + pyus
=1 (since char R = p? and p?u; = 0).
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Continuing in a similar manner up to the element 1+yu; +... +yuy,

we obtain (1 4+ yuj + ... + ydh)p =1+ pyus + ... + pyuy and

(1+ pyuy + ... + pyup)?
= { —l—pzyul + ... +p2yuh

= 1 (since char R = p? and p?u; = 0).

Therefore, the h elements 1+yuy, 14 yuy +yug,...,1 +yus +... +yup
generate cyclic subgroups of 1+ J each of order p?. Since the groups
generated are normal, the order of the group generated by the direct
product of the cyclic subgroups < 1+ py >, < 14+ yu; >, < 1+
Yyuy +yug >, ..., < 1 +yuy + ... + yup > coincides with | 1+ J | and
the intersection of any pair of the cyclic subgroups is the identity
group, it follows that 1 + J =<1+ py > X <14+ yu; > X

<14yup + yus > XX < 1+yu + ... +yup > . O

We now generalize the structure of the unit groups of the rings
defined in this section for any positive integer 7.
Consider Ry = GR(p*, p?), the Galois ring of characteristic p? and

order p? and u; € R (1 <4 < h) so that
R=Ry® Roui @ ... ® Rouy,.
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Then

J = pRg @ Roul ®..PD Rouh
J2 = p2R0 EBpRoul D... EBpRouh

J¥ =(0).

We know that
1+J=14+pRy® Rouis @ ... & Roup,

Lemma 4.3.4. For each prime integer p, 1 + pRy is a subgroup of

L+ J.

Proof. Similar to the proof of Lemma 4.3.1 with some modifications

O
Lemma 4.3.5. If 1 <i<h and k=2, then 1 + Y'_ ®Rou; is a
subgroup of 1+ J.

Proof. Similar to the proof of Lemma 4.3.2 with some modifications

O
Proposition 4.3.6. If charR = p* and h > 1, then

1+J%’Z;><Z;2><...><ZI’;2
N, !

h copies
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Proof. Let ai,...,a,. € Ry with a; = 1 such that ay,...,a, €

Ry/pRy form a basis for Ry/pRy regarded as a vector space over its
- prime subfield F,. We note that for every { = 1,...,7, (1+pa)? = 1,

(1+ alul)p2 =1, (14+ aqu; + aluz)”2 =L,

(14 gy + oqug + ... + aqup)?” = 1.

For positive integers a;, by, bay, ..., b with a; < p, by < p?, ...,

b < p? , we notice that the equation

r

[T+ pa)} TTHO + arw) 3 TTHA + avn + cua) ™}

=1

H{(l + O[lu:[ + O(lu2 + + aluh)bhl} - 1
=1

will imply a; = p, by = p? forevery [ =1,...,rand 1 <7 < h.
If we set

T,={1+px)*|a=1,..p}
Su= {(1 -+ alul)bl I by = 1,...,p2},

Sor = {(1 + cyuq + qqug)® | by = 1,...,p°}

Sw = {(1 + oquy + oqug + .+ Ozluh)b”' } bp =1, ...,pQ}

we see that T, Sy, Sai,...,Sn are all cyclic subgroups of the group
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1+ J and they are of the orders indicated by their definition. Since

T T T
III<t+po > JI< 1+ >| JI <1+ o + cqus >
=1 =1 =1

r
H |< 1 + Uy + Uy + ... + Quy, >>: p(2h+1)7.
=1

and the intersection of any pair of the cyclic subgroups gives the
identity group, the product of the (h+1)r subgroups 7}, Sy;, Say,...,Su

is direct. So their product exhausts the group 1+ J. O
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4.4 Units of rings of characteristic p*,
where k£ > 3

~ We begin by investigating subgroups of 1 + J in this construction

when 7 = 1.

Lemma 4.4.1. For each prime integer p, L+pZ,y is a subgroup of

I A

Proof. Let 1 4 psy, 1+ psy € 1 + pZ,. where 51,59 € Z,k. Since
Prsy =0, (1+ps2)™ = 1—psy+ps3 — pPs3+... + (—1)FHph=1g51,
S0
(14 ps1)(1 + psy)~!
= (L+ps1) (1 = psz + 5% = pPs3 + .+ (—1)pt sk
=1+ p((s1 = s2) +p(s5 — s152) + p(5155 — 3) + (5% — s183) + ... +

(=DM 2 (557 — s1557))
an element of 1 + pZ . O

Lemma 4.4.2. For each prime integer p, and k > 3, 1+Z?=1 D Zpru;

s a subgroup of 1+ J.
Proof. Let 1—}—2?:1 a;u; and 1+Zf=1 b;u; belong to 1+Z?=1 DZyku;,
where a;,b; € Zy: (i = 1, ..., h). Then since uju; = 0, (H—Z’; b)Y =
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1— (b)) So

h h
. i=1 i=1
= (14 a1ur + agua + ... + apup)(1 — (byuy + boug + ... + bruy))

=1+ (a1 — by)uy + (a2 — bo)us + ... + (an, — by)uy,

an element of 1+ Y1 | ®Z u,. O
We now determine the structure of R*.

Proposition 4.4.3. Let R be a ring defined by Construction A. If
k > 3 and r = 1, then the group of units of the ring is a direct

product of a cyclic group of order p— 1 by 1+ J where

Zy X Zopz x Ziy if p=2
14 J =
Z -1 x Z0 if pis odd

p p

Proof. Given that k > 3 and R is the defined ring, then J = pZ,» ®
Zy® ... ® Zy. Moreover R* = R— J then | R* |= p*h+D=1(p — 1),

| 1+ J |= pP*+D=1 We know that
R eEZp 1 x(1+J)

and therefore need only to determine the structure of 1 + J.
We begin with the case when p = 2.
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Suppose w € Zgr such that w is not a member of 2¥71Z... Let

w(w + 1) = 0(mod 2*-2). Then

(1+ 2w)?
=14+ 2%(w+w?
=1+2% teZy

=1 ( since char R = 2F).

Therefore, 1 4+ 2w generates a cyclic subgroup of 1 + J of order 2.
If k = 3, choose y € Zqx such that y is not a member of 22Zys and
y # w, then (1+2y)2 =1.

Suppose k > 3.

Let y € Zox such that y is not a member of 287170k and y(y + 1) is

not congruent to 0(mod 2¥=2), then

(1+2)%
2k—2 2k—2 o 2 2k—2 2k—2 o k-2 __ 3
4oy 4 EEET DR 2R - 1) - 2)2y)
P 6
T

(22 - 12" - 2)2y
3

=1+2Yy+ (2" -1+
R 22k—2—k+1y2k—2—2>y2)
=1+2""(y + By*) ()
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where 8 = (2872 — 1) + (Qk_z_l)(gk_z—zﬂy 4 ... 22Tkl 2Ry

Now, since § € Zgx is odd, the equation (*) becomes 1+ 2*§ where
- 0 € Zyx. But, since charR = 28, 1+ 2%§ = 1. Thus 1 + 2y generates
a cyclic subgroup of 1+ J of order 2+72.

