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ABSTRACT

Trees in which edges are oriented from a vertex of lower label towards a vertex

of higher label, commonly referred to as locally oriented trees, were introduced

by Du and Yin in an attempt to solve a problem conjectured by Ethan Cotterill

in his study of secant planes in Algebraic Geometry. Du and Yin, Shin and Zeng,

and Stephan Wagner provided proofs for a formula which counts the number of

locally oriented trees with a given indegree sequence. Recent studies have con-

centrated on finding the number of these trees in which both indegree and outde-

gree sequences are simultaneously given. In this thesis, formulas for the number

of locally oriented trees with one source and given outdegree sequences are ob-

tained. Moreover, reachability questions on vertices of locally oriented trees and

locally oriented noncrossing trees (first studied by Okoth) have been extensively

answered though equivalent results for locally oriented ordered trees had not

been obtained. The purpose of this study was to enumerate trees with local ori-

entation by indegree and outdegree sequences as well as reachability of vertices.

The specific objectives were; to establish a closed formula for the number of lo-

cally oriented trees whose indegree and outdegree sequences are simultaneously

given and, to determine formulas counting the number of reachable vertices in

labelled ordered trees with local orientation according to path lengths, first chil-

dren, non-first children, sinks, leaf sinks, non-leaf sinks and left most paths. To

achieve the first objective, we used induction approach as well as construction

approach to develop recurrence relations. We then used generating functions to

find closed formulas. For the second objective, we used construction approach

of Seo and Shin, recurrence relations, generating functions and direct proofs. We

have obtained closed formulas for reachable vertices in labelled plane trees with

respect to: path lengths, sinks, leaf sinks, left most path, first children, non first

children and non leaf sinks. The results obtained in this work will add to the al-

ready existing literature in this area of research and will also be of importance to

computer scientists as most data in computers are stored in form of plane trees.
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CHAPTER 1

INTRODUCTION

This study is within tree enumeration, a branch of enumerative combinatorics.

Enumerative combinatorics is considered by many as the most classical area of

combinatorics and it focuses on determining the number of objects satisfying a

given property or the number of ways that certain patterns can be formed. Here,

our counting objects are labelled trees and labelled ordered trees whose edges

are oriented from a vertex of lower label towards a vertex of higher label (which

we refer to as locally oriented trees and locally oriented ordered trees respectively).

1.1 Basic concepts

In this section, we provide definitions and concepts which are well documented

in enumerative combinatorics texts, for example, Stanley [23].

1.1.1 Graph theoretic concepts

The following definitions are in [7].

A graph G is a pair (V, E) where V is a set of vertices and E is a set of edges. We

write V(G) for a set of vertices and E(G) for set of edges of the graph G. Also
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|G| = |V(G)| denotes the number of vertices (order) and e(G) = |E(G)| denotes

the number of edges (size). A simple graph is a graph with no loops or multiple

edges, where a loop is an edge from a vertex into itself and multiple edges are

two or more edges joining any two vertices. We say that vertices u and v are

adjacent in G if they are connected by a common edge and two edges are incident

if they share a common vertex. The number of vertices in G that are adjacent to a

vertex V is the degree of V denoted by degG(V) .

A graph H = (U,F) is a subgraph of G = (V,E) if U ⊆ Vand F ⊆ E. If U=V then H

is called spanning subgraph of G. A graph of order n is complete if each vertex has

degree n-1. On the other hand, a graph is empty if it has no edges. A path graph is

a graph that can be drawn so that all its vertices and edges lie on a single straight

line. It is also called line graph. Whereas a graph of order n in which one of the

vertices has degree n− 1 and the rest of the other vertices have degree 1 is called

a star graph.

If we assign labels to the vertices of the graph, the resulting graph is called a

labelled graph. A vertex j is said to be reachable from a vertex i if there is a sequence

of oriented edges from i to j. A graph in which every vertex is reachable from

every other vertex is said to be a connected graph. A tree is a connected graph

without cycles. Therefore, a tree is a subgraph of complete graph. If the number

of vertices of the tree equals the number of vertices of the complete graph then

the tree is said to be a spanning tree. In a tree, a vertex which has degree 1 is called

a leaf. A labelled graph which is also a tree is called a labelled tree. There are nn−2

labelled trees on n vertices (Cayley’s formula). Figure 1.1 shows a labelled tree

on 6 vertices.

1

2

3

4

5

6

Figure 1.1: Labelled tree
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A tree in which a fixed vertex has been chosen is referred to as a rooted tree

whereas a tree in which a fixed edge has been chosen is referred to as edge rooted

tree. A recursive tree is a tree in which every vertex is reachable from the root. A

forest is a collection of graphs in which each component is a tree. A rooted forest

is a graph whose components are rooted trees. Suppose that T is a rooted tree. If

v is a vertex in T other than the root, the parent of v is the unique vertex u such

that there is a directed edge from u to v. If u is the parent of v then v is the child

of u.Thus, a rooted tree in which an ordering is specified for the children of each

vertex is called an ordered tree ( or plane tree). These trees are counted by (n− 1)th

Catalan numbers 1
n

(
2n− 2
n− 1

)
. Figure 1.2 shows a plane tree on 9 vertices.

8

3 10

1 6 14

4 7 13

Figure 1.2: Plane tree

A noncrossing tree is a tree that can be drawn in the plane with its vertices on the

boundary of a circle such that the edges are straight line segments that do not

cross. Figure 1.3 is a noncrossing tree of order 6.

1

1

4

4

5 2

5 355

56

Figure 1.3: Noncrossing tree

On the other hand, locally oriented noncrossing trees are noncrossing trees in which

all edges are oriented, from a vertex of lower label towards a vertex with higher

label, (See [15]). A directed graph (digraph) is a graph in which edges have orien-

tations. The number of edges that are oriented towards a vertex is called indegree

of the vertex whereas the number of edges that are oriented away from a vertex

3



is called outdegree. Indegree (resp. outdegree) sequence is the ordered sequence of

indegree (resp. outdegree) of the vertices of a tree. For instance, if a tree of order

n has indegree sequence λ = 0322 then there are 3 vertices with indegree 0 and 2

vertices with indegree 2. A vertex with indegree (resp. outdegree) zero is called

source (sink) respectively. A leaf source is a vertex with indegree 0 and outdegree 1

while a vertex with indegree 1 and outdegree 0 is a leaf sink. Two types of orien-

tation have been studied that is: global orientation which is a type of orientation

in which all the edges in a rooted labelled tree are directed towards/ away from

the root, [23]. (See Figure 1.4).

1

2 3

4 5

Indegree sequence λ = 0322

Outdegree sequence λ = 0114

Figure 1.4: Tree with global orientation

Local orientation is a type of orientation where each edge is oriented towards the

vertex with higher label or from higher label to a lower label. In our case, all the

edges will be oriented from a vertex of lower label towards a vertex of higher

label, [10]. (See Figure 1.5).

1

2

3 4

5 6 7 8

Indegree sequence λ = 0117

Outdegree sequence λ = 041123

Vertex 1 is a leaf source
Vertices 5, 6, 7, 8 are leaf sinks

Figure 1.5: Tree with local orientation
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1.1.2 Recurrence relations

A recurrence relation is an equation in which a term is expressed in terms of pre-

ceding terms. A common recurrence relation is the one for Fibonacci numbers

which is given as Fn = Fn−1 + Fn−2 with initial conditions F0 = 0 and F1 = 1.

The following theorem is important in our enumeration:

Theorem 1.1.1. (see [5]) Suppose that bn = Q(n)qn, where Q is a polynomial of degree

d. If q is not a solution of the characteristic equation, then the solution of the linear

recursion

an = C1an−1 + C2an−2 + · · ·+ Cran−r + bn

is of the form

an =
s

∑
i=1

Pi(n)qn
i + P∗(n)qn

where q1, q2, · · · , qs are ( possibly complex) solutions of the characteristic equation

qr = C1qr−1 + C2qr−2 + · · ·+ Cr

and P1(n), · · · , Ps(n), P∗(n) are polynomials. The degree of Pi is strictly less than the

multiplicity of qi as a solution of the characteristic equation and the degree of P∗(n) is d.

1.1.3 Generating functions and Functional Equation

Generating functions are one of the most powerful and versatile tools used in

enumerative combinatorics [26]. There are two kinds of generating functions.

Let (g0, g1 . . .) be a sequence of integers. The ordinary generating function of

this sequence is

∑
i≥0

gixi

and its exponential generating function is

∑
i≥0

gi
xi

i!
.
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Ordinary generating functions are usually used to count unlabelled structures.

On the other hand, exponential generating functions are used when dealing with

labelled structures. Consider for example, the sequence (1, 1, . . . ). Its ordinary

generating function is

∑
i≥0

xi =
1

1− x
.

while the corresponding exponential generating function is

∑
i≥0

xi

i!
= exp(x).

A functional equation is any equation in which the unknown represents a function

[22]. Often, the equation relates the value of a function at some point with its

values at other points. A functional equation cannot be simply reduced to alge-

braic equations. An example of a functional equation is the Cauchy functional

equation

f (x + y) = f (x) + f (y).

We shall always denote the coefficient of xn in a generating function g(x) by

[xn]g(x) . Let f (x) be a generating function that satisfies the functional equation

f (x) = xφ( f (x)).

We have used the following formula where applicable to extract the coefficient

of xn in the generating function f (x).

Theorem 1.1.2 (Lagrange Inversion Formula). [See [23] Theorem 5.4.2]. Let f (x)

be a generating function that satisfies the functional equation f (x) = xφ( f (x)), where

φ(0) 6= 0. We have

[xn] f (x)k =
k
n
[tn−k]φ(t)n.

For more background on generating functions, we refer to Wilf’s Generatingfunc-

tionology [26].

6



1.2 Statement of the problem

The generating function for the number of trees with local orientation such that

both indegree and outdegree sequence are simultaneously given already exists

in literature. However, the closed formula for such trees is non-existent.

Moreover, the formulas that count the number of reachable vertices in locally

oriented trees as well as locally oriented noncrossing trees already exist. For

labelled ordered trees with local orientation, an equivalent formula had not been

obtained.

1.3 Objectives of the study

The main objective of this study was to enumerate labelled trees with a local ori-

entation by indegree and outdegree sequences as well as reachability of vertices

in labelled plane trees.

The specific objectives of the study were:

1. To establish a closed formula for the number of locally oriented trees whose

indegree and outdegree sequences are simultaneously given.

2. To determine formulas counting the number of reachable vertices in la-

belled ordered trees with a local orientation according to path lengths, first

children, non-first children, sinks, leaf sinks, non-leaf sinks and left most

path.

1.4 Methodology

To achieve our first objective, we have used induction approach as well as con-

struction approach to develop recurrence relations. We have then used known

7



generating functions, where possible, to obtain closed formulas. To establish a

closed formula that counts the number of trees with 1 source and ` sinks we have

constructed a bijection between the set of these trees and the set of recursive trees

with ` leaves.

For the second objective, we have used construction approach of Seo and Shin

[20], generating functions and direct proofs to obtain counting formulas for reach-

able vertices in labelled ordered trees. Here, Lagrange Inversion Formula, Bino-

mial Theorem and Hockey stick identity have been used extensively.

1.5 Significance of the study

Locally oriented trees have been enumerated by many mathematicians and com-

puter scientists alike, although this enumeration has not been fully exhausted es-

pecially on getting closed formulas counting number of trees where either both

indegree and outdegree sequences are simultaneously given or where number

of sources and sinks are given at the same time. It is therefore of great impor-

tance to determine closed formulas for such trees. Also, reachability questions in

graphs have been studied for a very long time by mathematicians and computer

scientists. This is important in programming. Moreover, most of data in comput-

ers are stored as trees (ordered trees). Therefore reachability questions that will

be answered in this work will be of significance to the field of computer science.

8



CHAPTER 2

LITERATURE REVIEW

In this chapter, we review literature related to enumeration of locally oriented

trees by indegree and outdegree sequences as well as reachability of vertices.

