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Abstract

Velocity profile for Magnetohydrodynamic (MHD) fluid flow in a
straight long pipe with elliptical cross section has been investigated.
Governing equations are partial differential equations comprising Ohm’s
law of electromagnetism, θ- component of Navier-Stokes equation, equa-
tion of continuity and cross section of the pipe. Navier-Stokes equation
is converted into ordinary differential equation utilizing similarity trans-
formation and solved numerically embracing Finite Element Method
(FEM). Results are presented in form of tables and graphs and disclose
that: When Hartmann number is increased, velocity of the fluid de-
creases at the centre of the pipe. Raising gravitational force, Reynolds
number and half major axis distance, leads to upsurge in fluid velocity
at the centre of pipe, though, the surge is little for the last case. Ve-
locity declines towards the periphery of the pipe to zero in all the four
cases.
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1 Introduction

MHD flow through pipes has many applications in many fields like MHD gener-
ators, cooling system with liquid metals, astrophysics etc [1]. Skouras et.al [3]
obtained a numerical solution for time dependent MHD equations for channels
of rectangular, circular and elliptical cross sections. They used Local Meshless
Point Collocation (LMPC) method and plotted velocity and induced magnetic
field for high values of Hartmann numbers i.e Ha ≤ 105. Finite Difference
Method solution for convection diffusion equations (MHD) flow was obtained
by Prasanna and Ganesh [5]. They presented solutions for ducts of different
cross sections namely square, rectangle, triangle, circle, ellipse, sector and an-
nulus under steady state conditions. Graphs plotted showed that for all the
cross sections, the velocity profile was flat in the core region.

2 Mathematical Formulation

MHD flow equations comprises Ohm’s law of electromagnetism, θ-component
of Navier-Stokes equation, the equation of continuity and cross section of pipe.
A MHD fluid flow in a straight horizontal pipe of sufficient length and of
elliptical cross-section in the x-y plane is considered. The fluid flows in the z
direction through the pipe due to Lorentz and gravitational forces. An applied
magnetic field with an intensity B is parallel to the y-direction. The domain,
Ω, is the elliptical cross section of the pipe. The boundary, Γ, is the inside of
the cross section of the pipe.

2.1 Assumptions

i. The flow is steady and velocity of fluid is u = {ur, uθ, 0}, where ur and
uθ are fluid velocities in r and θ directions respectively.

ii. Directed magnetic field is B = {B, 0, 0} for θ-component, B is the com-
ponent of incident magnetic field B.

iii. Lorentz force in the θ-component is fθ = σB2uθ, where σ is electrical
conductivity.

iv. Gravitational forces, ρg, exist while pressure fields, p are negligible, g
and ρ are gravitational field strength and fluid density respectively.

2.2 Governing Equations

Elliptical cross section of pipe is shown in figure 1. r is given by : r2 =
a2b2

a2 sin2 θ+b2 cos2 θ
, where a and b are half of the ellipse’s major and minor axes
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respectively.

Figure 1: Elliptical cross section of pipe

Equation of continuity is given by :1
r
∂
∂r

(rur) + 1
r
∂
∂θ

(uθ) = 0
θ-component of Navier-Stokes equation is given as:

ρ

(
ur
∂uθ
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= µ
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]
+ fθ + ρgθ (1)

Ohms law of electromagnetism is given by:J = σ(E + u × B), where J is
electric current density and E is electric field respectively.

2.2.1 Non-dimensionalisation of Navier-Stokes equation

To non-dimensionalise equation (1), the following non-dimensional parameters
[4] are engaged: r = r?R, θ = θ?, ur = u?rU0, uθ = u?θU0, Reynolds number,

Re = RU0

ν
, kinematic viscosity, ν = µ

ρ
, Hartmann number, Ha = BR

(
σ
µ

) 1
2

and Stuart number, N = Ha2

Re
, where U0 and R are a characteristic velocity

and a characteristic length from the centre of ellipse and µ is dynamic viscosity.
Quantities with superscript stars are dimensionless quantities. From equation

(1); ur
∂uθ
∂r

=
U2
0

R
u?r

∂u?θ
∂r?