Now, let z € (Zgx)*. Then, since u? = 0,
(14 2u)? =14 2zu,

(14 22u7)% =1 4+ 2%2u,
(14 2%2u1)? = 1 4 28204,

Applying the procedure 2% times, we obtain

(14 25 Do) = 14 3%y

=1 ( since char R = 2* and 2*u; = 0)

Therefore, 1+ zu; generates a cyclic subgroup of 1+ J of order 2*.
Similarly 1+ zuy + zus generates a cyclic subgroup of 1+ J of order
2%, Continuing in a similar manner up to the element 14 zu; 4 ... +
zup, then the element also generates a cyclic subgroup of 1 + J of
order 2*. Since 1+ J is abelian, all the cyclic subgroups are normal.

Moreover the order of the group generated by

<l4+2w><14+2y><1+zu;>,....<1l+zup+..+ zup >
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coincides with | 1+ | and the intersection of any pair of the cyclic
subgroups is the identity group. So the direct product of the cyclic
subgroups exhausts 1 + J.

Now, consider the case when p is odd.

Let z € (Z,+)*. Then
(1+p2)" =1+p"B
where

o BT D) 0 - DT - 20P  eeag e

Now, since char R = p* and f € (Z,+)* we obtain that
(1 —i—jr)z)pk—1 = 1. Thus 1 + pz generates a cyclic subgroup of 1 + J

of order p*~!. Again, let z € (Z,+)*. Then, since u? = 0,
(14 2u1)? =1+ pzuy
(1+ pzuy)? = 1+ p*zuy
(1+ pPzuy)P =14 pizy
Applyipg the procedure 2* times, we obtain
(14 p*2u))? = 1 + pFouy

=1 ( since char R = p* and p*u; = 0)
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Therefore, 1 + zu; generates a cyclic subgroup of 1+ J of order p*.
Similarly 1+ zu; + zus generates a cyclic subgroup of 1+ J of order
p*. Continuing in a similar manner up to the element 1+ zu; +... +
zuy, then the element also generates a cyclic subgroup of 1+ J of
order p*. Since 1+ J is abelian, all the cyclic subgroups are normal.

Moreover the order of the group generated by
<l4pz >, < l4zu; > < 1+zui+zug >, ..., < 1+zu;+...+2up >

coincides with | 1+ J | and the intersection of any pair of the cyclic
subgroups is the identity group. So, the direct product of the cyclic

subgroups exhausts 1 + J. m

We now generalize the structure of the unit groups of the rings
defined in this section for any positive integer 7.
Let Ry = GR(p*", p*), the Galois ring of characteristic p* and order

P and u; € R (1 < i < h) so that
RzR()EDRo’U,l@...@Ro’U,h.

We know that
J = pRo D R0u1 D..P Ro’u,h
J? = p*Ro ® pRow ® ... ® pRouy,
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J*¥ = p*Ro ® p" T Rous @ ... ® p* T Rouy,

and

Jk—}—l _ (O)

Lemma 4.4.4. For each prime integer p, 1 + pRy is a subgroup of

1+ J.

Proof. Similar to the proof of Lemma 4.4.1 with some modifications

O

Lemma 4.4.5. If 1 <i < h and k > 3, then 1 + Z?zl @ Rou; 18 a

subgroup of 1+ J.

Proof. Similar to the proof of Lemma 4.4.2 with some modifications

O

Proposition 4.4.6. If charR = p* where k >3 and h > 1, then

Zy X Zgr2 X Zoity X Zy X ... X Zyy i p=2
—_—— —
h copies

1epd =

p

Zp1r X Zye X ... X Zny 1 pis odd
—— ——

h copies

Proof. Let ay,ag, ..., € Ry with oy = 1 such that @y, a3, ..., q; €
Ry /pRy form a basis for Ry/pR, regarded as a vector space over its
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prime subfield F,,. We consider the two cases separately.

Suppose p = 2.

Ifl =1,..,7 and y is an element of Ry such that 22+ 2 +7 =0
over Ry/pRy, has no solution in the field Ry/pRy, we obtain the
following results: (—1+ 2*lay) € 1+ pRy, (=1 + 257 1ay)? = 1,
(14+49)?7 = 1 and w2 = 1 for every w € 1 + pRy. We also

ok—1

notice that (1 + 20)%" = 1for I = 2,..,r, (1 + au)? = 1,
(1+ oqus + aqug)? = 1,..., (1 + aquy + aqug + ... + aqup)? =1, for
every [ =1,...,7.

Now, for positive integers a,b,c;, dy;...,dp; with a < 2, b < 2F72,

g < 2% Mforl =2,..,7rand dy < 2F for every [ = 1,...,7 and

1 < i < h, we notice that
(—1 42" on)® (1 + 4y)°. TTH{(L + 200)7}. H{(l + oquy )}

=2 =1
-

H{(l + oqug + OZlUg)dm’}... H{(l + aqur + g + ...+ aluh)d’”} =1
=1 =1

will imply a =2, b =282, ¢ =2 for [ = 2,...,7 and dy = 2" for
every [ =1,...,rand 1 <1 < h.
If we set
H={(-1+2"0)*|a=1,2},
Q={1+4y)|b=1,..,2°%},
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T ={(1+2w)°|c=1,..,2°"}
Ior 1 =2, .05 P
Su={1+aou)"|d =1,..,2%},

Sop = {(1+ s + cqqup)® | dy = 1, ..., 2%}

Sn = {(1+ oqus + qquo + ... + oqup)™ | dp = 1,..., 25}

we see that H, @, T}, S1;, So,...,Sp are all cyclic subgroups of the

group 1+ J and they are of the orders indicated by their definition.

Since
< =142 > <144y > J]I<1+2m > J] I< 1+ aw >
: =2 =1
T 7
H |< 1+ aqup + oqug >| H |< 1+ aquy + apug + ... + aquy, >|
el =i

— o(k(h+1)=1)r

and the intersection of any pair of the cyclic subgroups gives the
identity group, the product of the (h+ 1)r+ 1 subgroups H, @, 17,
Su, Sap,...,Sp is direct. So their product exhausts the group 1+ J.
Suppose p is odd.

We notice that for every [ = 1,..., 7, (1+poq)”k_1 =1, (1+ozlu1)”k =
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i (1 + qu; + Oll71:2)plc = 1,...,(1 + oqquy + oqug + ..+ aluh)Pk = 1
Now, for positive integers az, by, by, ..., by with a; < pF=1, by < p*

for 1 < i < h, we notice that

TTE + pan) 3. TTL( + a1}
=1 =1

P U1
H{(l + oquy + Cl(ﬂlg)bﬂ}... H{(l + oqu + oqug + ..+ Ozl’u,h)b}“} =1
1=1 I=1

will imply a; = p*71 | by = p*, for every L =1,....,r and 1 < i < h.