In 1889, Cayley [2] showed that the number of distinct spanning trees of complete

graphs with vertex set [n] := {1, ..., n} is given by

Tn = nn−2.

However, it was noted that an equivalent result was proved earlier in 1860 by

Borchdart [1]. This result appeared without proof in an even earlier paper in 1857

by Sylvester [24]. The formula for the number of labelled trees has been redis-

covered, conjectured, proved and generalized by many researchers. Some of the

proofs include; Kirchhoff’s matrix tree theorem [3], Joyal’s bijective proof [12],

Pitman’s double counting argument [16] and Prüfer sequences [18] that yield a

bijective proof.

A classical refinement of Cayley’s formula for the number of labelled trees with n

vertices is obtained by taking vertex degree into account as well, one version can

be described by considering an orientation of edges for instances, fix a vertex as a

root and assume that all edges are oriented towards the root (global orientation)

this gives rise to an indegree sequence λ = 0e01e12e2 · · ·. The number of rooted

labelled trees with n vertices and λ as the indegree sequence is given by

9



(n− 1)!2

e0(0!)e0e1(1!)e1e2(2!)e2 · · · .

(see Stanley [23]). We note that indegree sequenceλ = 0e01e12e2 · · · must satisfy

the coherence condition ∑i ei = n and ∑i iei = n− 1.

In 2010, Du and Yin [10] as well as Shin and Zeng [21] using bijective proof

showed that this expression also counts the number of labelled trees on n vertices

whose indegree sequences is λ = 0e01e12e2 · · · with respect to local orientation of

the vertices. By symmetry it also counts trees with a given outdegree sequence

with respect to local orientation. This formula was originally conjectured by Cot-

terill [6] in the context of algebraic geometry and an extension to rooted forests

was proven by Stephan Wagner [25].

Recently, Okoth in his PhD thesis, [14, Theorem 3.2.4] provided a refinement

for the above formula by considering a tree of order n with indegree sequence

λ = 0e01e12e2 · · · such that vertex r is a sink of degree d. He obtained the formula

as

(r− 1)!(n− 2)!(n− d− 1)!ded
(r− d− 1)!e0!(0!)e0e1!(1!)e1e2!(2!)e2 . . .

Setting r = n and summing over d, we get the formula of Du and Yin [10]. The

generating function for the number of trees with a given indegree sequence and

outdegree sequence was given by Remmel and Williamson [19] as well as Martin

and Reiner [13] as

∑
T∈Tree(Kn)

n

∏
i=1

yindegT
(i)

i xoutdegT
(i)

i

= x1yn

n−1

∏
i=2

((x1 + · · ·+ xi)yi + xi(yi+1 + · · ·+ yn)).

Here, Tree(Kn) is the set of all spanning trees of the complete graph Kn. This gen-

erating function is not in the form in which we can use multivariate Lagrange In-

version Formula. There is no known tool for extracting the coefficients, therefore

the closed formula does not exist. In this work, we have obtained a recurrence

10



relation satisfied by labelled trees with local orientation in which both indegree

sequence and outdegree sequence are given simultaneously as well as explicit

formulas for some special cases where indegree sequence is λ = 011n−1.

In 1990, William Chen [4] provided a refinement of the Cayley’s formula by ob-

taining a closed formula for number of trees of order n with k sources as

(n− 1)!
k!

{
n− 1
n− k

}
, (2.1)

where

{
n
k

}
denotes Sterling numbers of the second kind which count set parti-

tions.

In 2015, Okoth in his PhD thesis, [14, Corollary 3.2.5] provided a formula for

number of spanning trees of a complete digraph with local orientation on n ver-

tices having k sources and vertex r as a sink of degree d to be

(r− 1)!(n− 2)!
(r− d− 1)!(d− 1)!k!

{
n− d− 1
n− k− 1

}
.

Setting r = n and summing over all d′s, we rediscover Chen’s result given by

(2.1). A closed formula for the number of these trees of order n with k sources

and ` sinks such that k + ` = n was obtained by Postnikov [17]. The recurrence

relation for the number of trees of order n with k sources and ` sinks was obtained

in Okoth’s thesis as a multisum ( See Equation (3.3.4) in [14]) and as functional

equation (See Theorem 3.3.1 in [14]). This multisum and the functional equation

cannot be solved to get a closed formula. In this work, we have determined a

closed formula for a specific case when (k = 1 or ` = 1).

In 2015, Okoth [14] considered reachability of vertices in locally oriented trees

and locally oriented noncrossing trees. He obtained quite a number of statistics

of these trees, among them; number of trees in which a given vertex j is reachable

from a vertex i, number of reachable vertices, trees with exact number of reach-

able vertices, number of children of a given vertex, number of recursive trees (a

tree in which every vertex is reachable from a given vertex (root)).

11



Unlabelled ordered trees on n vertices are counted by (n− 1)th Catalan numbers

Cn−1 =
1
n

(
2n− 2
n− 1

)
.

For the labelled ordered trees with n vertices, equivalent formula is

n!Cn−1, (2.2)

(See Seo and Shin [20]). Seo and Shin [20], gave a formula that count the number

of forests consisting of k ordered trees on n vertices as

f (n, k) =

(
n
k

)
k(n + 1)(n + 2) · · · (2n− k− 1).

The same authors gave the formula for the number of labelled ordered trees in

which exactly k vertices are reachable from the root in terms of some trees in-

troduced in the PhD thesis of Drake [8]. For labelled ordered trees with a global

orientation, the closed formula that counts the number of all first children at level

`, non-first children at level `− 1, leaves at level ` and non-leaves at level `− 1

reachable from the root is
`

n

(
2n

n + `

)
.

(See Eu, Seo and Shin [11] for details). No work has been done for the case of

labelled ordered trees with local orientation. Therefore, in this work, we have

extended the earlier studies by Okoth [14], Seo and Shin [20] as well as Eu, Seo

and Shin [11] to study reachability in locally oriented ordered trees.

12



CHAPTER 3

ENUMERATION OF TREES WITH
LOCAL ORIENTATION

In this chapter, we enumerate locally oriented trees with indegree sequence 011n−1

and a given outdegree sequence. Moreover, we obtain a closed formula for the

number of trees with one source and a given number of sinks. The results of this

chapter are new.

3.1 Enumeration by indegree and outdegree sequences

We begin by proving this elementary but useful fact concerning indegree and

outdegree sequences of spanning trees of complete digraphs.

Lemma 3.1.1. Let G be a complete digraph on n vertices with a local orientation. Also

let 0 f01 f1 · · · and 0e01e1 · · · be indegree sequences of some spanning trees of G. Then a

sequence 0 f01 f1 · · · is an outdegree sequence of a spanning tree with indegree sequence

0e01e1 · · · if and only if e0 + f0 ≤ n.

Proof. =⇒ By contradiction, assume that e0 + f0 > n. Then e0 > n − f0. Since

0 f01 f1 · · · is an indegree sequence of some tree then ∑i≥0 fi = n. Therefore e0 >

∑i≥1 fi. This means that the number of vertices with indegree 0 exceeds the total

13



number of vertices with outdegree greater than 0, that is, there is at least a vertex

with both indegree and outdegree zero. This is impossible in a tree. Thus the

assumption is wrong.

⇐= We shall now assume that e0 + f0 ≤ n and show that 0 f01 f1 · · · is an out-

degree sequence of a spanning tree with indegree sequence 0e01e1 · · · . Since

0e01e1 · · · is an indegree sequence then ∑i≥0 ei = n. So e0 + f0 ≤ n = ∑i≥0 ei =

∑i≥1 ei + e0. It implies that ∑i≥1 ei ≥ f0. This means that the number of vertices

with indegree greater than 0 exceeds or is equal to the number of vertices with

outdegree 0, that is, there is no vertex with both indegree and outdegree zero. So,

there is no chance of having empty digraphs, and since 0 f01 f1 · · · is an indegree

sequence of another tree, then it is an outdegree sequence of a tree with indegree

sequence 0e01e1 · · · .

We prove the main result of this chapter:

Theorem 3.1.2. Let G be a complete graph on n vertices. Let P(n) be the number

of spanning trees of G with local indegree sequence 011n−1 and outdegree sequence

0 f01 f12 f2 · · · p fp then P(n) satisfies the recurrence relation

P(n) = f0P(n− 1) +
p

∑
i≥2

( fi−1 + 1)Ri(n− 1),

where p is the largest integer such that fp 6= 0, and Ri(n− 1) is the number of trees of

order n− 1 with indegree sequence 011n−2 and outdegree sequence

0 f0−11 f12 f2 · · · (i− 1) fi−1+1i fi−1(i + 1) fi+1 · · · .

Proof. We prove the recurrence by construction. We obtain a tree of order n with

indegree sequence 011n−1 and outdegree sequence 0 f01 f12 f2 · · · p fp by attaching

a vertex of label n to a tree of order n − 1 with indegree sequence 011n−2 and

outdegree sequence 0 f01 f1−12 f2 · · · p fp . There are two cases to consider:

I. Attachment done at sinks. This gives a total of f0P(n− 1) trees.

II. Attachment done at a vertex v of outdegree i− 1.
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Consider a tree of order n− 1 with an indegree sequence 011n−2 and outdegree

sequence 0 f0−11 f12 f2 · · · (i− 1) fi−1+1i fi−1(i + 1) fi+1 · · · . This attachment increases

the outdegree of vertex v from i− 1 to i and decreases the number of vertices with

outdegree i− 1 by 1 while the outdegrees of the other vertices remain the same.

Note that the new tree has indegree sequence 011n−1 and outdegree sequence

0 f01 f12 f2 · · · p fp . The number of these trees are therefore ( fi−1 + 1)Ri(n− 1). Thus

the total number of these trees is ∑
p
i≥2( fi−1 + 1)Ri(n − 1). This completes the

proof.

Corollary 3.1.3. Let G be a complete graph on n vertices. Let P(n) be the number

of spanning trees of G with local indegree sequence 011n−1 and outdegree sequence

0 f01 f12 f2 · · · p fp where f1 = 0, then P(n) satisfies the following recurrence relation

P(n) =
p

∑
i≥2

( fi−1 + 1)Ri(n− 1),

where p is the largest integer such that fp 6= 0, and Ri(n− 1) is the number of trees of

order n− 1 with indegree sequence 011n−2 and outdegree sequence

0 f0−11 f12 f2 · · · (i− 1) fi−1+1i fi−1(i + 1) fi+1 · · · .

Proof. The proof is immediate as no attachment is done at a sink.

Example 3.1.4. Consider trees on 7 vertices with indegree sequence 0116 and outdegree

sequence 04112131. These trees can be constructed in two ways:

(i) Attaching vertex 7 at sink in trees with indegree sequence 0115 and outde-

gree sequence 042131. The attachment increases the number of vertices with

outdegree 1 by 1 while the number of vertices with outdegree 0 remain the

same. Thus the outdegree sequence of the new tree is 04112131. There are 4

sinks where this attachment can be done. In total there are 4P(6) obtained

by the attachment if P(6) is the number of trees with indegree sequence

0115 and outdegree sequence 042131.

(ii) Attaching vertex 7 at a vertex of outdegree 1 in trees with indegrees se-

quence 0115 and outdegree sequence 031231. This attachment increases the
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number of vertices with outdegree 0 by 1 and decreases the number of ver-

tices with outdegree 1 by 1. Thus if R1(6) is the number of trees with inde-

gree sequence 0115 and outdegree sequence 031231 then the number of trees

with outdegree sequence 04112131 obtained by this attachment is 2R1(6).

Putting everything altogether, there are 4P(6) + 2R(6) trees of order 7 with

indegree sequence 0116 and outdegree sequence 04112136.

Corollary 3.1.5. There is only one tree of order n with indegree sequence 011n−1 and

outdegree sequence 011n−1 or 0n−1(n− 1)1.