. Similarly, expressions for other terms in equation (1)
are worked out, substituted in equation (1) together with fθ = σB2uθ and
multiplying through by R

U2
0 ρ

. Neglecting ?’s and letting R
U2
0
gθ = λθ, gravitational

force in the θ− component, equation (1) metamorphoses to
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2.2.2 Navier-Stokes equation in terms of stream function

Given that ur = 1
r
∂ψ
∂θ

and uθ = −∂ψ
∂r

, then for the first term in equation (2);

ur
∂uθ
∂r

= −1
r
∂ψ
∂θ

∂2ψ
∂r2

. Using the same method, the rest of the terms are written
and set in equation (2), which delivers

∂ψ

∂r

∂2ψ

∂r∂θ
− ∂ψ

∂θ

∂2ψ

∂r2
− 1

r

∂ψ

∂θ

∂ψ

∂r
=

1

Re

[
1

r

∂ψ

∂r
+

2

r2

∂2ψ

∂θ2
− 1

r

∂3ψ

∂θ2∂r
− r∂

3ψ

∂r3
− ∂2ψ

∂r2

]
−Nr∂ψ

∂r
+ λθ (3)

boundary conditions:1
r
∂ψ
∂θ

= −∂ψ
∂r

= 0 on Γ

3 Numerical Solution of the Problem

3.1 Similarity Transformation

Equation (3) is converted into an ordinary differential equation by using sim-
ilarity transformation, Abbott et.al [2]. The similarity transformation used
is η = εr

nθn such that ψ = εr
nθnf(εr

nθn), where n is an integer and ε is
the base of natural logarithm. Considering the case when n = −1 for sim-
plicity: since ψ = εr

−1θ−1
f(εr

−1θ−1
) then ∂ψ

∂r
= −r−2θ−1εr

−1θ−1
f(εr

−1θ−1
) −

r−2θ−1ε2r
−1θ−1

f ′(εr
−1θ−1

). The procedure is repeated for other terms in equa-
tion (3), their products found and then placed in equation (3). Upon consider-
ing only terms whose coefficients are r−1θ−1 or having their powers multiples
of r−1θ−1 and since η = εr

−1θ−1
, equation (3) becomes

η4logη5f ′′′(η)+6η3logη4f ′′(η)+6η3logη5f ′′(η)+6η2logη3f ′(η)+18η2logη4f ′(η)

+7η2logη5f ′(η) + 6ηlogη3f(η) + 6ηlogη4f(η) + ηlogη5f(η) + η2logηHa2f ′(η)+

ηlogηHa2f(η) +Reλθ = 0 (4)

Boundary conditions being: 1
r
∂ψ
∂θ

= f ′(η) = f(η) = 0 on Γ

3.2 Finite Element Method (FEM)

In Finite Element Method (FEM), Reddy [6], the solution has E elements and
N = E + 1 nodes. The approximate solution is C0 continuous, i.e only the 0th

order solution is continuous across element interfaces.
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3.2.1 Method of weighted residuals

Equation (4) is the strong form of the problem. It’s weak form is obtained
using method of weighted residual and is given by∫

Ω

[
2η2logη3w(η)f ′(η) + 5η2logη4w(η)f ′(η) + η2logη5w(η)f ′(η)

]
dη

+

∫
Ω

[
4η3logη4w′(η)f ′(η) + 2η3logη5w′(η)f ′(η) + 6ηlogη3w(η)f(η)

]
dη

+

∫
Ω

[
6ηlogη4w(η)f(η) + ηlogη5w(η)f(η) + η2logηHa2w(η)f ′(η)