If we set

T={1+py)*|a=1,..p" 1},
Su = {(1 + alul)bl ‘ bl = l,...,pk},

Sor = {(1 4+ aquy + qquo)® | by = 1, ..., p*}

Sw = {1+ oqur + qqug + ... + qqup)®™ | by, = 1, ..., p*}

we see that T;, Sy, Sy,....S are all cyclic subgroups of the group

1+ J and they are of the orders indicated by their definition. Since

ITI<t+pa > J]I< 1+ >|.
I=1, : =1

H |< 14+ aqui + aqug >| ... H |< 1+ aquuy + agug + ... + oqup >
=1 =1
= pk(+)-1)r




and the intersection of any pair of the cyclic subgroups gives the
identity group, the product of the (h+1)r subgroups 7}, S1;, Sayy...,Shi

is direct. So their product exhausts the group 1+ J. O
We have thus proved the following:

Theorem 4.4.7. The unit group R* of the commutative completely
primary finite ring R of characteristic p* in Construction A with
mazimal ideal J such that J**1 = (0) and J* # (0), with invariants
p, k, r and h where p € J, is a direct product of cyclic groups as
follows:

i) Ifh>1,7>1 and charR = p, then

R 2 Zy 1 X Z X .. X Zy)

|

h copies

@)If h > 1, 7 > 1 and charR = p?, then

* o
R _Zpr_le;xZI",zx...xZZ’;z
N e
h copies

i) If h>1, 7 > 1 and char R = p*; k > 3, then
P4 % Ty % Topa % Ty % T XX i Ep=2
N i

h copies
e
Zyr1 X oy X Zyp X ..o X Zyye 1 pis odd
§ S S
h copies
Proof. Follows from Propositions 4.2.4, 4.3.6, and 4.4.6 O
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Let

(r0,71), (S0, 81), (to, t1) € R.

Then

(ro,71)((s0, 1) (to, t1))
= (ro,71)(Soto + P*'s1t1, sot1 + s1to)
= (roSoto + p*rosity + " trisoty + pk_lrlslto, ToSot1 + ToS1to + r1Soto + pk_lrlsltl)
= (1980 + " '7181, 7081 + 7180) (o, 1)

= ((ro,m1)(S0, 51))(to, t1).

showing that multiplication is associative.

Moreover,

((r0,71) + (80, 51)) (0, t1)
= (ro + 50,71 + 81)(t0, 1)
= (roto + soto + P rits + pF s by, oty + soty + rito + s1to)
= (roto + P 'rity, roty + Tite) + (Soto + pF T s1t, soty + sito)

= (TQ,Tl)(to,tl) -+ (50,81)(t0,t1)




and

(ro,71)((50, 51) + (%o, 1))
= (r0,71)(So + to, $1 + t1)
= (roso + Toto + p* 118y + Pty Tos1 + Tots + r180 + r1to)
= (roso + p*r1s1, o081 + T180) + (roto + pF ity oty + T1tp)
= (10,71)(S0, 51) + (10, 71)(to, t1).
Therefore, multiplication is both left and right distributive over
addition . Hence the multiplication turns the additive abelian group
into a ring with identity (1, 0).
The ring is commutative because
(ro,71) (50, 51)
= (roso + p*lrys1, 7981 4 7150)
= (soro + P 's171, sor1 + 8170)

= (SQ, 51)(7'0,7‘1).

Remark: In order to simplify our work, we shall write

R=R0@Rou

={a+bula,be Ry u*=0}




Proposition 5.1.2. Let k > 3. Then the ring R is of characteristic
p*, and satisfies the following conditions:

(i) J = pRy ® Rou

(i) P PRy ® p* 'Ryu

fii) JE = [

Proof. First, we show that char R = p*, for some prime p and
k> 8.

Since char Ry = p*, then for every y € Ry, p*y = 0. But
R = {?JO +y1u I Yo, Y1 S RO) U2 == O}

Now, suppose p* € R where s < k and Yo 1s not a member of pRy.

Then, by the distributive property in R,

P’ (Yo + v1u) = p’yo + pPy1u # 0.

The same argument holds for any positive integer less than p*. So
char R = p*.

With the obvious identifications, we can think of Ry as a subset
of R. It follows immediately from the way multiplication has been
defined that if

J =pRy ® Ryu,

t
[z
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then

Jk — kao @pk_lRou

and that
J(p"Ro ® p" Ryu) = (9*Ro ® p* "1 Ryu)J = (0).

Hence

ch+l = (0)

We now show that J is indeed pRy ® Ryu.

Let o € Ry, with a not a member of pRy and s € J. We have

(a+s)P =af +t (withte J)

=oa+v (with v € J).

But then (a+v)P™! = 1+¢ .(With ‘q € J) and (1+¢)”*"" = 1. Hence
o + s is invertible. Since | J |= p*~U" and | (Ro/pRo)* + J |=
(p" — 1)p#*~Vr. It follows that (Ro/pRo)* +J = R — J and hence
all the elements outside J are invertible.

d

Remarks: From the definition of multiplication, it follows
that RJ = JR C J so that J is an ideal. Suppose there is an ideal
K DO J, then by Theorem 1.2.1, K contains a unit z € R such that
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2271 = 2712 = 1. So K = R. Therefore J is the unique maximal

ideal in R since any maximal ideal distinct from .J contains a unit.

5.2 Units of rings of characteristic p*
where k£ > 3.

We begin with the case when r = 1.

Let R = Zy ®Zyru, then J = pZx ®Zxu. Also | R* |= (p—1)p**~1.
Now 1+ J is a normal subgroup of R* and | 1 + J |= p?*~!. So R*
is a direct product of a subgroup of R* say A, of order p — 1 by
1+ J Then R*=Ax (1+J)=2Z,; x (1+J) a direct product.
We proceed to determine the structure of 1+ J.

The following Lemmata are useful in the determination of the struc-

ture of 1 4 J.
Lemma 5.2.1. For every prime p, 1 +pZyx is a subgroup of 1+ J.

Proof. Let 1+ pri,1+pry € 1 4+ pZye where r1,7m9 € Zips.
Since pFry = 0,

then (14 pro)™ = 1 — pry + p%rd — pPr3 + ... 4 (—1)Hph-1pk1,

(53
=3




So

(I+pr)(1 +pry)?
= (Q+pr)A—pro+p*r2 —p*rd+ .+ (—1)FHiph-1pk-1y
= l—pro+pri —p*rd+ .. + (=1)F+iph=lph=t 4 o
— pPriry +p°rir —pirird 4+ (=1)kph1rk=2p
5 .3

= 1+p((ry—r2) +p(r2 — T179) +p2(r1r2 —r5) 4 p?

(r3 =) + o+ P (LT 4 (< 1)Rrrh )
an element of 1 + DL,y O

Lemma 5.2.2. For each prime D, 1+p’““1Zp;c © Zyru is a subgroup

of 1+ J.

Proof. Let 14 p*Ir; + rou, 1+ p*=Ls; + spu belong to

1 —f-p’“_Iprc ® Z,su where 71,79, 51, 89 € Zx.



Case I: Let s, € (Z,)*. Then

(1+p*F1r + rou)(1 4 pF=lg, + sou) ™ = (14 pFLp, 4+ raw)(—(1 4 p*=ls)-1
(" 5214 P70 = 57114 ph b)) gt (14 photgy 4
(@+27s) ™ (0 sy(14 g 100) 71 = 100 + 2 s1)) )
= P ) (~ (R — (14 gyt (0" 52— sy (1 4 p41s1)2) )y

= (L+p1p + rau)((1 — p*ls, +pk_255) + (s2(—=1 + 2pF~lg, — pk‘lsg))u)

= 1 phlg, +pk~1sg + iy +pk—17,282(_1 +2phlg, _pk—1$§> i
((1 +pk“1r1)52(—1 + 2pFlg, — pk_lsg) + 79(1 — phlg, —f—pk_lsg))u

1 -{—pk“l(rl + 82— 5 — T252) + (rg — s4 —f—pk—l(28152 + 7983 — §179 — 7189 — sg))u

which is an element of 1 + P2 & Zopu

Case II: Let s, € DLy then.