Proof. There is only one tree with indegree sequence 011n−1 and outdegree se-

quence 011n−1, that is, a path graph. Also, the only tree with the indegree se-

quence 011n−1and outdegree sequence 0n−1(n− 1)1 is the star graph. Since these

are the only trees with the stated indegree and outdegree sequences, the proof is

immediate.

Corollary 3.1.6. Let G be a complete digraph on n ≥ 3 vertices with a local orienta-

tion. The number of spanning trees of G with indegree sequence 011n−1 and outdegree

sequence 021n−321 is given by 2n−1 − n.

Proof. Consider a tree with n vertices whose indegree sequence is 011n−1 and

outdegree sequence is 021n−321. Let the number of these trees of order n be de-

noted by Tn. These trees can be obtained in two ways. Firstly, from trees on n− 1

vertices with indegree sequence 011n−2 and outdegree sequence 021n−421 by at-

taching vertex n at any of the two sinks in the tree hence we have 2Tn−1 such

trees. Secondly, the trees can be obtained from line graphs with n− 1 vertices by

gluing vertex n at a source and at a vertex which is neither a source nor a sink.

Therefore, gluing can be done at n − 2 vertices. Thus, the recurrence relation

for the number of trees of order n with indegree sequence 011n−1 and outdegree

sequence 021n−321 is

Tn = 2Tn−1 + (n− 2)Ln−1

where Ln−1 is the number of line graphs on n − 1 vertices, given in Corollary

3.1.5 as 1.
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Hence,

Tn = 2Tn−1 + n− 2.

The initial condition is T3 = 1. In the remaining part of the proof, we obtain a

closed formula from this recurrence relation as:

Let Tn = rn. Then, solving the characteristic equation Tn = 2Tn−1, we obtain

r = 2. From Theorem 1.1.1, we have

Tn = A2n + (Bn + C)1n (3.1)

Replacing n with n− 1 we get,

Tn−1 = A2n−1 + (Bn− B + C)1n−1

Multiplying by 2 we obtain

2Tn−1 = A2n + (2Bn− 2B + 2C)1n−1

Comparing the coefficients and solving for the unknowns we obtain, A = 1
2 ,

B = −1 and C = 0. Thus substituting the unknowns in Equation (3.1) we obtain,

Tn = 2n−1 − n

Thus the proof.

Corollary 3.1.7. Let G be a complete digraph on n ≥ 4 vertices with a local orienta-

tion. The number of spanning trees of G with indegree sequence 011n−1 and outdegree

sequence 031n−431 is given by

1
4

[
3n−1 − 2n+1 + 2n + 1

]
.

Proof. We induct on n.

Base case, n = 4: The number of spanning trees with indegree sequence 0113 and

outdegree sequence 0331 is 1. (See Corollary 3.1.5). So base case holds.
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Induction step: We assume that the number of spanning trees of a complete di-

graph on n− 1 vertices with indegree sequence 011n−1 and outdegree sequence

031n−431 is

Tn−1 =
1
4

(
3n−2 − 2n + 2n− 1

)
,

and prove that it holds for a graph with n vertices. We construct a tree with n

vertices by gluing an edge and a vertex (with label n) to the existing tree with

n− 1 vertices. In the new tree, the number of vertices with indegree 1 increases

by 1. Since we have a local orientation and the vertex to be added has the highest

label, then it can be glued at a vertex of outdegree zero giving a total of

3
4

(
3n−2 − 2n + 2n− 1

)
new trees.

The remaining spanning trees on n vertices with the given indegree and out-

degree sequences can be constructed as follows: Consider a digraph on n − 1

vertices with a local orientation such that its indegree sequence is 011n−2 and

outdegree sequence is 021n−421. Now, glue vertex n and its incident edge at each

vertex with outdegree 2. By Corollary 3.1.6, we obtain 2n−2 − n + 1 such trees.

The total number of spanning trees on n vertices is therefore

Tn =
3
4

(
3n−2 − 2n + 2n− 1

)
+ 2n−2 − n + 1

=
1
4

(
3n−1 − 3 · 2n + 6n− 3 + 4 · 2n−2 − 4n + 4

)
=

1
4

(
3n−1 − 3 · 2n + 6n− 3 + 2n − 4n + 4

)
=

1
4

(
3n−1 − 2n+1 + 2n + 1

)
.

Hence the proof.

Corollary 3.1.8. Let G be a complete digraph on n ≥ 5 vertices with a local orientation.

The number of spanning trees with indegree sequence 011n−1 and outdegree sequence

031n−522 is given by:

1
4

[
3n − (n− 1)2n+1 + 2n2 − 4n− 1

]
.
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Proof. We construct trees with indegree sequence 011n−1 and outdegree sequence

031n−522 by gluing the nth vertex to a tree on n− 1 vertices. The required indegree

and outdegree sequences are achieved by attaching the extra vertex to a vertex

of outdegree 1 in a tree with indegree sequence 011n−2 and outdegree sequence

021n−421. Hence by Corollary 3.1.6, we obtain

(n− 4)Tn−1

new trees where

Tn−1 = 2n−2 − (n− 1).

The remaining spanning trees can be obtained by gluing a vertex of label n to

a vertex of outdegree 0 in a tree of indegree sequence 011n−1 and outdegree se-

quence 031n−622. Therefore, we have 3Pn−1 new trees. Since these trees have

outdegree sequence 031n−522 then if n ≤ 4, we obtain a negative number of trees

with outdegree 1. This is impossible and we impose P4 = 0. The total number of

spanning trees is therefore given recursively as:

Pn = 3Pn−1 + (n− 4)Tn−1 for n ≥ 5, (3.2)

where P4 = 0 and Tn−1 = 2n−2 − n + 1.

We now find explicit formula from recursion (3.2):

Let Pn = 3Pn−1 + (n− 4)Tn−1 and Tn−1 = 2n−2 − n + 1. We have,

Pn = 3Pn−1 + n.2n−2 − n2 + n− 4.2n−2 + 4n− 4

= 3Pn−1 +
(n

2
− 2
)

2n−1 + (−n2 + 5n− 4)1n−1.

Now, let Pn = rn. Then, solving the characteristic equation Pn = 3Pn−1, we obtain

r = 3. From Theorem 1.1.1, we have

Pn = A3n + (Bn + C)2n + (Dn2 + En + F)1n. (3.3)

Replacing n with n− 1 we get,

Pn−1 = A3n−1 + (Bn− B + C)2n−1 + (D(n2 − 2n + 1) + E(n− 1) + F)1n−1.
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Multiply by 3 we obtain,

3Pn−1 = A3n + (3Bn− 3B + 3C)2n−1 + (3Dn2 − 6Dn + 3D + 3En− 3E + 3F)

= A3n +

(
3Bn− 3B + 3C

2

)
2n + (3Dn2 − 6Dn + 3D + 3En− 3E + 3F).

Comparing the coefficients and solving for the unknowns we obtain, A = 1
4 ,

B = −1
2 , C = 1

2 , D = 1
2 , E = −1 and F = −1

4 . Thus substituting the unknowns in

Equation (3.3) we obtain,

Pn =
1
4
(3n − (n− 1)2n+1 + 2n2 − 4n− 1).

This completes the proof.

Corollary 3.1.9. Let G be a complete digraph on n ≥ 5 vertices with a local orienta-

tion. The number of spanning trees of G with indegree sequence 011n−1 and outdegree

sequence 041n−541 is given by:

1
72

[
4n − 2 · 3n+1 + 9 · 2n+1 − 12n− 10

]
.

Proof. We construct trees with indegree sequence 011n−1 and outdegree sequence

041n−541 by gluing the nth vertex to a tree on n− 1 vertices. The required indegree

and outdegree sequences are obtained firstly, by attaching the vertex n to a vertex

of outdegree 3 in a tree of indegree sequence 011n−2 and outdegree sequence

031n−531. Hence by Corollary 3.1.7, we obtain

1
4

(
3n−2 − 2n + 2n− 1

)
= Tn−1

new trees.

The remaining trees can be obtained by gluing vertex n to a vertex of outdegree

0 in a tree of indegree sequence 011n−2 and outdegree sequence 041n−641. There-

fore, we have 4Pn−1 new trees. The total number of the trees is thus

Pn = 4Pn−1 + Tn−1 (3.4)
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for n ≥ 5, where P4 = 0 and Tn−1 =
1
4
(
3n−2 − 2n + 2n− 1

)
. The desired result

follows by finding the explicit formula of Equation 3.4; We have,

Pn = 4Pn−1 +
1
4

(
3n−2 − 2n + 2n− 1

)
= 4Pn−1 +

1
4
· 3n−2 − 1

4
· 2n +

1
2

n− 1
4

.

Let Pn = rn. Then, solving the characteristic equation, Pn = 4Pn−1, we obtain

r = 4. Hence we rewrite Pn as;

Pn = A4n + B3n + C2n + Dn + E. (3.5)

(See Theorem 1.1.1). Replacing n with n− 1 we obtain;

Pn−1 = A4n−1 + B3n−1 + C2n−1 + D(n− 1) + E.

Multiplying by 4 we have,

4Pn−1 = A4n + 4B3n−1 + 4C2n−1 + 4Dn− 4D + 4E

= A4n + 4B3n−1 + 2C2n + 4Dn− 4D + 4E.

Comparing the coefficients and solving for the unknowns we obtain, A = 1
72 ,

B = − 1
12 , C = 1

4 , D = −1
6 and E = − 5

36 . Now, substituting these values in

Equation (3.5) we get

Pn =
1

72

(
4n − 2 · 3n+1 + 9 · 2n+1 − 12n− 10

)
.

This is the desired formula.

Corollary 3.1.10. Let G be a complete digraph on n ≥ 5 vertices with a local orienta-

tion. The number of spanning trees of G with indegree sequence 011n−1 and outdegree

sequence 041n−62131 is given by:

1
36

[
4n+1 − (n + 5) · 3n+1 + 27(n− 1) · 2n − 18n2 + 33n + 23

]
.

Proof. We construct trees with indegree sequence 011n−1 and outdegree sequence

041n−62131 by gluing vertex n to a tree on n− 1 vertices. The required indegree

21



and outdegree sequence are achieved by attaching vertex to a vertex n of outde-

gree 1 in a tree with indegree sequence 011n−2 and outdegree sequence 031n−531.

Hence by Corollary 3.1.7, we obtain that there are

(n− 5) · 1
4

(
3n−2 − 2n + 2n− 1

)
= (n− 5) · Tn−1

new trees, obtained by this procedure.

The required indegree and outdegree sequences can also be achieved by attach-

ing vertex n to a vertex of outdegree 2 in a tree with indegree sequence 011n−2

and outdegree sequence 031n−522. So by Corollary 3.1.8, we obtain 2 · Sn−1 new

trees.

Lastly, the remaining spanning trees are obtained by gluing vertex n to a vertex

of outdegree 0 in a tree with indegree sequence 011n−2 and outdegree sequence

041n−72131. Here, we get 4Pn−1 new trees. The total number of spanning trees is

thus

Pn = 4Pn−1 + (n− 5)Tn−1 + 2Sn−1 (3.6)

for n ≥ 6, where P5 = 0 and, Tn and Sn are the number of trees with outdegree

sequence 031n−431 and 031n−522 respectively.

We solve the recursion equation (3.6) above to obtain the desired closed formula.

Corollary 3.1.11. Let G be a complete digraph on n ≥ 7 vertices with a local orienta-

tion. The number of spanning trees of G with indegree sequence 011n−1 and outdegree

sequence 041n−723 is given by:

Pn =
1

24

[
3 · 4n − 6(n− 1) · 3n + 6(n2 − 4n + 2) · 2n − 4n3 + 24n2 − 26n− 12

]
.