]
dη

+

∫
Ω

[
ηlogηHa2w(η)f(η) + w(η)Reλθ

]
dη = −

∫
Γ

η4logη5w(η)f ′′(η)nηdΓ

−
∫

Γ

η3logη4w(η)f ′(η)nηdΓ+

∫
Γ

η4logη5w′(η)f ′(η)nηdΓ−
∫

Γ

2η3logη5w(η)f ′(η)nηdΓ

(5)
Where nη is the η component of unit outward normal of boundary. nη is equal
to -1 and 1 at the left and right boundaries of the problem domain respectively.
The terms on the right of equation (5) provide the boundary conditions. For
velocity, these values are zero considering no-slip condition.

3.2.2 Approximate solution using shape functions and Galerkin
Method

On letting approximate solution as fapp(η) =
∑N

j=1 fjsj(η), where fapp is the
approximate solution to be found, N is the number of nodes in the finite
element mesh, fj’s are the nodal unknown values that will be calculated at
the end of finite element solution and sj’s are the shape (basis) functions
that are used to construct the approximate solution. The shape functions
have compact support and possess Kronecker-delta property . In the Galerkin
Method, weight functions of equation (5) are set such that w(η) = si(η).
Putting fapp(η) =

∑N
j=1 fjsj(η) and w(η) = si(η) in equation (5), it changes

to

N∑
j=1

[∫
Ω

{
2η2logη3si(η)s′j(η) + 5η2logη4si(η)s′j(η) + η2logη5si(η)s′j(η)

}
dη

]
fj

+
N∑
j=1

[∫
Ω

{
4η3logη4s′i(η)s′j(η) + 2η3logη5s′i(η)s′j(η) + 6ηlogη3si(η)sj(η)

}
dη

]
fj

+
N∑
j=1

[∫
Ω

{
6ηlogη4si(η)sj(η) + ηlogη5si(η)sj(η) + η2logηHa2si(η)s′j(η)

}
dη

]
fj
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+
N∑
j=1

[∫
Ω

{
ηlogηHa2si(η)sj(η)

}
dη

]
fj = −

∫
Ω

si(η)Reλθdη i = 1, 2, ..., N

(6)

3.2.3 Global equation and elemental systems

Equation (6) is expressed in global equation system matrix notation by [W ] {X} =
{Y }, where [W ] is the square stiffness matrix of size N ×N , {X} is the vector
of nodal unknowns with N entries. {Y } is the global force vector of size N×1.
From equation (6)

Wij =
N∑
j=1

[∫
Ω

{
2η2logη3si(η)s′j(η) + 5η2logη4si(η)s′j(η) + η2logη5si(η)s′j(η)

}
dη

]
fj

+
N∑
j=1

[∫
Ω

{
4η3logη4s′i(η)s′j(η) + 2η3logη5s′i(η)s′j(η) + 6ηlogη3si(η)sj(η)

}
dη

]
fj

+
N∑
j=1

[∫
Ω

{
6ηlogη4si(η)sj(η) + ηlogη5si(η)sj(η) + η2logηHa2si(η)s′j(η)

}
dη

]
fj

+
N∑
j=1

[∫
Ω

{
ηlogηHa2si(η)sj(η)

}
dη

]
fj, Xj = fj and Yi = −

∫
Ω

si(η)Reλθdη

(7)
From equation (7), the expression for Wij provides the elemental stiffness ma-
trix, W e

ij, which is obtained by neglecting the summation sign and fj.