(1+pFtr, + rou)(1 + p*Fls, & sou) ™!
= (L4 Py rgu) (1 45 1s)) 1 4 (=s2(1+ p*s1)2)u)
= (L4 ) (1 + ph=lsy) 1 4 (=s2(1+ P 1r)(1+ 0" 161) 2 4 (1 +0" s
=(1+p"1r)(1 —p*lsp) + (=s2(1 4+ p*1r)(1 - 25 ) ro(1 —pk_lsl))u
=1+4p*(r; - 51) + (ra = 53+ p~1(2155 — T182 — S179))u
an element of 1 +p*1Z @ Zu.
Therefore, 1 +pk“1Zpk © Zyru is a subgroup of 1 + J. O
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Proposition 5.2.3. Let
R=2Zy® Zyu
be a ring with multiplication defined by
(r1,72) (51, 82) = (r1s1 + p* 'ras2, 7152 + a51)

Then R* = Z,_; x (14 J), where

Zg X sz,—2 X ZQlc, lfp:2
L4 =

Z

ph-1 X Zoe, if pis odd

Proof. First, we consider the case when p = 2.
Let y € Zox such that y is not a member of 2¥71Z,.. Suppose

y(y + 1) = 0(mod2*~2). Then

(1+2y)% =1+ 2%y + 2%
=1+2(y+v?)
=1+222F2 qsince y 492 = 2" for some «a € Ly,
=14 2%

= 1 since char R = 2F

Therefore 1 + 2y generates a cyclic subgroup of 1 + J of order 2.
If k = 3, choose z € Zyx such that z is not a member of 22Z43 and
z #y, then (1 +22)>=1.
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Suppose k£ > 3.
Now, let z € Zge, so that z is not a member of 2¥71Zy and z(z+1)

is not congruent to 0 (mod2*~2). Then

(1422)%7" = (1+22)(1+ 22)...(1 + 22)
2k=2 factors
2k—2(2k—2 - 1)(22)2 2k—2(2k—2 o 1)(2k—2 . 3)(22)3

> ¥ 6 N

=1422(22) +

. (22)27

[2F-2 — 1J(2% 4~ D)2e

=14+ 25+ (22 -1+ 5

s 22’°_2—k+1z2’“‘2—2)z2)

=142z + B2%)

where = (2572 - 1) + <2k‘2_1)(§k—2_2)2z b AR RRLEE

Since B € Z,x is odd, and z(z + 1) = 2a, a € Zgx, the element
1+ 251(z 4 B2%) becomes 1 + 2F7 = 1, for some 7 € Zgr. Thus
1+ 2z generates a cyclic subgroup of 1+ J of order 2572,

Now, let w € Zox, s € (Zgr)*. Then

(1+ 25" 'w 4 su)? = (1 4+ 281w + su) (1 + 257w + su)

=1+ 25152 + 2su ( since char R = 2* and v* = 0)
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(1+2516% + 25u)? = (1 + 257162 + 2su) (1 + 257152 + 2su)
= (1 +2F1.22.6% + 2%5u) ( since char R = 2% and w? = 0)
=1 +2k+182 +22$u

=14 2%su ( since char R = 2%)
and

(14 2%su)® = (1 + 2%su)(1 + 2%su)

=1+ 2%su ( since char R = 2* and u? = 0).
Continuing inductively

(1+ 25w + su) = (1 + 25 Tsu)?
= (1425 1su)(1 + 2% 1su)
— 1+ 2"su ( since char R = 2* and 2 = 0)

= 1 ( since char R = 2* and 2*u = 0)

Therefore, 1 + 2¥~1w + su generates a cyclic subgroup of 1 + J of
order 2*. Since 1+ J is abelian, all the cyclic subgroups are normal.
Moreover, the order of the group generated by the direct product
of < 14+ 2 >, <142z >and < 1+ 251w+ su > coincides
with | 1 + J | and the intersection of any pair of the subgroups is
the identity group. So the direct product of the cyclic subgroups
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exhausts 1+ J. This proves part (7).
We now consider the case when p is odd.

Let s € (Z,x)*. Then

(1+ps)" ™ = (1+ ps)...(1 +ps)
pk=1 factors

P = Dips)® | pP ! - D (0Pt — 2)(ps)?

= (1+p*}(ps) + 5 n !
+ ot (08P
= (1+p(s+ p(Pk_12— 1)s? " p*(pF ! - 1)6(pk—1 —2)s8 by kg
=1+p*t

where t = s + p(pk_;_l)SQ =k ”2(7"“_1‘1)6(?7*7_1“2)83 T A=

Z,x. So

T+pft=1

Therefore, 1+ ps generates a cyclic subgroup of 14 J of order pF—1.

Now, let w € Z,x and s € (Z,+)*. Then

(14 pFlw + su)? = (14 p* 1w + su)...(1+ p*tw + su)
p factors

=1+ (ps+rp" ", with s € {0,1}

and

(1+ (ps + wp* s Hu)P = 1 + p?su
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(1+p*su)P =1+ p’su

since char R = p* and u? = 0.

Continuing inductively,
(14 p* " w + su)?* = (1 + " su)P =14 pfsu =1

since charR = p* and w? = 0. Thus 1 + p*'w + su generates a
cyclic subgroup of 1+J of order p*. Moreover, the order of the group
generated by the direct product of < 14ps > and < 14+p* lw+su >
coincides with | 1+ J | and their intersection is the identity group.
So the direct product of the cyclic subgroups exhausts 1 + J. This

proves part (7i) and completes the proof. O

We now obtain the generalized result by considering the case
when r is any positive integer. Let R be a commutative completely
primary finite ring with maximal ideal J such that J**! = (0) and
J* # (0). Then R is of order p?" and the residue field R/J is the
finite field GF(p") for some prime integer p and positive integer 7.
The characteristic of R is p*, where k& > 3. We notice that since R
is of order p**" and R* = R — J, then | R* |= pZ=Dr(pr — 1) and
| 1+ J |= p@*=V is an abelian p— group. Thus

R* =(abelian p— group)x (cyclic group of order | R/J | —1).
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We now proceed to determine the structure of 1 + .J.

We notice that 1 +J =1+ pRy & Ryu.

Lemma 5.2.4. For every prime integer p, 1 + pRy is a subgroup

of 1+ J.

Proof. Similar to the proof of Proposition 5.2.1 with some modifi-

cations. O

Lemma 5.2.5. For every prime integer p, 1 + p* 'Ry & Rou is a

subgroup of 1 + J.

Proof. Similar to the proof of Proposition 5.2.2 with some modifi-

cations. O

Proposition 5.2.6. Let R = Ry® Ryu be a commutative finite ring
with multiplication defined by (ro, 1) (80, 81) = (roso+p*"1r151, 1951+
T180). If charR = p*; k > 3 and J is the radical of R, then
R*= Z,_y x (1+J), where

Zy X Zige-2 X Bty X Ty, if p=2

1+J=
Zper X er:’“’ if p is odd

Proof. Given | R |= p*" and R* = R — J, then

‘ R* ’: p(Qk—l)r(pr _ 1),
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and| 1+J |= p®*~Y". Now the quotient group R*/(1+J) & (F,.)*,
and since,

| R* |=| R*/1+J||1+J ]|,

it follows that R* = Z,»_; x (1+ J). .