(3.7)

Proof. We construct trees with indegree sequence 011n−1 and outdegree sequence

041n−723 by gluing vertex n to a tree on n− 1 vertices. The required indegree and

outdegree sequences are achieved by attaching vertex n to a vertex of outdegree
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1 in a tree of indegree sequence 011n−2 and outdegree sequence 031n−622. By

Corollary 3.1.8 we obtain that there are (n − 6)Tn−1 such trees. Here Tn is the

number of trees with outdegree sequence 031n−522.

The other trees are arrived at by gluing vertex n to a vertex of outdegree 0 in a tree

with indegree sequence 011n−2 and outdegree sequence 041n−823. We have 4Pn−1

such new trees. In total the number of spanning trees with indegree sequence

011n−1 and outdegree sequence 041n−723 is given by

Pn = 4Pn−1 + (n− 6)Tn−1 for n ≥ 7, (3.8)

where P5 = 0 and, Tn is the number of trees with outdegree sequence 031n−522.

By solving Equation (3.8), we obtain the desired result.

Corollary 3.1.12. Let G be a complete digraph on n ≥ 6 vertices with a local orientation.

The number of spanning trees with indegree sequence 011n−1 and outdegree sequence

051n−651 is given by:

1
288

[
3 · 5n−1 − 4n+1 + 4 · 3n+1 − 3 · 2n+2 + 12n + 13

]
.

Proof. The proof follows by construction: We construct trees with indegree se-

quence 011n−1 and outdegree sequence 051n−651 by gluing a vertex n to a span-

ning tree on n − 1 vertices. Here attachment of a vertex n is done at a vertex

of outdegree 4 in a tree with n − 1 vertices and indegree sequence 011n−2 and

outdegree sequence 041n−641. By Corollary 3.1.9, we obtain Tn−1 trees by this

construction.

The remaining trees are obtained by gluing vertex n to a vertex of outdegree 0 in

a tree with indegree sequence 011n−2 and outdegree sequence 051n−751. Thus, we

have 5Pn−1 such new trees. Thus the total number of spanning trees is therefore

given by:

Pn = 5Pn−1 + Tn−1 for n ≥ 6, (3.9)

where P5 = 0 and, Tn is the number of trees with outdegree sequence 041n−541.
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Here the initial condition is P5 = 0, since there is no such tree of order 5. We

obtain the explicit formula in Corollary 3.1.12 by solving the recursion 3.9.

3.2 Enumeration by sources and sinks

We prove the following formula which also counts the number of leaves in Cay-

ley trees proved by Drmota in [9].

Proposition 3.2.1. Let G be a complete digraph on n vertices with a local orientation.

The number of spanning trees of G having a single source and ` sinks is given by:

`−1

∑
i=0

(−1)i

(
n
i

)
(`− i)n−1. (3.10)

Proof. Recursive trees of order n with ` leaves are counted by Equation (3.10)

(See [9]). We construct a bijection between the set of the recursive trees and the

set of spanning trees on n vertices with one source and ` sinks. Consider a tree

of order n with a single source and ` sinks. We take vertex 1 (single source) as

the root. Then the internal vertices will neither be sources nor sinks. Then the

leaves of the resultant tree are all sinks. This is a recursive tree with ` leaves. The

process is reversible. Thus the proof.

Corollary 3.2.2. Let G be a complete digraph on n vertices with a local orientation. The

number of trees on these vertices having a single sink and ` sources is given by Equation

(3.10).

Proof. By reversing the orientation of the edges in the graph G we obtain the

condition in Proposition 3.2.1 and the proof follows.
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CHAPTER 4

REACHABILITY IN LABELLED
ORDERED TREES WITH LOCAL

ORIENTATION

4.1 Introduction

In this chapter, we present results on reachability of vertices in labelled ordered

trees with local orientation. We examine the number of reachable vertices from

a given root i. We also determine a formula for the number of labelled ordered

trees on n vertices such that exactly k vertices are reachable from i. In some

instances, we look for asymptotic results. In a nutshell, we have enumerated

the number of reachable vertices in labelled plane trees by path lengths, first

children, left most path, non first children, leaf sinks and non leaf sinks. We

considered trees having their edges oriented from a vertex of lower label towards

a vertex of higher label (local orientation). This orientation was introduced by Du

and Yin in [10].

We recall from Chapter 1 that a vertex j is reachable from a vertex i if there is

a sequence of oriented edges (paths) from vertex i to vertex j, and a path is of

length ` if there are ` edges on the path. Here, degree of a vertex is the number

of edges that come out of a vertex if the edges are oriented away from the root.
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A vertex in which there is no edge that is oriented away from it is called a sink

whereas a leaf sink is a vertex with only one edge oriented towards it but no edge

oriented away from it. The vertices with the same parent are called siblings. Since

the siblings are linearly ordered, they are always drawn in a left-right pattern

where the leftmost sibling is referred to as first child. At a level ` the left most

child is the eldest child. A left most path refers to a sequence of edges joining eldest

children at each level in a plane tree.

We shall use this theorem in our work.

Theorem 4.1.1 (Binomial Theorem). For any integer n ≥ 0, (x+ y)n = ∑n
k=0

(
n
k

)
xkyn−k.

Other useful identities used in this work are; Hockey stick identity,

m

∑
k=n

(
k
n

)
=

(
m + 1
n + 1

)
, (4.1)

and

∑
k≥0

(
−m

k

)
(−1)k = ∑

k≥0

(
m + k− 1

k

)
. (4.2)

For the rest of the chapter, we shall refer to labelled ordered trees as trees.

4.2 Enumeration by path lengths

In this section, we enumerate trees by path length which is simply the number

of steps (edges) between the vertices.

Theorem 4.2.1. The number of trees on n vertices rooted at vertex i such that vertex j

of degree d is reachable from the root in ` steps is given by

2`+ d
n + `− 1

(n− `− 1)!

(
j− i− 1
`− 1

)(
2n− d− 3
n + `− 2

)
.

Proof. Let P(x) be the generating function for plane trees where x marks the

number of non-root vertices. Consider a plane tree rooted at vertex i such that
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there is a path of length ` starting at vertex i and ending at vertex i + ` of degree

d. This path decomposes the tree into left and right plane subtrees upto length

` hence we have (P(x)xP(x))` as the generating function for the number of the

trees with a path of length ` starting at i and ending at i + `. (See Figure 4.1).

Vertex i + ` is joined to d other vertices which are connected to other plane trees

hence we have x(xP(x))d, to represent the vertex and the connected vertices.

Putting everything together, we obtain (P(x)xP(x))`x(xP(x))d = x`+d+1P(x)2`+d

as the generating function of the unlabelled plane tree rooted at vertex i with a

path of length ` starting at i and ending at vertex i + ` of degree d. This is repre-

sented pictorially as:

i + `

i

d subtrees

` steps

Figure 4.1: Unlabelled ordered tree with path length `.

A plane tree can have any number of children and are thus represented symbol-

ically as

P(x) = 1 + xP(x) + x2P(x)2 + · · · .

(A plane tree consists of a root to which a sequence, possibly empty, of plane

trees is attached.) We have,

P(x) = 1 + xP(x) (1 + xP(x) + · · · )

= 1 + xP(x)P(x)

= 1 + xP(x)2.
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Evidently,

P(x) =
1

1− xP(x)
.

This is the generating function for unlabelled plane trees. The generating func-

tion P(x), is not in a form that we can use Lagrange inversion formula ( 1.1.2).

Thus, we let xP(x) = F(x) so that

P(x) =
F(x)

x
=

1
1− F(x)

.

Precisely,

F(x) =
x

1− F(x)
.

Applying Lagrange Inversion Formula (Theorem 1.1.2), we get

[xn]x`+d+1P(x)2`+d = [xn]x−`+1F(x)2`+d

= [xn+`−1]F(x)2`+d

=
2`+ d

n + `− 1
[tn−`−d−1]

(
(1− t)−1

)n+`−1

=
2`+ d

n + `− 1
[tn−`−d−1] (1− t)−(n+`−1) .

By Binomial Theorem (Theorem 4.1.1), we obtain

[xn]x`+d+1P(x)2`+d =
2`+ d

n + `− 1
[tn−`−d−1] ∑

i≥0

(
−(n + `− 1)

i

)
(−t)i.

Hence by Equation (4.2), we arrive at

[xn]x`+d+1P(x)2`+d =
2`+ d

n + `− 1
[tn−`−d−1] ∑

i≥0

(
n + `+ i− 2

i

)
ti

=
2`+ d

n + `− 1

(
2n− d− 3

n− `− d− 1

)

=
2`+ d

n + `− 1

(
2n− d− 3
n + `− 2

)
.

This formula counts the number of unlabelled plane trees in which vertex i + `

of degree d is reachable from the root in ` steps. The number of ways of choosing

labels for the vertices on a path of length ` from vertex i to vertex j is

(
j− i− 1
`− 1

)
.
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So once the `+ 1 vertices on the path are labelled, there are (n− `− 1)! choices

for labelling the remaining vertices. Thus, the number of plane trees in which

vertex j of degree d is reachable from root i in ` steps is given by

(n− `− 1)!
2`+ d

n + `− 1

(
j− i− 1
`− 1

)(
2n− d− 3
n + `− 2

)
.

This completes the proof.

Setting ` = 0 in the just proved theorem, we get that there are

(n− 1)!
d

n− 1

(
2n− d− 3

n− 2

)
= d(n− 2)!

(
2n− d− 3

n− 2

)

trees in which the root has degree d.

Corollary 4.2.2. The total number of trees on n vertices rooted at vertex i such that

vertex j is reachable from the root in ` steps is given by:

(n− `− 1)!
2`+ 1
2n− 1

(
j− i− 1
`− 1

)(
2n− 1
n + `

)
. (4.3)

Proof. The result follows by summing over all d in Theorem 4.2.1. Consider the

formula

2`+ d
n + `− 1

(
2n− d− 3
n + `− 2

)
,

then, we obtain a telescoping form of the formula as

2`+ d
n + `− 1

(
2n− d− 3
n + `− 2

)
=

(n + `− 1)− (n− `− d− 1)
n + `− 1

(
2n− d− 3
n + `− 2

)

=
n + `− 1
n + `− 1

(
2n− d− 3
n + `− 2

)
− n− `− d− 1

n + `− 1

(
2n− d− 3
n + `− 2

)

=

(
2n− d− 3
n + `− 2

)
− n− `− d− 1

n + `− 1

(
2n− d− 3

n− `− d− 1

)

=

(
2n− d− 3
n + `− 2

)
− n− `− d− 1

n + `− 1
2n− d− 3

n− `− d− 1

(
2n− d− 4

n− `− d− 2

)
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on further simplification we obtain,

2`+ d
n + `− 1

(
2n− d− 3
n + `− 2

)
=

(
2n− d− 3
n + `− 2

)
− 2n− d− 3

n + `− 1

(
2n− d− 4
n + `− 2

)

=

(
2n− d− 3
n + `− 2

)
−
(

2n− d− 3
n + `− 1

)
.

Therefore summing over all d we get

n−`−1

∑
d=0

2`+ d
n + `− 1

(
2n− d− 3
n + `− 2

)
=

n−`−1

∑
d=0

(
2n− d− 3
n + `− 2

)
−

n−`−2

∑
d=0

(
2n− d− 3
n + `− 1

)
.

Setting k = 2n− d− 3, we obtain

n−`−1

∑
d=0

2`+ d
n + `− 1

(
2n− d− 3
n + `− 2

)
=

2n−3

∑
k=n+`−2

(
k

n + `− 2

)
−

2n−3

∑
k=n+`−1

(
k

n + `− 1

)

=

(
2n− 2

n + `− 1

)
−
(

2n− 2
n + `

)
.

Now, simplifying the right hand side, we have

n−`−1

∑
d=0

2`+ d
n + `− 1

(
2n− d− 3
n + `− 2

)
=

(2n− 2)!
(n + `− 1)!(n− `− 1)!

− (2n− 2)!
(n + `)!(n− `− 2)!

=
(2n− 2)!

(n + `− 1)!(n− `− 2)!