3.2.4 Gauss quadrature integration

To evaluate W e
ij integral using Gauss quadrature limits of W e

ij integral are
η = ηe1 and η = ηe2 which are the coordinates of the two end points of the
element. Limits of the integral are changed to be -1 and 1 which require
change of variable. This leads to the use of master element in evaluating
elemental integrals. Using the Kroncker-delta property of shape functions,
they are written in terms of the master element coordinate ξ as

s1 =
1

2
(1− ξ) and s2 =

1

2
(1 + ξ) (8)

To evaluate W e
ij integrals, the global η coordinate is related to ξ coordinate by

η =
he

2
ξ +

ηe1 + ηe2
2

(9)
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where he is the length of element, e, given by he = ηe2 − ηe1. W e
ij is written

using the ξ coordinate and new limits for Gauss quadrature integration and
upon defining Finite Element Jacobian as Je = dη

dξ
= he

2
, transforms to

W e
ij =

∫ 1

−1

{
2η2logη3si

dsj
dξ

+ 5η2logη4si
dsj
dξ

+ η2logη5si
dsj
dξ

+ 4η3logη4dsi
dξ

dsj
dξ

1

Je

}
dξ

+

∫ 1

−1

{
2η3logη5dsi

dξ

dsj
dξ

1

Je
+ 6ηlogη3sisjJ

e + 6ηlogη4sisjJ
e + ηlogη5sisjJ

e

}
dξ

+

∫ 1

−1

{
η2logηHa2si

dsj
dξ

+ ηlogηHa2sisjJ
e

}
dξ (10)

3.2.5 Assembly process

Elemental stiffness matrices are assembled in global system of equation e.g for
a mesh of 5 linear elements with global node numbers, local to global node
mapping matrix results in the following global equation system for 6 node
mesh
W 1

11 W 1
12 0 0 0 0

W 1
21 W 1

22 +W 2
11 W 2

12 0 0 0
0 W 2

21 W 2
22 +W 3

11 W 3
12 0 0

0 0 W 3
21 W 3

22 +W 4
11 W 4

12 0
0 0 0 W 4

21 W 4
22 +W 5

11 W 5
12

0 0 0 0 W 5
21 W 5

22 +W 6
11





f1

f2

f3

f4

f5

f6



=



Y 1
1

Y 1
2 + Y 2

1

Y 2
2 + Y 3

1

Y 3
2 + Y 4

1

Y 4
2 + Y 5

1

Y 5
2


(11)

Elemental force vector components are evaluated using equation (7) and placed
in equation (11). The resulting equation is trimmed and hands out
W 1

22 +W 2
11 W 2

12 0 0
W 2

21 W 2
22 +W 3

11 W 3
12 0

0 W 3
21 W 3

22 +W 4
11 W 4

12

0 0 W 4
21 W 4

22 +W 5
11




f2

f3

f4

f5

 =


−2Reλθ

...

...


(12)
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3.2.6 Discretization of major axis of elliptical cross section of pipe

The major axis of the elliptical cross section of the pipe is sub divided into
N-1 elements and N nodes as shown in figure 2.

3.2.7 Calculation of elemental stiffness matrix

Elemental stiffness matrix is evaluated using equations (8), (9) and (10) such
that: Setting he = 0.0002, ηe1 = 0.0000 and ηe2 = 0.0002 then η = 0.0001ξ +
0.0001 so that equation (10) produces

W 1
11 = 1.02009×10−4+2.03417×10−7Ha2−2.99146×10−2Ha2Je−8.07356× 10−8

Je

−1.28685Je (13)

W 1
12 = −1.02009×10−4−2.03417×10−8Ha2−2.52849×10−2Ha2Je+

8.07356× 10−8

Je

−0.889363Je (14)

W 1
21 = −2.39048×10−4+8.76719×10−8Ha2−2.52849×10−2Ha2Je+

8.07352× 10−8

Je

−0.889363Je (15)

W 1
22 = −2.39052×10−4−8.17592×10−8Ha2−6.75332×10−2Ha2Je−8.07356× 10−8

Je

−2.0668Je (16)

The 2× 2 [W e] elemental matrix is given by

W e =

[
W 1

11 W 1
12

W 1
21 W 1

22

]
(17)

From now henceforth, when equation (17) is mentioned, it means it comprises
equations (13) to (16) which are too large to fit in the matrix.
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4 Results