We now determine the structure of 1 + .J.

Let ay,...,a € Ry with aq = 1 such that @y, ..., @, € Ry/pR, form
a basis for Ry/pRy regarded as a vector space over its prime subfield
F,. We consider the two cases separately.

Suppose p = 2.

If I =1,..,r and y is an element of Ry such that 2> + 2 +7 =0
over Ry/pRy, has no solution in the field Ry/pRy, we obtain the
following results: (—1 + 2’“._1041) € 1+ pRy, (-1 + 28 1ay)? =1,
(14+4y)*” =1 and w?™" =1 for every w € 1 + pR,y. We also
notice that (1+2c,)> ™ =1forl =2, ..,7r, 1+ 2" 12+ qu)?® =1,
forevery I =1,...,7 and z € R,.

Now, for positive integers a, b, ¢;,d; with a < 2, b < 2672 ¢, < 9k-1
for {=2,..,r and d; < 2* for every [ = 1,...,r , we notice that the

equation
T T

(1425 on)® (1+4y)". [ [ (142007} [[{A+25 e )t} = 1.
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will imply a = 2, b= 22 ¢, =21 for { = 2,...,r and d; = 2* for
every [ =1,..., 1.
If we set

H={(-1+2"0)*|a=1,2},
Q={(1+4y)’|b=1,..,2¢2},
G={0+2m,)%| 6=1,..251}

for [=2,...,r and
Si={1+2*"2+aqu)?|d=1,..,2},

we see that H, @, T, S, are all cyclic subgroups of the group 1+ .J
and they are of the orders indicated by their definition. Since

) r r
|< =142y >| . |< 144y >| H < 1420 >| [ ] 1< 1428 Lot oqu >|= 2340,

1=2 =1

and the intersection of any pair of the cyclic subgroups gives the
identity group, the product of the 2r + 1 subgroups H, Q, T}, S,, is
direct. So their product exhausts the group 1 + J.
Suppose p is odd.
We notice that, for every [ = 1,...,r and z € Ry, (14 poy)?* ™" =1
and (1 +p*~1z + qu)?* = 1.
Now, for positive integers a; and b, with a; < p*=! and b, < Pk, we
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notice that the equation
ﬁ{(l + pay)™}. ﬁ{(l +pF 2 )} =1
1=1 1=1
will imply a; = p*~! and b, = p*, for every I = 1,.... 7.
If we set
Q={14+px)°|a=1,..,p""}

and

T =411 +p* e+ alu)b | =1, ...,pk}

we see that @); and T; are cyclic subgroups of the group 1 + J and
they are of the orders indicated by their definition.

Since

[TI<1+po> I I< 145" 2 + o >|= p®0r
=1 =1
and the intersection of any pair of the cyclic subgroups gives the

identity group, the product of the 2r subgroups @); and 7; is direct.

So their product exhausts the group 1 + J. O
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9.3 Units of a finite ring R such that
J¥? = (0) and J+1 £ (0)

We now study the structure of the group of units of a class of
rings given by construction B but satisfies the following properties:
(i) J is a unique maximal ideal
(ii) J*+ % (0)

(iif) J**2 = (0).

Let Ry = GR(p*,p?). Consider the additive group Ry ® Ryu where
v € R with multiplication defined by (ro,71)(s0,81) = (roso +
Prisi,mos1 + 7150). It can be shown that this multiplication turns
the additive group into a ring.

We now prove some properties satisfied by R.

Proposition 5.3.1. Let k = 2. Then the ring R = Ry @ Rou is of

characteristic p* and
Z) o = pRo &) Rou

i) J® = pRy ® pRyu

wi) J® = p’R, @ pRou



Proof. First, we show that char R = p?, for some prime p.

Since char Ry = p?, then for every y € Ry, p*y = 0. But
R = {yO +y1u | Yo, Y1 € ROa u2 = O}

Now, suppose p* € R where s = 1 and y, is not a member of pR,.

Then, by the distributive property in R,

p(Yo + y1u) = pyo + pyru # 0.

A similar argument holds for any positive integer less than p?. So
char R = p?.

With the obvious identifications, we can think of Ry as a subset
of R. It follows immediately from the way multiplication has been

defined that if

J =pRy @ Rou,
then
J? = pRy @ pRou.
Also
J* = p*Ry & pRou,
and that

J(P*Ro @ pRow) = (p*Ry ® pRou)J = (0).

70




Hence

J* = (0).

The proof that J is indeed pRy @ Rou is similar to Proposition

5.1.2 0

Now, we determine the structure of the group of units of the
ring defined in this section.
We begin with the case when r = 1.
Given R = Z,» @ Z,2u, then by the multiplication given in Con-

struction B, J = pZy> @ Zp2u. Also
| R* |=p*(p - 1)

and | 1+ J |= p®. So R* is a direct product of a subgroup, say A

of order p — 1 by 1+ J, that is
Rr=Ax(14+J)=2Z, 1 x(1+J),

a direct product. The following Lemmata are useful in the deter-

mination of the structure of 1+ J.
Lemma 5.3.2. For each prime p, 1+ pZy is a subgroup of 1 + J.
Proof. Let 1+ py1,1 4 py2 € 1 + pZy2, y1,y2 € Zy2. We note that
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(1+pys)~! =1 — pys because p?y, = 0 for every y € Zy2. So

(1+py1) (1 +pya) ™"
= (1 4+ py1)(1 — py2)

=1+p(y —12)
an element of 1 + pZ,.. O

Lemma 5.3.3. For each prime p, 1+ pZy> @ Z,2u is a subgroup of

1+
Proof. 1t follows from the fact that J = pZ,: © Z,2u. O

Proposition 5.3.4. Let R = Z,» ® Zy2u be a ring with multipli-
cation defined by (r1,72)(s1, S2) = (1181 + prosa, 1182 + r2s1). Then

R = Z, 1 x (1+J) where 1 + J = Z, X Z, for any prime p.
Proof. Since R is commutative,
R & Zp—-l X (1 + .])

It suffices to show that 1+ J = Z, x Z,. for any prime p.
For each z € (Z,2)*, let 1+pz € 1+ pZ,2. Then (1+pz)? = 1 since
char R = p?. Therefore, 1+ pz generates a cyclic subgroup of 1+ J

of order p.



Next, consider the element 1 + zu € 1+ pZ,> + Z,2u, then since
char R =p? and u? =0, (1 + zu)? = 1 + sp2® + (pz + tpz®)u where
s =1 when p = 2, s = 0(mod p) when p is odd and ¢t = 1 when
p =3, t=0(mod p) when p # 3.
Also
(14 sp2® + (pz + tpz*)u)?