(
1

(n− `− 1)
− 1

(n + `)

)
=

(2n− 2)!
(n + `− 1)!(n− `− 2)!

(n + `)− (n− `− 1)
(n + `)(n− `− 1)

=
(2`+ 1)(2n− 2)!

(n + `)!(n− `− 1)!

=
(2`+ 1)(2n− 1)!

(2n− 1)(n + `)!(n− `− 1)!

=
2`+ 1
2n− 1

(
2n− 1
n + `

)
.

Hence,

(n− `− 1)!

(
j− i− 1
`− 1

)
n−`−1

∑
d=0

2`+ d
n + `− 1

(
2n− d− 3
n + `− 2

)

= (n− `− 1)!
2`+ 1
2n− 1

(
j− i− 1
`− 1

)(
2n− 1
n + `

)
.

This is the desired formula.
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Corollary 4.2.3. The number of vertices in trees of order n that are reachable from root

i in ` steps is given by

(n− `− 1)!
2`+ 1
2n− 1

(
n− i
`

)(
2n− 1
n + `

)
. (4.4)

Proof. We obtain the desired result by summing over all j in Equation (4.3), i.e.,

(n− `− 1)!
2`+ 1
2n− 1

n

∑
j=i+`

(
j− i− 1
`− 1

)(
2n− 1
n + `

)
,

such trees. Again, we simplify the sum. Let k = j− i− 1, so that

(n− `− 1)!
2`+ 1
2n− 1

n

∑
j=i+`

(
j− i− 1
`− 1

)(
2n− 1
n + `

)

= (n− `− 1)!
2`+ 1
2n− 1

(
2n− 1
n + `

)
n−i−1

∑
k=`−1

(
k

`− 1

)
.

By hockey stick identity (4.1), we get the required formula as(
n− i
`

)
(n− `− 1)!

2`+ 1
2n− 1

(
2n− 1
n + `

)
.

Thus the proof.

Corollary 4.2.4. There are a total of

(n− `− 1)!
2`+ 1
2n− 1

(
n

`+ 1

)(
2n− 1
n + `

)
(4.5)

vertices that are reachable from the root in ` steps, in trees with n vertices.

Proof. We get the result by summing over all i in Equation (4.4), that is,

(n− `− 1)!
2`+ 1
2n− 1

(
2n− 1
n + `

)
n−`
∑
i=1

(
n− i
`

)
.

We set k = n− i to obtain

(n− `− 1)!
2`+ 1
2n− 1

(
2n− 1
n + `

)
n−1

∑
k=`

(
k
`

)
.

Applying hockey stick identity (4.1), the result is immediate.
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Now, summing over all ` in Equation (4.5) we obtain

Corollary 4.2.5. The total number of vertices in trees on n vertices that are reachable

from the root is given by

n!
2n− 1

n−1

∑
`=0

2`+ 1
(`+ 1)!

(
2n− 1
n + `

)
.

Corollary 4.2.6. The average number of vertices that are reachable from the root in `

steps in a random tree is 2`+1
(`+1)! .

Proof. Dividing the total number of vertices that are reachable from the root in

` steps in plane trees (See Equation (4.5)) by the total number of labelled plane

trees given by Equation (2.2), we get(
n

`+ 1

)
(n− `− 1)! 2`+1

2n−1

(
2n− 1

n− `− 1

)

n! 1
n

(
2n− 2
n− 1

)
as the average number of vertices that are reachable in ` steps from the root in

trees with n vertices. We simplify the average to get(
n

`+ 1

)
(n− `− 1)! 2`+1

2n−1

(
2n− 1

n− `− 1

)

n! 1
n

(
2n− 2
n− 1

)

=
2`+ 1
(`+ 1)!

(n− 1)!n!
(n + `)!(n− `− 1)!

.

Now, taking limits as n→ ∞, we get

lim
n→∞

2`+ 1
(`+ 1)!

(n− 1)!n!
(n + `)!(n− `− 1)!

=
2`+ 1
(`+ 1)!

lim
n→∞

(n− 1)!n!
(n + `)!(n− `− 1)!

=
2`+ 1
(`+ 1)!

lim
n→∞

(n− 1)(n− 2)(n− 3) · · · (n− `)

(n + `)(n + `− 1) · · · (n + 1)

=
2`+ 1
(`+ 1)!

lim
n→∞

(
n` + · · ·
n` + · · ·

)

=
2`+ 1
(`+ 1)!

.

Hence the desired formula.
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Corollary 4.2.7. The number of trees of order n in which there is a path of length `

starting from the root and ending at a vertex of degree d is given by

(n− `− 1)!
2`+ d

n + `− 1

(
n

`+ 1

)(
2n− d− 3
n + `− 2

)
. (4.6)

Proof. We obtain the result by summing over all i and j in Theorem 4.2.1. That

is, the formula is

(n− `− 1)!
2`+ d

n + `− 1

n−`
∑
i=1

n

∑
j=i+`

(
j− i− 1
`− 1

)(
2n− d− 3
n + `− 2

)
,

which we now simplify. Setting k = j− i− 1, we get

(n− `− 1)!
2`+ d

n + `− 1

(
2n− d− 3
n + `− 2

)
n−`
∑
i=1

n−i−1

∑
k=`−1

(
k

`− 1

)
.

By (4.1), we obtain

(n− `− 1)!
2`+ d

n + `− 1

(
2n− d− 3
n + `− 2

)
n−`
∑
i=1

(
n− i
`

)
.

Let m = n− i so that

(n− `− 1)!
2`+ d

n + `− 1

n−`
∑
i=1

(
n− i
`

)(
2n− d− 3
n + `− 2

)

= (n− `− 1)!
2`+ d

n + `− 1

(
2n− d− 3
n + `− 2

)
n−1

∑
m=`

(
m
`

)
.

Applying hockey stick identity again, we get

(n− `− 1)!
2`+ d

n + `− 1

(
2n− d− 3
n + `− 2

)
n−`
∑
i=1

(
n− i
`

)

= (n− `− 1)!
2`+ d

n + `− 1

(
n

`+ 1

)(
2n− d− 3
n + `− 2

)
.

Hence the result.

Setting ` = 0 in Equation (4.6), we get

n!d
n− 1

(
2n− d− 3

n− 2

)
,
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as the formula which counts the number of trees on n vertices such that the root

is of degree d. Also setting ` = 1 in Equation (4.6), we obtain

(d + 2)(n− 1)!
2

(
2n− d− 3

n− 1

)
.

This formula counts the total number of children of degree d, in all trees of order

n.

4.3 Enumeration by sinks and leaf sinks

We recall from Section 4.1 that a sink is a vertex with outdegree 0 while a leaf sink

is a vertex with indegree 1 and outdegree 0. In this section, we enumerate trees

with respect to sinks and leaf sinks.

Proposition 4.3.1. The number of trees of order n in which a vertex j is a sink of degree

d reachable from a vertex i in ` steps is

(n− `− d− 1)!
2`+ d

n + `− 1

(
j− i− 1
`− 1

)(
j− `− 1

d

)(
2n− d− 3
n + `− 2

)
. (4.7)

Proof. From the proof of Theorem 4.2.1, it follows that there are

2`+ d
n + `− 1

(
2n− d− 3
n + `− 2

)
unlabelled trees with a path of length ` starting at the root such that the termi-

nating vertex has degree d. Lets consider a path of length ` starting at root i and

ending at vertex j. There are (j−i−1
`−1 ) choices for labelling vertices on the paths.

Since vertex j is a sink of degree d, the labels of the d vertices must be less than j.

Thus there are (j−`−1
d ) choices for the labels. Once the `+ 1 vertices on the path

and the d children of j are labelled, there are (n− `− d− 1)! choices for the other

labels in the tree. Collecting everything, we arrive at the required formula.

Corollary 4.3.2. The total number of sinks of degree d that are reachable from vertex i

in ` steps in trees of order n is given by

(n− `− d− 1)!
2`+ d

n + `− 1

(
2n− d− 3
n + `− 2

)
n

∑
j=`+i

(
j− i− 1
`− 1

)(
j− `− 1

d

)
.
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Proof. We obtain the formula by summing over all j in Equation (4.7).

Corollary 4.3.3. The total number of trees with n vertices such that root i is a sink of

degree d is given by:

(n− d− 1)!
d

n− 1

(
i− 1

d

)(
2n− d− 3

n− 2

)
. (4.8)

Proof. The result follows by setting ` = 0 and j = i in Equation (4.7).

Corollary 4.3.4. The number of children of the root labelled j having degree d in trees

on n vertices is given by:

(n− d− 2)!
2 + d

n

(
j− 2

d

)(
2n− d− 3

n− 1

)
. (4.9)

Proof. The result is immediate by setting ` = 1 in Equation (4.7).

Summing over all j in Equation (4.9), we obtain the number of children of the

root which are sinks of degree d, in trees of order n.

Corollary 4.3.5. The total number of trees of order n with root sinks of degree d is given

by:

(n− d− 1)!
d

n− 1

(
n

d + 1

)(
2n− d− 3

n− 2

)
. (4.10)

Proof. By summing over all i in Equation (4.8), we obtain

(n− d− 1)!
d

n− 1

(
2n− d− 3

n− 2

)
n

∑
i=d+1

(
i− 1

d

)
.

Now, taking k = i− 1, we get

(n− d− 1)!
d

n− 1

(
2n− d− 3

n− 2

)
n

∑
i=d+1

(
i− 1

d

)

= (n− d− 1)!
d

n− 1

(
2n− d− 3

n− 2

)
n−1

∑
k=d

(
k
d

)
.

Thus, by identity (4.1), we get the desired result.
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Corollary 4.3.6. The average number of root sinks of degree d in a random tree of order

n is
d

2d+1(d + 1)!
. (4.11)

Proof. Diving the total number of labelled plane trees of order n with root sinks of

degree d (Equation (4.10) ), by the total number of labelled plane trees (Equation

(2.2)) we get,

A =

(n− d− 1)! d
n−1

(
n

d + 1

)(
2n− d− 3

n− 2

)
n!
n

(
2n− 2
n− 1

) ,

as the average number of root sinks of degree d in a random plane tree on n

vertices. Simplifying the average we get,

A =

n!(n−d−1)!d(2n−d−3)!
(d+1)!(n−d−1)!(n−1)(n−2)!(n−d−1)!

(n−1)!(2n−2)!
(n−1)!(n−1)!

=
n!d(2n− d− 3)!(n− 1)!

(d + 1)!(n− 1)(n− 2)!(n− d− 1)!(2n− 2)!

=
n!d(2n− d− 3)!

(d + 1)!(n− d− 1)!(2n− 2)!

=
d

(d + 1)!
n(n− 1)(n− 2) · · · (n− d)

(2n− 2)(2n− 3) · · · (2n− d− 2)

=
d

2d+1(d + 1)!
nd+1 + · · ·
nd+1 + · · ·

.

Taking limits as n tends to infinity we get,

lim
n→∞

A = lim
n→∞

d
2d+1(d + 1)!

nd+1 + · · ·
nd+1 + · · ·

=
d

2d+1(d + 1)!
.

Setting d = 0 in Equation (4.11) we get that the average number of root sinks of

degree 0 is zero. This implies that there is no leaf sink which is also a root. For

the remainder of this section, we enumerate the trees by leaf sinks.
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Proposition 4.3.7. The total number of trees of order n in which vertex j is a leaf sink

reachable from root i in ` steps is

(n− `− 1)!
`

n− 1

(
j− i− 1
`− 1

)(
2n− 2

n + `− 1

)
. (4.12)

Proof. The result follows by setting d = 0 in Proposition 4.3.1. However, to show

the decomposition we will construct the proof. Let P(x) to be the generating

function for plane trees where x is marking a non-root vertex. Consider a plane

tree rooted at vertex i such that there is a path of length ` starting at vertex i

and terminating at a vertex of label i + ` which is also a leaf sink. The path

decomposes the tree into left and right plane subtrees upto length ` hence we

have (P(x)xP(x))` (See Figure 4.2).

i + `

i

` steps

Figure 4.2: Unlabelled ordered tree with path length ` with vertex i + ` as a leaf
sink.