4.1 Varying Hartmann number

Values of Hartmann number engaged are 1.0, 5.0 and 10.0, while Je = 0.0001, λθ =
0.001, Re = 1.0, and a = 0.0034. When values of Ha and Je are put in equa-
tion (17) an elemental matrix, W e is formed. W e is employed to produce
stiffness matrix W . Considering 35 nodes in figure 2, substituting W , Re and
λθ in equation (12), a system of algebraic equations is formed. The equations
are solved by manupulating Mathematica which provides solutions of fj’s as
f 1
j ’s for Ha = 1.0, f 2

j ’s for Ha = 5.0 and f 3
j ’s for Ha = 10.0 in table 1. fj’s are

the velocities of fluid along the major axis of cross section of elliptical pipe.

Table 1: Velocities along the major axis when Ha = 1.0, 5.0, 10.0

f 1
1 = 0.000 f 1

2 = 0.869 f 1
3 = 1.340 f 1

4 = 1.594 f 1
5 = 1.732 f 1

6 = 1.807 f 1
7 = 1.847

f 2
1 = 0.000 f 2

2 = 0.650 f 2
3 = 0.929 f 2

4 = 1.048 f 2
5 = 1.100 f 2

6 = 1.122 f 2
7 = 1.131

f 3
1 = 0.000 f 3

2 = 0.384 f 3
3 = 0.477 f 3

4 = 0.499 f 3
5 = 0.505 f 3

6 = 0.506 f 3
7 = 0.506

f 1
8 = 1.869 f 1

9 = 1.881 f 1
10 = 1.887 f 1

11 = 1.891 f 1
12 = 1.892 f 1

13 = 1.893 f 1
14 = 1.894

f 2
8 = 1.135 f 2

9 = 1.137 f 2
10 = 1.138 f 2

11 = 1.138 f 2
12 = 1.138 f 2

13 = 1.138 f 2
14 = 1.138

f 3
8 = 0.506 f 3

9 = 0.506 f 3
10 = 0.506 f 3

11 = 0.506 f 3
12 = 0.506 f 3

13 = 0.506 f 3
14 = 0.506

f 1
15 = 1.894 f 1

16 = 1.894 f 1
17 = 1.895 f 1

18 = 1.895 f 1
19 = 1.895 f 1

20 = 1.895 f 1
21 = 1.895

f 2
15 = 1.138 f 2

16 = 1.138 f 2
17 = 1.732 f 2

18 = 1.807 f 2
19 = 1.138 f 2

20 = 1.138 f 2
21 = 1.138

f 3
15 = 0.506 f 3

16 = 0.506 f 3
17 = 0.506 f 3

18 = 0.506 f 3
19 = 0.506 f 3

20 = 0.506 f 3
21 = 0.506

f 1
22 = 1.895 f 1

23 = 1.895 f 1
24 = 1.895 f 1

25 = 1.895 f 1
26 = 1.895 f 1

27 = 1.894 f 1
28 = 1.893

f 2
22 = 1.138 f 2

23 = 1.138 f 2
24 = 1.138 f 2

25 = 1.138 f 2
26 = 1.138 f 2

27 = 1.138 f 2
28 = 1.138

f 3
22 = 0.506 f 3

23 = 0.506 f 3
24 = 0.506 f 3

25 = 0.506 f 3
26 = 0.506 f 3

27 = 0.506 f 3
28 = 0.506

f 1
29 = 1.891 f 1

30 = 1.885 f 1
31 = 1.867 f 1

32 = 1.815 f 1
33 = 1.665 f 1

34 = 1.235 f 1
35 = 0.000

f 2
29 = 1.138 f 2

30 = 1.137 f 2
31 = 1.133 f 2

32 = 1.117 f 2
33 = 1.059 f 2

34 = 0.837 f 2
35 = 0.000

f 3
29 = 0.506 f 3

30 = 0.506 f 3
31 = 0.506 f 3

32 = 0.506 f 3
33 = 0.499 f 3

34 = 0.445 f 3
35 = 0.000

Incorporating velocities in table 1 and plotting velocity against nodes which
are points on the major axis of the pipe, delivers the form in figure 3.
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4.2 Altering gravitational force