= 1+ sp*2*(p°2 + tp*2%)u

= ¥
where again, s = 1 when p = 2, s = 0(mod p) when p is odd and
t =1 when p = 3, t = 0(mod p) when p # 3. Therefore 1 + zu
generates a cyclic subgroup of 1 + J of order p?.
Since 1 + J is abelian, the groups generated by 1 + pz and 1 + zu
are normal, the order of the group generated by the direct product
of the cyclic subgroups < 1 4 pz > and < 1+ zu > coincides with

| 1+ J | and their intersection is the identity group, it follows that
1+ J=<1l4pz>x<1l+2zu>

O

We extend the study of the units of the above ring to the case

when 7 is any positive integer. So, we determine the unit group
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R* of a commutative completely primary finite ring R with unique
maximal ideal J such that R/J = GE(p"), J* = (0), J® #£ (0),
so that the characteristic of R is p? for every prime integer p and
positive integer r.

Let Ry be the Galois ring of the form GR(p*,p*) and let u € R so
that R = Ry @ Rou is an additive group. On this additive group,
define multiplication by (r9,71)(s0, 51) = (1980 +Prisi, ros1 4 risg).
It can be verified that R is a commutative finite ring with identity

(1,0)

Lemma 5.3.5. For each prime integer p, 1+ pRy is a subgroup of

14

Lemma 5.3.6. For each prime integer p, 1+ pRy @ Rou is a sub-

group of 1+ J.

Proposition 5.3.7. Let R = Ro & Rou be the ring defined in this
section. Then R* = Z, | x (1 + J) where 1 + J = Z, X Z, for

any prime integer p.

Proof. Since | R |= p* and R* = R — J, then | B* |= p3r(p7 — 1),
| 1+ J |= p*. Now the quotient group R*/(1 4 J) = (F,.)* and
since | R* [=| R*/14-J || 1+J |, it follows that R* = Ly 1 x(14J).
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We now determine the structure of 1 + J.

Let ai,...,ar € Ry with a; = 1 such that @y, ..., € Ry/pRy
form a basis for Ry/pRy regarded as a vector space over its prime
subfield F,. We note that if [ = 1,...,7 then (1 + py)? = 1 and
(14 oqu)?”” = 1.

Now, for positive integers a; and b, with a¢; < p and b < p?, we

notice that the equation

T

[T +pa)y. TTH0 + e} =1

=1

will imply a; = p and b; = p? for every [ = 1,..., 7.
If we set

Q={1+pxy)|a=1,..,p}
and

Ti={l+oub|b=1,..,p°}

we see that @) and T; are all cyclic subgroups of the group 1+ J

and they are of the orders indicated by their definition. Since

T i
H |< 1+ pa >| H |< 1+ au >|=p*
I=1 I=1

and the intersection of any pair of the cyclic subgroups gives the
identity group, the product of the 2r subgroups @, and 7 is direct.

So their product exhausts the group 1+ J. O
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Chapter 6

Structures of Quotient
Groups

6.1 Quotient Groups of Rings in Con-
struction A

Let R be a commutative finite ring given by Construction A with
maximal ideal J such that J¢+! = (0) and J* % (0). Let 1 + J be
the abelian p— subgroup of the unit group R*. The group 1+ J has

a filtration
14214+ P3il4+P 9 S L+ 78D 14 4 = (1),
with filtration quotients
L+ D)/ + %), (1+ T2/ 1+ %), ..., (1 + JV {1y =1+ gk
isomorphic to the additive groups

ST, . T
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respectively.

Remark: Notice that for each j = 1,2,.... k=1, 1 + J/*! ig a
normal subgroup of 1+ J7. But, in general 1 + J7 does not have a
subgroup which is isomorphic to the quotient (1 + J7)/(1 + Ji+1)
as may be illustrated by the following example in [4].

Example

Let R = Z,s, where p is an odd prime. Then J = pZys, ann(J) = J?
and 1+J 2 Zp, 14+ J2 27, (1+J)/(1 + J?) 2 Z,.

Remark: In view of the above remark and example, we investigate
the structure of quotient groups of subgroups of 1+ J, where 1+J is
the subgroup of R*. We begin by showing that forj=1,2,.... k-1,
the quotient J7/J7+! is a vector space over the prime subfield of

the quotient ring R/J.

Lemma 6.1.1. Let J be the Jacobson radical of a ring R defined
i Construction A. Then the quotient J7/Ji+' j=1,2 ... k—1 is

a vector space over GF(p) C R/J.

Proof. Given that J is a maximal ideal in R, the quotient ring R/J
is a field. For every prime integer p, let F, be a prime subfield of

R/J. Since J7 is an additive abelian group, the additive subgroup




J7t1 s also abelian. Hence Ji+! is g normal subgroup of J7. So
the quotient J7/J7*! is an additive abelian group since J7 is an
additive abelian group. To prove the other axioms, let Yi,y2 € JI

such that y; + J7+! and y, + Ji+1 belong to J7/J7+1 q ay, ay € F,,

then
(a1 + ag) (3 + J717)
= (a1 + ag)y, + J7*!
= a1y1 + agy; + ST
= a1y + S+ asyy + J7H
= a1y + I + ay(yy + S,
Also,

(a1.a9) (31 + J7+1)
= (ay.a2)y, + J7*1
= a1.(agy; + Jj+1)

= ar(az(ys + J7H))
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and

a((y1 + ) + (g + JIT1))
= a((y1 + 32) + M)
= (a(y1 +12)) + JH
= ay; + ayy + J7L
=ay; + J7 + ayy + JIH!

=a(y1 + M) + alyy + J7H)

Finally
Wy 4 JFr) =gy g JOHL,

This completes the proof

Now,

| RI=| R/J|.|J/J?| | JEY TR | ] JF |
k-1 times
:p(1+(h+ D4 .4 (h+ 1) +ryr

N+ i

— pk(h—f-l)r

Thus R is indeed finite.

Remark: Finiteness of R implies that .J is nilpotent, say

Jk+1 = (O)
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Notice that 14-J7*! is a normal subgroup of 1+.J7 and by Lagrange’s
theorem | 1+ J7/1+ J7*t! |= p+D7 where j=1,....,k— 1. We now
determine the structure of 1 + J7/1 + Ji*! for j = 1,2,....k — 1.

We begin with the case when char R = p?.

Proposition 6.1.2. Let R be a ring defined in Construction A.
Suppose J is the Jacobson radical of R, then for k = 2, the quotient

group 1+ J/1+ J* = Z7 x ... x Z for every prime integer p.
e e

h+1 copies

Proof. Let ay,...,ar € Ry such that o7, ...,a; € Ry/pRy form a
basis for Ry/pRy regarded as a vector space over its prime subfield

F,. Consider the element (1 + pay)1l + J? € 14 J/1 + J?. Then

(14 pa)1 + J*)P = (1 + pay)P1 + J?
= (1 +p%qq + ... + PPP)1 + J?

=1+ J? since charR = p?
Next, consider the element (1 4+ cyui)l + J? € 1+ J/1 + J2. Then

((1 + alul)l S JZ)p = (1 + cvlul)pl + J2
= (1 + poyuy)1 + J*

=1+ J° since 1 + poguy € 1 + J?
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Similarly, ((1+aui+aqug)1+J%)P = 1+ J2. Continuing in a similar
manner up to the element (1 + qyus + aqug + ... + oqup)1 + J? we
obtain ((1+ cyuy + aqup + ... + aqup)l + J2)P = 1 + J2.