Vertex j is not connected to any other tree thus it is represented by x. Putting

everything together we get x(P(x)xP(x))` = x(xP(x)2)` as the generating func-

tion of the unlabelled trees rooted at vertex i with a path of length ` starting at

the root and ending at leaf sink i + `. The generating function for the number

of unlabelled plane trees satisfies P(x) = 1
1−xP(x) . We set xP(x) = F(x) so that

F(x) = x
1−F(x) .

By Lagrange Inversion Formula, we obtain

[xn]x(xP(x)2)` = [xn+`−1]F(x)2` =
2`

n + `− 1
[tn−`−1]

(
(1− t)−1(n+`−1)

)
,
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which is equivalent to

2`
n + `− 1

[tn−`−1] ∑
i≥0

(
−(n + `− 1)

i

)
(−t)i

by Binomial Theorem. Now, applying Equation (4.2), we get

2`
n + `− 1

[tn−`−1] ∑
i≥0

(
−(n + `− 1)

i

)
(−t)i =

2`
n + `− 1

[tn−`−1] ∑
i≥0

(
n + `+ i− 2

i

)
ti

=
2`

n + `− 1

(
2n− 3

n− `− 1

)

=
2`

n + `− 1

(
2n− 3

n + `− 2

)
.

Multiplying by n−1
n−1 we get

`

n− 1

(
2n− 2

n + `− 1

)
,

as the formula for the number of unlabelled plane trees with a path of length `

starting at a root and ending at a leaf sink. Consider a path of length ` starting

at vertex i and ending at vertex j. There are

(
j− i− 1
`− 1

)
possible choices for

labelling the vertices on the paths. Once the ` + 1 vertices on the path have

been labelled, there are (n − ` − 1)! ways of labelling the remaining vertices.

Therefore, the total number of labelled plane trees of order n in which vertex j is

a leaf sink reachable from vertex i in ` steps is

(n− `− 1)!
`

n− 1

(
j− i− 1
`− 1

)(
2n− 2

n + `− 1

)
.

This completes the proof.

Corollary 4.3.8. The total number of leaf sinks that are reachable from root i in ` steps

in trees with n vertices is given by

(n− `− 1)!
`

n− 1

(
n− i
`

)(
2n− 2

n + `− 1

)
. (4.13)

Proof. We obtain the result by summing over all j in Equation (4.12).

(n− `− 1)!
`

n− 1

n

∑
j=i+`

(
j− i− 1
`− 1

)(
2n− 2

n + `− 1

)
.

38



Let k = j− i− 1, so that

(n− `− 1)!
`

n− 1

n

∑
j=i+`

(
j− i− 1
`− 1

)(
2n− 2

n + `− 1

)

= (n− `− 1)!
`

n− 1

(
2n− 2

n + `− 1

)
n−i−1

∑
k=`−1

(
k

`− 1

)
.

By identity (4.1), we get

(n− `− 1)!
`

n− 1

n

∑
j=i+`

(
j− i− 1
`− 1

)(
2n− 2

n + `− 1

)

= (n− `− 1)!
`

n− 1

(
n− i
`

)(
2n− 2

n + `− 1

)
.

Thus the formula.

Corollary 4.3.9. There are

(n− `− 1)!
`

n− 1

(
n

`+ 1

)(
2n− 2

n + `− 1

)
, (4.14)

leaf sinks at step ` that are reachable from the root in trees with n vertices.

Proof. The result is evident by summing over all i in Equation (4.13). That is, the

desired formula is

(n− `− 1)!
`

n− 1

n−`
∑
i=1

(
n− i
`

)(
2n− 2

n + `− 1

)
,

which we now simplify. By setting k = n− i, the formula becomes

(n− `− 1)!
`

n− 1

(
2n− 2

n + `− 1

)
n−1

∑
k=`

(
k
`

)
.

Now, applying identity (4.1), we get

(n− `− 1)!
`

n− 1

(
n

`+ 1

)(
2n− 2

n + `− 1

)
.

This is the required formula.

Corollary 4.3.10. The formula for the number of leaf sinks in trees of order n that are

reachable from the root is

n!
n− 1

n−1

∑
`=0

`

(`+ 1)!

(
2n− 2

n + `− 1

)
.
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Proof. The formula follows by summing over all ` in Equation (4.14).

n−1

∑
`=0

(n− `− 1)!
`

n− 1

(
n

`+ 1

)(
2n− 2

n + `− 1

)

=
n−1

∑
`=0

n!(n− `− 1)!
(`+ 1)!(n− `− 1)!

`

n− 1

(
2n− 2

n + `− 1

)

=
n−1

∑
`=0

n!
(`+ 1)!

`

n− 1

(
2n− 2

n + `− 1

)

=
n!

n− 1

n−1

∑
`=0

`

(`+ 1)!

(
2n− 2

n + `− 1

)
.

Corollary 4.3.11. The average number of leaf sinks that are reachable from the root in `

steps in a random tree is
`

(`+ 1)!
.

Proof. Dividing the total number of leaf sinks that are reachable from the root in

a labelled plane tree (See Equation (4.14)), by the total number of labelled plane

trees given by Equation (2.2) we obtain,

B =

(
n

`+ 1

)
(n− `− 1)! `

n−1

(
2n− 2

n + `− 1

)
n!
n

(
2n− 2
n− 1

)
as the average number of leaf sinks that are reachable from the root in ` steps in

trees on n vertices. Simple manipulations gives

B =
`

(`+ 1)!
n!(n− 2)!

(n− `− 1)!(n + `− 1)!

=
`

(`+ 1)!
(n− 2)(n− 3) · · · (n− `)

(n + `− 1)(n + `− 2) · · · (n + `− (`− 1))

=
`

(`+ 1)!
n`−1 + · · ·
n`−1 + · · ·

.

Moreover, taking limits as n tends to infinity we get

lim
n→∞

B = lim
n→∞

`

(`+ 1)!
n`−1 + · · ·
n`−1 + · · ·

=
`

(`+ 1)!
.
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This is the desired result.

4.4 Enumeration by left most paths and first children

In this section, we continue our investigation of reachable vertices according to

lengths of left most paths and first children. We begin by left most paths. Recall

a left most path refers to a sequence of edges joining the eldest children at each

level in a plane tree.

Proposition 4.4.1. The number of trees of order n in which there is a left most path of

length ` from a vertex i to a vertex j is given by

(n− `− 1)!
`+ 1

n

(
j− i− 1
`− 1

)(
2n− `− 2
n− `− 1

)
. (4.15)

Proof. Let P(x) be the generating function for number of plane tree. Here again,

x marks the number of unrooted tree. Figure 4.3 gives the decomposition of these

trees by left most path. The decomposition shows that (xP(x))`+1 = x`+1P(x)`+1

is the generating function for the number of unlabelled trees in which there is a

left most path of length `.

i + `

i

` steps

Figure 4.3: Unlabelled ordered tree with left most path of length l

It now remain to extract the coefficient of xn in x`+1P(x)`+1. We set xP(x) = F(x)
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so that F(x) = x
1−F(x) and by Lagrange Inversion Formula we get

[xn](xP(x))`+1 = [xn]F(x)`+1

=
`+ 1

n
[tn−`−1](1− t)−n.

By Binomial Theorem and identity (4.2), we get

[xn]x`+1P(x)`+1 =
`+ 1

n
[tn−`−1] ∑

k≥0

(
−n
k

)
(−t)k =

`+ 1
n

[tn−`−1]∑
k≥0

(
n− 1 + k

k

)
tk

=
`+ 1

n

(
2n− `− 2
n− `− 1

)
.

There are

(
j− i− 1
`− 1

)
choices for labels of the vertices on the paths of length

` between vertex i and vertex i + `. After the ` + 1 vertices on the path that

have been labelled, by choice of paths, the remaining vertices are labelled in

(n− `− 1)! ways. Therefore, we find that the number of trees of order n in which

there is a left most path of length ` is given by

(n− `− 1)!
`+ 1

n

(
j− i− 1
`− 1

)(
2n− `− 2
n− `− 1

)
.

Corollary 4.4.2. The number of trees on n vertices in which there is a left most path of

length ` from root i is given by

(n− `− 1)!
`+ 1

n

(
n− i
`

)(
2n− `− 2
n− `− 1

)
. (4.16)

Proof. The result follows by summing over all j in Equation (4.15).

Corollary 4.4.3. The formula for the number of trees of order n in which there is a left

most path of length ` from the root is

(n− `− 1)!
`+ 1

n

(
n

`+ 1

)(
2n− `− 2
n− `− 1

)
. (4.17)
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Proof. We obtain the formula by summing over all i in Equation (4.16).

Moreover, summing over all `, in Equation (4.17) we obtain

(n− 1)!
n−1

∑
`=0

1
`!

(
2n− `− 2
n− `− 1

)
,

as the formula for the number of trees of order n such that there is a left most

path starting at the root.

Setting ` = 0 in Equation (4.17) we rediscover the formula for the number of

labelled plane trees, that is n!Cn−1 where Cn is the nth Catalan number.

Corollary 4.4.4. The average number of eldest children at level ` in a random tree is

1
`!2`

.

Proof. If we divide the number of labelled plane trees of order n in which there is

a left most path of length ` (See Equation (4.17)), by the total number of labelled

plane trees in Equation (2.2), we obtain

C =

(n− `− 1)! `+1
n

(
n

`+ 1

)(
2n− `− 2
n− `− 1

)

n! 1
n

(
2n− 2
n− 1

) ,

as the average number of trees on n vertices in which there is a left most path of

length `. We simplify the average to get

C =
n!(n− `− 1)!(`+ 1)(2n− `− 2)!(n− 1)!

(`+ 1)!(n− `− 1)!n(n− `− 1)!(n− 1)!(2n− 2)!

=
(n− 1)!(2n− `− 2)!
`!(n− `− 1)!(2n− 2)!

.
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Now, taking limits as n goes to infinity, we get

lim
n→∞

C =
1
`!

lim
n→∞

(n− 1)!(2n− `− 2)!
(n− `− 1)!(2n− 2)!

=
1
`!

lim
n→∞

(n− 1)(n− 2)(n− 3) · · · (n− `)!
(2n− 2)(2n− 3) · · · (2n− `− 1)

=
1
`!

lim
n→∞

n` + · · ·
(2n)` + · · ·

=
1

`!2`
lim

n→∞

n` + · · ·
n` + · · ·

=
1

`!2`
.

This completes the proof.

We switch our discussion to leaf sinks and left most paths.

Proposition 4.4.5. The number of trees of order n rooted at vertex i in which there is a

left most path of length ` such that the final vertex j is a leaf sink is given by

(n− `− 1)!
`

n− 1

(
j− i− 1
`− 1

)(
2n− `− 3
n− `− 1

)
. (4.18)

Proof. Let P(x) be the generating function for plane trees where x is marking a

non-root vertex. Consider a plane tree rooted at vertex i such that there is a left

most path of length ` starting at vertex i and ending at vertex i + ` which is also

a leaf sink. The path decomposes the tree into right plane subtrees upto length `

hence we have (xP(x))` (See Figure 4.4).

i + `

i

` steps

Figure 4.4: Unlabelled ordered tree with left most path of length ` and the final
vertex is a leaf sink.
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Vertex i + ` is not connected to any other tree thus it is represented by x. Putting

everything together, we get x(xP(x))` = x`+1P(x)` as the generating function

of the unlabelled plane tree rooted at vertex i with a left most path of length

` starting at the root and ending at leaf sink i + `. We set xP(x) = F(x) and

applying Lagrange Inversion Formula, to get

[xn]x`+1P(x)` = [xn]xF(x)`

= [xn−1]F(x)`

=
`

n− 1
[tn−`−1](1− t)−(n−1).