Gravitational force values embraced are 0.00002, 0.00004 and 0.00008 when
Je = 0.0001, Ha = 1.0, Re = 1.0, and a = 0.0034. Using the same method in
§4.1 by applying above mentioned values, Mathematica conveys solutions in
table 2

Table 2: Velocities along the major axis for λθ = 0.00002, 0.00004, 0.00008

f 1
1 = 0.000 f 1

2 = 0.017 f 1
3 = 0.027 f 1

4 = 0.032 f 1
5 = 0.036 f 1

6 = 0.036 f 1
7 = 0.037

f 2
1 = 0.000 f 2

2 = 0.034 f 2
3 = 0.054 f 2

4 = 0.064 f 2
5 = 0.069 f 2

6 = 0.072 f 2
7 = 0.074

f 3
1 = 0.000 f 3

2 = 0.069 f 3
3 = 0.107 f 3

4 = 0.128 f 3
5 = 0.139 f 3

6 = 0.145 f 3
7 = 0.145

f 1
8 = 0.038 f 1

9 = 0.038 f 1
10 = 0.038 f 1

11 = 0.038 f 1
12 = 0.038 f 1

13 = 0.038 f 1
14 = 0.038

f 2
8 = 0.075 f 2

9 = 0.075 f 2
10 = 0.075 f 2

11 = 0.076 f 2
12 = 0.076 f 2

13 = 0.076 f 2
14 = 0.076

f 3
8 = 0.150 f 3

9 = 0.150 f 3
10 = 0.151 f 3

11 = 0.151 f 3
12 = 0.151 f 3

13 = 0.151 f 3
14 = 0.151

f 1
15 = 0.038 f 1

16 = 0.038 f 1
17 = 0.038 f 1

18 = 0.038 f 1
19 = 0.038 f 1

20 = 0.038 f 1
21 = 0.038

f 2
15 = 0.076 f 2

16 = 0.076 f 2
17 = 0.076 f 2

18 = 0.076 f 2
19 = 0.076 f 2

20 = 0.076 f 2
21 = 0.076

f 3
15 = 0.151 f 3

16 = 0.151 f 3
17 = 0.151 f 3

18 = 0.151 f 3
19 = 0.151 f 3

20 = 0.151 f 3
21 = 0.151

f 1
22 = 0.038 f 1

23 = 0.038 f 1
24 = 0.038 f 1

25 = 0.038 f 1
26 = 0.038 f 1

27 = 0.038 f 1
28 = 0.038

f 2
22 = 0.076 f 2

23 = 0.076 f 2
24 = 0.076 f 2

25 = 0.076 f 2
26 = 0.076 f 2

27 = 0.076 f 2
28 = 0.076

f 3
22 = 0.151 f 3

23 = 0.151 f 3
24 = 0.151 f 3

25 = 0.151 f 3
26 = 0.151 f 3

27 = 0.151 f 3
28 = 0.151

f 1
29 = 0.038 f 1

30 = 0.038 f 1
31 = 0.037 f 1

32 = 0.036 f 1
33 = 0.033 f 1

34 = 0.025 f 1
35 = 0.000

f 2
29 = 0.076 f 2

30 = 0.076 f 2
31 = 0.075 f 2

32 = 0.073 f 2
33 = 0.067 f 2

34 = 0.049 f 2
35 = 0.000

f 3
29 = 0.151 f 3

30 = 0.151 f 3
31 = 0.149 f 3

32 = 0.145 f 3
33 = 0.133 f 3

34 = 0.099 f 3
35 = 0.000

Constructing on the same axis velocities in tables 2 against distance of
major axis gives figure 4.