For positive integers a;, by, bo,....by with q; < p, by < p where

1 <7 < h, we notice that the equation

r

T + pou)1 + )2} TT{Q + aqun)1 + 7). [T+ aun + crus)
=1

=1 =1

1+ J2)ba). H{((l +oguy + oquip + .+ oquy) 1+ JA)RY =1 4 g2
1=1

will imply a; =p, by =p forevery [ =1,....,rand 1 <i < h.
If we set

T ={(1+po)l + J*)* |a=1,..,p},
Su={((1+ o)1+ J)" [ by = 1,...,p},

So = {((1 4 cqus + qua)1 + J3)*2 | by = 1,..., p}

S = {((1+ oqus + quo + ... + aqup) 1+ I3 | by =1, ...,p}

we see that T}, Sy, Su,...,S), are all cyclic subgroups of the group

14 J/1+ J? and they are of the orders indicated by their definition.
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Since

[T 1< @+pa)i+ 25 Tl < @+ a1+ 72 > .

=1 =1

IT < 0+ crun + qpug)1 + 72 5|
=1

H ‘< (1 +oug + aqug + ...+ aluh)l & J? >’
=1
s p(h+1)r
and the intersection of any pair of the cyclic subgroups gives the
identity group 1+ J2, the product of the (h+1)r subgroups 73, Sy,

Sat,...,Spy is direct. So their product exhausts the group 1 + J/1+

J". O

Proposition 6.1.3. Let R be q ring defined in Construction A.
Suppose J is the Jacobson radical of R, then for k > 3, the quotient

group 1+ J7/1 4 Jitl Z, X ... X Z for every prime integer p.
.
h+1 copies

Proof. Let ay,...,a,, € Ry such that oq,..,0 € Ry/pRy form a
basis for Ry/pRy regarded as a vector space over its prime subfield
F,.

Suppose j = 1.

Then the proof is essentially of Proposition 6.1.2.

Suppose j > 2.



Consider the element (1 + p'oy)1 + J7+! € 1 4 J7/1 4 J#*+1, Then

(L+ P o)l + JP = (1 4 ploy)P1 4 Jit
=1(1+ J7*1)

= Jgs JoL

Next, consider the element (1+p"toyu;)1+ J7 € 14 J7/1+ Ji+L,

Then

(L + P qun) 1+ JHP = (1 + pPLoguy )P1 + J7H1
= (14 p aquy)1 + J7H

=1+ J since 1 + payuy € 1+ JIH,

Similarly, ((1+p' " ayus +p7 L aque) 1+ J7F1)P = 1479+, Continuing
in a similar manner up to -the elément (1+pragu; + P Logug +
P )1 + JHE we obtain (14 p'laguy + PP loqug + ..+
P logup)l + JINP =1 4 JitL

Now, for positive integers a;, by,...,by with a; < p, by < p for every
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l=1,..,7and 1 <7 < h, we notice that the equation

r

[T+ Pt + 7 T + 2 )1+ 74y,

=1 =1
™

TTH + P ovus + P qug) 1+ J7H)2)
=1
7

H{((l + oy + P g + + 0 oqup) 1+ ST

=1
=1+ Ji*!

will imply a@; =p, by =pforevery l=1,....,7rand 1 < i < h.

If we set,
T={((1+pPa)l+ ") a=1,.,p},

Sll = {((1 +pj_1alu1)1 + Jj+1)b1 | bl = 1, ...,p},

So = {((1+ 9" agus + P oqug) 1 + JIH)2 [ by = 1, L

Sp = {((1+Pj_104lul+Pj—1azu2+--'+pj_laluh)1+Jj+1)bh | b =1,...,p}

we see that Tj, Sy, Sa,...,9n are all cyclic subgroups of the group
1+ J7/1 + J71 and they are of the orders indicated by their defi-

nition.
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Since

[TI<+pa)i+ 7" > 1< 0 +p oo
=1 =1

7
H |< (1 +pj_1alu1 —|-pj—1OZZUQ)1 + Jj+1 >l
i=1

< Q4P o + P o +
=1

_ p(h+1)r

and the intersection of any pair of the cyclic suby.
1+ J*1, the product of the (h + 1)r subgroups 7,

direct. So their product exhausts the group 1+ ./ 3]

MASENO UNIVERSI
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6.2 Quotient Groups of Rings in Con-
struction B

In the sequel, we study the structures of the quotient groups of
the rings defined in Construction B for the case when r = 1. We

determine the structure of 1 + J7/1 4+ J%* for j =1,2,...,k —1

Proposition 6.2.1. Let R be a ring defined in Construction B.
Suppose J is the Jacobson radical of R, then fork =2, j = 1,2,

the quotient group 14 J7 /1 + JIt1 = Z for every prime integer p.

Proof. Case I: j =1
Suppose y € Z,2 and z € (Z,2)*. Let (1 + py + zu)l + J? €

1+ J/1+ J2 Then o((1 + py + 2u)l + J?) = p, that is

(L +py+2u)l + J*P = (1 + py + 2u)P1 + J?
= (14 p%y + sp2® + (pz + kpyz + tp2)u)1 + J*
= (1 + sp2® + (pz + kpyz + tp2®)u)l + J?

=1+ J? since 1 + sp2? + (pz + kpyz + tpz¥)u € 1 + J?

where s = 1 when p = 2 and s = 0(mod p) when p is odd ;

k = 0(mod p); t =1 when p = 3, t = 0(mod p) when p # 3. By




lLagrange’s theorem,

3
p
|14 J/1+ J? 'ZE:p.

"I'herefore the order of the group generated by (1 + py + zu)1 + J?
coincides with the order of the group 1+ J/1+J2. So 1+ J/1 4 J?
15 a cyclic group of order p.

Case II: j =2

Suppose y € Zyz and z € (Z,2)*. Let (1 + pz + pyu)l + J3 €

L+ J?/1+ J3 Then o((1 + pz + pyu)l + J3) = p, that is

(14 pz + pyu)l + J*)P = (1 + pz + pyu)’1 + J*
= (1 + p*z + p*yu)1 + J®

=1+ Jsince l +p?z+p*yuel+ J3

Therefore the order of the group generated by (1 + pz + pyu)l + J*
coincides with the order of the group 1+J2/1+J3. So 1+ J%/1+ J®

is a cyclic group of order p. This completes the proof. O

Proposition 6.2.2. Let R be a ring defined in Construction B.
Suppose J is the Jacobson radical of R, then for k > 3 and
J=1,2,...,k—1, the quotient group 1+ J7/1+ Jit! = Z,x Z, for

cvery prime integer p.




P’roof. Suppose j = 1.
Let y € Z,x and 2 € (Zy)*. Let (I4+pz+yu)l+J2 ¢ 1+J/14 J2

Then o((1 + pz + yu)l + J2) = p. This is true because

(L +p2+y0)l+ J°)P = (1 4 pz + yu)P1 4 J2
= 149’z 4 s1p%2% + sop®2® 4+ .+ Sp—1PP 2P + 'rnp/“*ly2 -
(py + kipyz + kopy2? + .+ kp_1pP lyzP1 4 npk“lyg)u)l + J?
=1+ J?since (1 + p2z + s,p22% + 89P°2% + ... 4 sp_1pPP + mpFly? 4

(Py + k1pyz + kap®y2® + ... + ky_ypPly2p ! o ") € 14 J2

where s; = 0(modp), 1 < 7 < p—2. If k-1 is prime, Sy, == 1 OF
Sp-1 = O(modp). If k — 1 is composite, then s, ;| = 0(modp).