This is equivalent to

`

n− 1
[tn−`−1] ∑

k≥0

(
−(n− 1)

k

)
(−t)k

by Binomial Theorem 4.1.1. Now, by Equation (4.2), and substituting for k =

n− `− 1, we get

`

n− 1

(
2n− `− 3
n− `− 1

)
,

as the formula for the number of unlabelled plane trees with a left most path of

length ` starting at a root and ending at a leaf sink. Consider a path of length `

starting at vertex i and ending at vertex j. There are

(
j− i− 1
`− 1

)
possible choices

for labelling the vertices on the paths. Once the `+ 1 vertices on the path have

been labelled, there are (n − ` − 1)! ways of labelling the remaining vertices.

Therefore, putting everything together we obtain the desired formula.

Corollary 4.4.6. The number of trees on n vertices in which there is a left most path of

length ` from root i and a final vertex is a leaf sink is given by

(n− `− 1)!
`

n− 1

(
n− i
`

)(
2n− `− 3
n− `− 1

)
. (4.19)

Proof. We get the result by summing over all j in equation (4.18).

By summing over all i in Equation (4.19) we get
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Corollary 4.4.7. The total number of trees on n vertices in which there is a left most

path of length ` from the root and the final vertex is a leaf sink is given by

(n− `− 1)!
`

n− 1

(
n

`+ 1

)(
2n− `− 3
n− `− 1

)
. (4.20)

Corollary 4.4.8. The number of trees of order n in which there is a left most path starting

from the root and the ending vertex is a leaf sink is given by

n(n− 2)!
n−1

∑
`=0

`

(`+ 1)!

(
2n− `− 3
n− `− 1

)
.

Proof. We sum over all ` in Equation (4.20) and then simplify to obtain the de-

sired result.

Corollary 4.4.9. The average number of eldest children which are also leaf sinks in ran-

dom tree is given by

1
(`+ 1)!2`+1 .

Proof. We divide the total number of labelled plane trees in which there is a left

most path of length ` from the root and the final vertex is a leaf sink (See Equa-

tion (4.20)), by the total number of labelled plane trees given by Equation (2.2)

to obtain

(n− `− 1)! `
n−1

(
n

`+ 1

)(
2n− `− 3
n− `− 1

)

n! 1
n

(
2n− 2
n− 1

)
as the average number of labelled plane trees in which there is a left most path

and a final vertex is a leaf sink. We simplify and tend n→ ∞ to obtain the desired

result.

Recall that in ordered trees, the children (or sibling) are linearly ordered and they

are drawn in a left -right pattern where the left most child is called the first child

to the parent. Therefore, enumerating the trees by first children we find that,
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Proposition 4.4.10. The number of trees of order n with a vertex i as a root and vertex

j as a first child reachable from root i in ` steps is given by

(n− `− 1)!
`

n− 1

(
j− i− 1
`− 1

)(
2n− 2

n + `− 1

)
.

Proof. Let P(x) be the generating function for the plane trees where x represents

non-root vertices. Consider a plane tree rooted at vertex i such that there is a path

of length ` starting at vertex i and terminating at vertex i+ ` which is a first child.

The path decomposes the tree into left and right plane subtrees upto vertex `− 1

hence we have (xP(x)2)`−1. (See Figure 4.5). Since vertex i + `, which is the (`+

1)th vertex, is a first child, it’s parent has no left subtree. Vertex i + ` can either

have children or not. Thus the decomposition gives (x(P(x)2)`−1xP(x)xP(x) =

x`+1P(x)2` as the generating function for unlabelled plane trees rooted at vertex

i with a path of length ` starting at the root i and ending at a first child i + `. This

is pictorially represented as

i + `

i

`− 1 steps

Figure 4.5: Unlabelled ordered tree of order n with first child at step `.

By Lagrange Inversion Formula, we get

[xn]
(

x`+1P(x)2`
)
= [xn+`−1]F(x)2`

=
2`

n + `− 1
[tn−`−1](1− t)−(n+`−1),

which simplifies to

2`
n + `− 1

[tn−`−1] ∑
i≥0

(
−(n + `+ i− 1)

i

)
−(t)i
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using Binomial Theorem. Now, by identity (4.2), we obtain

2`
n + `− 1

[tn−`−1] ∑
i≥0

(
−(n + `+ i− 1)

i

)
−(t)i =

2`
n + `− 1

[tn−`−1] ∑
i≥0

(
n + `+ i− 2

i

)
ti

=
2`

n + `− 1

(
2n− 3

n− `− 1

)

=
2`

n + `− 1

(
2n− 3

n + `− 2

)
.

Multiplying by n−1
n−1 , we get

`

n− 1

(
2n− 2

n + `− 1

)

as the formula for unlabelled plane trees with a path of length ` starting at a root

and terminating at a first child. The number of choices for labelling the vertices

on a path of length ` between vertex i and vertex j is

(
j− i− 1
`− 1

)
. Since the

`+ 1 vertices along the path have been labelled, then the remaining vertices can

be labelled in (n− `− 1)! ways. Finally, by assembling everything together we

complete the proof by obtaining the required formula as

(n− `− 1)!
`

n− 1

(
j− i− 1
`− 1

)(
2n− 2

n + `− 1

)
.

Corollary 4.4.11. The number of first children at level ` that are reachable from root i in

trees on n vertices is given by

(n− `− 1)!
`

n− 1

(
n− i
`

)(
2n− 2

n + `− 1

)
. (4.21)

Proof. We obtain the required result by summing over all j in Equation (4.20).

Corollary 4.4.12. The number of first children at level ` in trees of order n that are

reachable from the root is given by

(n− `− 1)!
`

n− 1

(
n

`+ 1

)(
2n− 2

n + `− 1

)
. (4.22)

48



Proof. Summing over all i in Equation (4.21), we obtain

(n− `− 1)!
`

n− 1

n−l

∑
i=1

(
n− i
`

)(
2n− 2

n + `− 1

)

= (n− `− 1)!
`

n− 1

(
2n− 2

n + `− 1

)
n−`
∑
i=1

(
n− i
`

)
,

which simplifies to

(n− `− 1)!
`

n− 1

(
n

`+ 1

)(
2n− 2

n + `− 1

)

upon use of identity (4.1).

Corollary 4.4.13. The total number of first children that are reachable from the root in

trees of order n is given by

n!
n− 1

n−1

∑
`=0

`

n− 1

(
2n− 2

n + `− 1

)
.

Proof. We get the result by summing over all ` in Equation (4.22) then simplify-

ing.

Corollary 4.4.14. The average number of first children that are reachable from the root

in ` steps in a random tree is
`

(`+ 1)!
.

Proof. By dividing the total number of first children in a labelled plane tree that

are reachable from the root (See Equation (4.22)), by the total number of labelled

plane trees given by Equation (2.2) we obtain,

(n− `− 1)! `
n−1

(
n

`+ 1

)(
2n− 2

n + `− 1

)
n!
n

(
2n− 2
n− 1

)

as the average number of first children in a labelled plane tree of order n that

are reachable from the root in ` steps. We tend n → ∞ to obtain the required

result.
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Remark 4.4.15. The number of unlabelled plane trees with a path of length `

starting at a root i and terminating at a leaf sink j has a similar generating func-

tion as for the number of unlabelled trees with a path of length ` starting at a root

i and terminating at a first child j. Therefore, they pose similar results if we sum

over i, j and `. Asymptotic results are also the same.

Remark 4.4.16. If terminating vertex is a first child which is also a leaf, we obtain

generating function as (xP(x)2)`−1xP(x)x which gives

2`− 1
n + `− 1

(
2n− 3

n + `− 2

)
as the number of such trees on n vertices.

4.5 Enumeration by non-first children and non-leaf
sinks

In plane trees, any vertex which is not an eldest child is called a non first child. A

vertex which is not a leaf sink is a non leaf sink. In this section, we enumerate

trees with respect to number of non first children as well as number of non leaf

sinks.

Proposition 4.5.1. The number of trees on n vertices rooted at vertex i and having

vertex j as a non first child which is reachable in ` steps is given by

(n− `− 1)!
`+ 1
n− 1

(
j− i− 1
`− 1

)(
2n− 2
n + `

)
. (4.23)

Proof. We construct the generating function by considering a plane tree rooted at

vertex i with a path of length ` starting at i and terminating at i + `, which is a

non first child. The path decomposes the tree into left and right plane subtrees

as shown in Figure 4.6.

The decomposition gives x`+2P(x)2`+2 as the generating function for unlabelled

plane trees, with a path of length ` starting at a root and terminating at a non
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i + `

i

` steps

Figure 4.6: Unlabelled ordered tree with non first children at level `.

first child. By Lagrange Inversion formula, we have

[xn]x`+2P(x)2`+2 = [xn+`]F(x)2`+2

=
2`+ 2
n + `

[tn−`−2]
(
(1− t)−1(n+`)

)
.

Applying Binomial Theorem 4.1.1 and identity (4.2) we get

2`+ 2
n + `

[tn−`−2]
(
(1− t)−1(n+`)

)
=

2`+ 2
n + `

[tn−`−2] ∑
i≥0

(
n + `+ i− 1

i

)
ti

=
2`+ 2
n + `

(
2n− 3

n− `− 2

)

=
2`+ 2
n + `

(
2n− 3

n + `− 1

)
.

Hence multiplying by n−1
n−1 we get

`+ 1
n− 1

(
2n− 2
n + `

)
,

as the formula for the number of non first children at step ` that are reachable

from the root in trees of order n. The choices for labels of the vertices on a path

of length ` from vertex i to vertex j is

(
j− i− 1
`− 1

)
. After the ` + 1 vertices on

the path have be labelled, there are (n− `− 1)! possible ways of labelling the re-

maining vertices. Therefore, the total number of trees of order n in which vertex

j is a non first child reachable from i in ` steps is

(n− `− 1)!
`+ 1
n− 1

(
j− i− 1
`− 1

)(
2n− 2
n + `

)
.
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This completes the proof.

Corollary 4.5.2. The total number of non first children at level ` in trees of order n that

are reachable form vertex i is

(n− `− 1)!
`+ 1
n− 1

(
n− i
`

)(
2n− 2
n + `

)
. (4.24)

Proof. The required formula is obtained by summing over all j in Equation (4.23).

Corollary 4.5.3. The total number of non first children at level ` that are reachable from

the root in a tree on n vertices is given by

(n− `− 1)!
`+ 1
n− 1

(
n

`+ 1

)(
2n− 2
n + `

)
. (4.25)

Proof. Summing over all i in Equation (4.24), we obtain the said formula.

Corollary 4.5.4. The total number of non first children in trees of order n that are reach-

able from the root is given by

n!
n− 1

n−1

∑
`=0

1
`!

(
2n− 2
n + `

)
.

Proof. We sum over all ` in Equation (4.25), and simplify to arrive at the desired

formula.

Corollary 4.5.5. The average number of non first children that are reachable from the

root in ` steps in a random tree is given by 1
`! .

Proof. We divide the total number of non first children at level ` that are reachable

from the root in a labelled plane tree (See equation (4.25)) by the total number of

labelled plane trees given by (2.2) to get

(n− `− 1)! `+1
n−1

(
n

`+ 1

)(
2n− 2
n + `

)

n! 1
n

(
2n− 2
n− 1

) .
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This is the average number of non first children at level ` that are reachable from

the root in trees on n vertices. On further simplification and tending n → ∞ we

get the required formula as 1
`! .

For the remainder of this section, we enumerate non-leaf sinks.

Proposition 4.5.6. The number of trees of order n with vertex i as a root and vertex j as

non leaf sink reachable from the root in ` steps is given by

(n− `− 1)!
`+ 1
n− 1

(
j− i− 1
`− 1

)(
2n− 2
n + `

)
. (4.26)

Proof. Consider a plane tree rooted at vertex i with a path of length ` to vertex

i + ` (See Figure 4.7).

i

i + `

` steps

Figure 4.7: Unlabelled ordered tree with non leaf sink at level `.