We also notice that m = 1 when p = 2 and m = 0(mod p) when
pis odd. Also k, = 0(mod p), 1 < v Sp—-1;n=1 whenp =3,
n = 0(mod p) when p # 3.

So the element (1 + pz + yu)1 + J2 generates a cyclic subgroup of
L4 J/1+ J? of order p.

Now, consider the element (1 + Py+2u)l+J% €1+ J/1+ J2
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Then

((1+p*y + zu)l + J3)P = (1+p%y + 2w )P] <+ J?
:(1+ﬁ@+$m@”+®ﬁf+aw+%4ﬁ%p+wm“%2+
(pz + k1p®2y + kopzg® + .+ kp_1p? P o=l | np* 125 u)1 + J2

.
since

L2y + s1'® 5%y + Lk s,y L2

(pz + k1p?zy + kop'2® + . + Fop1p? P10 zqp=1 | np* 123y e 1 4+ J2

where s; = 0(modp), 1 < 7 Sp—2, m=1when p = 2 and
m = 0, when p is odd $p-1 =1, k, = 0(mod p), 1 < v < p—1;
n=1when p =3, n=0(mod p) when p # 3. . So the element
(1 +p*y + zu)1 + J? generates a cyclic subgroup of 14 J/1 + J2 of
order p.

Since 1 + J is abelian, the quotient group 1+ J/1 + J? is abelian.
So the cyclic subgroups < (1 + pz + yu)l + J% > and

< (1+p*y + 2u)1 + J? > are normal. Also

2k—1
p
N
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The order of the group generated by the direct product of the cyclic
subgroups < (14 pz + yu)l + J? > and < (1 + p%y + zu)l + J? >
coincides with the order of 1+ J/1 + J2 and the intersection of the
cyclic subgroups is the identity group. So the direct product of the
cyclic subgroups exhausts 1 4 J/1 + J2.

Case II: j > 2

Consider (1 + p™*1y + p/~l2u)l + J7H € 1 4 Ji/1 4 Jott,

If p =2, then
14 27%y + 277 u)1 o+ JIH)2 = (1 4 20+1y 4 991 ,y21 L i+l
Y

= (1+ 272y +2%+22 4 (97, 4 25742 V)1 4 JIH

=14 J7" gince (1 + 2742 4+ 2%F22 | (97, 4 92 2yz u) €1+ J7H,
Yy Y
Il p is odd, then

(L +p™*y + P~ l2w)l + J7HP = (1 + P!y + PP law)Pl + gt
= (1 +p7‘+2y dis klpzj+2y2 + k2p3j+3y3 ot
kp_3p(p—2)j+(p—2)yp—2 o p(p—l)j+pyp~1 + pp.7'+pyp s
(02 + s1p7yz + syp¥ 2z + .+
Sp_Qp(p—l)jJr(p—?»)yp—?Z + ppj+(p—1)yp~lz)u)1 4 JiH

=1+ J7*!
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since

1 +pj+2y W k1p2j+2y2 s k2p3j+3y3 = TEE S kp_gp(p—Q)j+(p—2)yp~2 +
pPTIIPYPTL L ppiteye 4 (17 4 sipPiys 4 sop¥TPs 4 4

Sp_zp(p~1)j+(p*3)yp—2z+ppj+(p-1)yp-lz)u 2 g

where k. = 0(modp), 1 <7 <p—3and s, = 0(modp),

1< v < p—2. Therefore, for every prime integer p, (1 + pi+ly +
p'tzu)l + JIH generates a cyclic subgroup of 1+ JI/1 4+ Ji+ of
order p.

Now, consider the element (1+p72+ (p~12)u)1+J9+ € 14 J9 /1 +

JoHL,

I p =2, then

(14272 + 277 50) 1 4 JI1)2 = (14272 + 2771 2u)%1 4 Ji+!
soel(] o DL . 9% 2 (22 + 2% 22)u)1 4 JIH

=1+ J7* since (1 + 2712 +2%.2 ¢ (22 +2¥ e 1+ J7H0,
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If'p is odd, then

(L+pz+ pL2u)1 + JITP = (1 4 piy + P/ )Pl 4 gt
=+ 2+ kip¥2? + kp¥ B 4 o
kp‘gp(pd).jzp“z +p(p—1),j+1zp—l +ppjzp 4
Pz + S lgR 4 Sep B o

sp-2pP Il e ey g it

=1+ J7*!
since

14/t 4 fyp¥ 22 4 kop¥ 2% + . 4

kp_3p(p—2>.7zp—2 + pP=Di+1 p—1 + PP 4

. 5

(P2 + 819" 102 4 g =158 ¢ - +

Sp_2p(p—1)jvlzp—1 + PP P u € 1 it

where k- = O(modp), 1 < 7 < p — 3 and sy = 0(modp), 1 < v <
P 2. Therefore, for every prime integer p, (1+4p7z+p/ 1 zu) 1+ Ji+!
generates a cyclic subgroup of 1 4 J7/1 4 J#*! of order p.

Since 1+.J7 is abelian, the quotient group 1+J7/1+ J7*1 is abelian.

So the cyclic subgroups < (L+ "y + p )l + JiH > and



< (L4972 ¢ 9 e i £ PP sl are s By Lagrange’s theorem

2k—25+1

| 1+ J7/1+ Jitt |= ot =P,

The order of the group generated by the direct product of the cyclic
subgroups coincides with the order of 1 & Ji /1 + J7* and the
intersection of the cyclic subgroups is the identity group. So the
direct product of the cyclic subgroups exhausts 1 + JI/1 4 Ji+t,

This completes the proof. =
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Chapter 7

Conclusion

In this thesis, we have endeavoured to determine the structures of
the unit groups of certain classes of finite rings. We have estab-
lished two constructions of finite rings and shown that they are
indeed finite rings satisfying the given conditions. Although the
multiplication used in our construction A is similar to the multi-
plication defined on rings in which the product of any two zero
civisors is zero, it appears to have been of little use in the previous
studies of the unit groups of completely primary finite rings. This
study has made significant contributions to knowledge because of
the following:

(7) It seems that the previous studies dealt mainly with completely
primary finite rings in which the unique maximal ideal .J satisfies

the properties J* = (0); and of J2 (0), J> = (0). In our rings,

o



we have eliminated the restriction on the index of nilpotence of the
unique maximal ideal J.

(i) We have not only determined the structures of the unit groups
of finite rings in which the unique maximal ideal J satisfies the
properties J* £ (0) and J**! = (0) but also in a specific case de-
termined the structure of the unit groups of finite rings in which
JM £ (0) and J**2 = (0). We have also determined the structures
of some quotient groups of subgroups of the unit groups of the rings
constructed here.

Finally, we recommend that further studies on this work may be
done when Ry is defined to be the quotient of a polynomial ring
i a finite number of variables by an ideal generated by a monic

nreducible polynomial in the given ring.
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