The path divides the tree into left and right plane subtrees upto ` steps, (xP(x)2)`.

Since vertex i + ` is a non leaf sink, it must therefore have an outdegree greater

than zero. That is, it can be a parent to a plane subtree which can possibly be

empty hence we represent it as xP(x) or it can have another sibling which is hav-

ing other plane subtrees represented by xP(x). Therefore putting everything to-

gether we obtain
(
xP(x)2)` xP(x)xP(x) = x`+2P(x)2`+2 as the generating func-

tion for the number of trees with a path of length ` starting from a root and

ending at a non leaf sink. As before we set xP(x) = F(x) and apply Lagrange
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Inversion Formula to get

[xn]x`+2P(x)2`+2 = [xn+`]F(x)2`+2 =
2`+ 2
n + `

[tn−`−2]
(
(1− t)−1(n+`)

)
.

Using Binomial theorem 4.1.1 and Equation (4.2), we obtain

2`+ 2
n + `

[tn−`−2]
(
(1− t)−1(n+`)

)
=

2`+ 2
n + `

[tn−`−2] ∑
i≥0

(
n + `+ i− 1

i

)
ti

=
2`+ 2
n + `

(
2n− 3

n− `− 2

)

=
2`+ 2
n + `

(
2n− 3

n + `− 1

)
.

Multiplying by n−1
n−1 we get

`+ 1
n− 1

(
2n− 2
n + `

)
.

This is the formula for the number of unlabelled trees on n vertices with a path

of length ` starting at the root and ending at non leaf sink.

Corollary 4.5.7. The total number of non leaf sinks at level ` in trees of order n that are

reachable from root i is

(n− `− 1)!
`+ 1
n− 1

(
n− i
`

)(
2n− 2
n + `

)
. (4.27)

Proof. The result follows immediately by summing over all j in equation (4.26).

Corollary 4.5.8. The total number of non leaf sinks at level ` that are reachable from the

root in trees with n vertices is

(n− `− 1)!
`+ 1
n− 1

(
n

`+ 1

)(
2n− 2
n + `

)
. (4.28)

Proof. We sum over all i in Equation (4.27), to obtain the result.

Corollary 4.5.9. The total number of non leaf sinks that are reachable in trees of order n

is

n!
n− 1

n−1

∑
`=0

1
`!

(
2n− 2
n + `

)
.
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Proof. We obtain the formula by summing over all ` in equation (4.28).

Corollary 4.5.10. There are on average 1
`! non leaf sinks that are reachable in ` steps in

random trees.

Proof. If we divide the total number of non leaf sinks at level ` that are reachable

from the root in a labelled plane tree of order n (See Equation (4.28)), by the total

number of labelled plane trees in Equation (2.2) we get

(n− `− 1)! `+1
n−1

(
n

`+ 1

)(
2n− 2
n + `

)

n! 1
n

(
2n− 2
n− 1

)

as the average number of non leaf sinks at level ` that are reachable from the root.

By simple manipulation and taking n→ ∞, we obtain the required result.

Remark 4.5.11. The number of unlabelled plane trees with a path of length `

starting at a root i and terminating at a non leaf sink j has similar generating

function as the number of unlabelled trees with a path of length ` starting at a

root i and terminating at a non first child j. Therefore they pose similar results if

we sum over i, j and `. Asymptotic results are the same.

4.6 Enumeration by exact number of vertices

The number of trees in which an exact number of vertices are reachable from a

given vertex have been studied for the case of labelled ordinary trees as well as

non crossing trees. Quite a number of results were obtained by Okoth in his PhD

thesis, [14]. Similarly, Seo and Shin [20] established a formula for rooted Cay-

ley trees in which a maximal increasing subtree of order k has exactly k reachable

vertices. In this section we investigate the exact number of vertices that are reach-

able from vertex 1 in labelled ordered trees.
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Theorem 4.6.1. The total number of trees of order n such that exactly k vertices are

reachable from the root is given by

On,k = ∑
k≤m+1≤n

(
n

m + 1

)
z(m, k− 1)

m− k + 1
n− k

(n− k)(n−m−1) (4.29)

for 0 ≤ k < n, O(n, n) = (2n− 3)!!, where n(r) = n(n + 1)(n + 2) · · · (n + r− 1)

is a rising factorial and z(m, k) is the number of ordered trees on m + 1 vertices with

additional (m − k) decreasing leaves attached to an increasing tree with k edges. The

trees counted by z(m, k) were enumerated by Drake [8] .

Proof. A subtree of a v-rooted tree T is said to be increasing if the labels in the sub-

tree are increasing as the vertices move away from the root. A maximal decreasing

subtree, is a decreasing subtree rooted at vertex v with the highest number of

vertices. Seo and Shin [20], showed that Equation (4.29) gives the number of

ordered trees on [n] := {1, 2, . . .} with its maximal decreasing ordered subtree

having k vertices. Now, orienting the edges from vertices of lower label to ver-

tices of higher label in an ordered tree, we obtain a maximal increasing subtree

of order n having exactly k reachable vertices from the root.

Corollary 4.6.2. The number of trees of order n having exactly k ≥ 2 vertices reachable

from vertex 1 is given by

On−1,k−1(2k− 3) (4.30)

where On,k is given by Equation (4.29).

Proof. Consider an ordered tree P with n− 1 vertices of labels 2, 3, · · · , n rooted

at vertex v1 and having exactly k− 1 vertices reachable from the root. There are

On−1, k− 1 such trees. We follow the steps below to obtain trees of order n in

which k vertices are reachable from vertex 1:

Step 1: Let P0 be the maximal increasing subtree having v1, v2, . . . , vk−1 vertices

where vi < vi+1 for all i. In P, deleting all the edges in P0 we obtain non-single

vertex subtrees P1, P2, · · · , Pm.
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Figure 4.8: Diagram showing Step 1 in the proof of Corollary 4.6.2

Step 2: Relabelling the vertices of the maximal increasing subtree P0 with vertex

v1 now as 1, v2 as v1, v3 as v2 and so on, the maximal increasing tree P0 remain

with k− 1 vertices. There are 2k− 3 positions in the new maximal increasing sub-

tree rooted at 1 where vertex vk−1 can be attached. For each maximal increasing

subtree previously rooted at v1, we obtain 2k− 3 new subtrees rooted at vertex 1

with k reachable vertices.

4

1

93

78 11

11

6

102

7

5

P0 P1 P2

Figure 4.9: Diagram showing Step 2 in the proof of Corollary 4.6.2

Step 3: Identify vertex vi in the subtrees P1, P2, . . . , Pm with vertex vi in the new

maximal increasing subtree, for all i ∈ {1, . . . , m}. We obtain a tree of order n in

which exactly k vertices are reachable from the root labelled 1.
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Figure 4.10: Diagram showing Step 3 in the proof of Corollary 4.6.2
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Thus there are (2k − 3)On−1,k−1 trees of order n rooted at vertex 1 and having

exactly k vertices reachable from the root.

Corollary 4.6.3. Let P(n, i) be the total number of trees on n vertices with exactly

n− i + 1 reachable vertices from vertex i. We have

P(n, i) = (2n− 2i + 1)!!(n− i + 1)(n + 1)(n + 2) · · · (n + i− 2).

Proof. There are (2n− 2i + 1)!! recursive trees on n− i + 1 vertices (See Lemma

2 in [20]). Since there are n− (n− i + 1) = i− 1 vertices which are not reachable

from vertex i, then all the i − 1 vertices have labels less than i. The number

of ways of adding the i − 1 vertices to recursive tree successively is given by

(n − i + 1)(n + 1)(n + 2) · · · (n + i − 2), (See Lemma 2 in [20]). Therefore, the

total number of trees on n vertices with exactly n− i− 1 vertices reachable from

vertex i is given by

(2n− 2i + 1)!!(n− i + 1)(n + 1)(n + 2) · · · (n + i− 2).

Hence the desired formula.

4.7 Reachable vertices

Here we are interested in the number of reachable vertices from a vertex i which

is not necessarily a root.

Lemma 4.7.1. The number of trees with n vertices such that vertex j is reachable from

vertex i in 1 step is given by

2(n− 1)!
n

(
2n− 2
n− 1

)
. (4.31)

Proof. Consider a tree with n vertices. The tree has n − 1 edges. From the tree

we can choose an edge arbitrarily in (n− 1) ways. We label the end points of the
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edge as either i or j. This can be done in two ways. Therefore we have 2(n− 1)

possibilities for choosing an edge and labelling the end points as i and j. Here

vertex j will be reachable from vertex i in one step. The remaining vertices can be

labelled in (n− 2)! ways. Thus there are 2(n− 1)(n− 2)!=2(n− 1)! possibilities

for labelling any two adjacent vertices by i and j, and the remaining vertices by

{1, 2, · · · , n} \ {i, j}. The number of unlabelled trees with n vertices is given by
1
n (

2n−2
n−1 ). Therefore the number of trees of order n in which a given vertex j is

reachable from a given vertex i in one step is given by

2(n− 1)!
n

(
2n− 2
n− 1

)
.

Thus the proof is complete.

We also conjecture that:

Conjecture 4.7.2. The number of trees in which vertex 3 is reachable from vertex

1 in two steps is given by

(n− 2)!
n−3

∑
k=0

1
k + 1

(
2k
k

)(
k + 1

n− k− 3

)
.
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CHAPTER 5

CONCLUSION AND
RECOMMENDATIONS

5.1 Conclusion

In this thesis, we have studied enumeration of trees with local orientation with

respect to their indegree sequences and outdegree sequences as well as reachabil-

ity of vertices in labelled ordered trees. We have obtained a recurrence relation

satisfied by labelled trees with local orientation whose indegree sequences are

given by 011n−1 and outdegree sequences by 0 f01 f12 f2 · · · p fp (Theorem 3.1.2). In

Chapter 4, we considered reachability of vertices in labelled plane trees. We have

obtained formulas which count the number of vertices that are reachable from

the root, with respect to; path length (Theorem 4.2.1), sinks (Proposition 4.3.1),

leaf sinks (Proposition 4.3.7), left most paths (Proposition 4.4.1), first children

(Proposition 4.4.10), non first children (Proposition 4.5.1), and non leaf sinks

(Proposition 4.5.6). In each case, the average number of reachable vertices were

obtained for any random plane tree. Moreover, a formula for the number of trees

with an exact number of reachable vertices has also been obtained in Theorem

4.6.1. In Lemma 4.7.1, we obtained the number of plane trees of order n such

that a given vertex j is reachable from vertex i in one step. Here vertex i is not

necessarily a root. Our results have added to the rich literature in this area of
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research.

5.2 Recommendations

A d-ary tree is a rooted tree in which each vertex has no more than d children.

A k-noncrossing tree is a non-crossing tree where each vertex has labels in the set

{1, 2, . . . , k} such that the sum of labels for any two adjacent vertices in a path

from the root does not exceed k + 1. A k-plane tree is a plane tree such that if

the vertices are to be labelled with integers in the set {1, 2, · · · , k} then the sum

of the labels between any two adjacent vertices in a path does not exceed k + 1.

Reachability has not been studied in the setting of k-plane trees, k-noncrossing trees

and d-ary trees. Similarly, the closed formulas for exact number of labelled plane

trees of order n in which a given vertex j is reachable from a given vertex i in

` ≥ 2 steps have not been established. We, therefore, recommend that a similar

study be conducted to obtain the number of reachable vertices in k-plane trees, k-

noncrossing trees and d-ary trees. Also, a similar research should be conducted so

as to obtain a closed formula for the number of trees of order n in which a given

number of vertices are reachable from a specified root. Moreover, we recommend

that research be conducted to obtain a formula for the number of vertices that are

reachable from a given vertex i in plane trees such that vertex i is not necessarily

a root.
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