4.3 Modifying Reynolds number

Reynolds number values employed are 2.0, 4.0 and 8.0 while Je = 0.0001, λθ =
0.001, Ha = 1.0, and a = 0.0034. Following the same steps as in §4.1 and
engaging criterion above furnishes velocities in table 3.
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Table 3: Velocities along the major axis with Re = 2.0, 4.0, 8.0

f 1
1 = 0.000 f 1

2 = 1.738 f 1
3 = 2.679 f 1

4 = 3.188 f 1
5 = 3.464 f 1

6 = 3.613 f 1
7 = 3.694

f 2
1 = 0.000 f 2

2 = 3.477 f 2
3 = 5.358 f 2

4 = 6.377 f 2
5 = 6.928 f 2

6 = 7.227 f 2
7 = 7.399

f 3
1 = 0.000 f 3

2 = 6.95 f 3
3 = 10.72 f 3

4 = 12.75 f 3
5 = 13.86 f 3

6 = 14.45 f 3
7 = 14.78

f 1
8 = 3.738 f 1

9 = 3.761 f 1
10 = 3.774 f 1

11 = 3.781 f 1
12 = 3.785 f 1

13 = 3.787 f 1
14 = 3.788

f 2
8 = 7.476 f 2

9 = 7.523 f 2
10 = 7.548 f 2

11 = 7.562 f 2
12 = 7.570 f 2

13 = 7.574 f 2
14 = 7.576

f 3
8 = 14.95 f 3

9 = 15.01 f 3
10 = 15.10 f 3

11 = 15.13 f 3
12 = 15.14 f 3

13 = 15.15 f 3
14 = 15.15

f 1
15 = 3.789 f 1

16 = 3.789 f 1
17 = 3.789 f 1

18 = 3.789 f 1
19 = 3.789 f 1

20 = 3.789 f 1
21 = 3.789

f 2
15 = 7.577 f 2

16 = 7.578 f 2
17 = 7.578 f 2

18 = 7.578 f 2
19 = 7.579 f 2

20 = 7.579 f 2
21 = 7.579

f 3
15 = 15.15 f 3

16 = 15.16 f 3
17 = 15.16 f 3

18 = 15.16 f 3
19 = 15.16 f 3

20 = 15.16 f 3
21 = 15.16

f 1
22 = 3.789 f 1

23 = 3.789 f 1
24 = 3.789 f 1

25 = 3.789 f 1
26 = 3.789 f 1

27 = 3.789 f 1
28 = 3.787

f 2
22 = 7.579 f 2

23 = 7.579 f 2
24 = 7.579 f 2

25 = 7.578 f 2
26 = 7.578 f 2

27 = 7.577 f 2
28 = 7.574

f 3
22 = 15.16 f 3

23 = 15.16 f 3
24 = 15.16 f 3

25 = 15.16 f 3
26 = 15.16 f 3

27 = 15.15 f 3
28 = 15.15

f 1
29 = 3.783 f 1

30 = 3.770 f 1
31 = 3.733 f 1

32 = 3.630 f 1
33 = 3.331 f 1

34 = 2.471 f 1
35 = 0.000

f 2
29 = 7.565 f 2

30 = 7.540 f 2
31 = 7.468 f 2

32 = 7.259 f 2
33 = 6.661 f 2

34 = 4.942 f 2
35 = 0.000

f 3
29 = 15.13 f 3

30 = 15.08 f 3
31 = 14.94 f 3

32 = 14.52 f 3
33 = 13.32 f 3

34 = 9.884 f 3
35 = 0.000

Bringing together velocities in tables 3 on the same axis supplies figuration
in figure 5.

4.4 Changing distance of half major axis

Values of half major axis adopted are 0.0020, 0.0028 and 0.0032 when Je =
0.0001, λθ = 0.025, Ha = 1.0, and Re = 1.0. Repeating the steps in §4.1
utilizing aforementioned values presents solutions in table 4.
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Table 4: Velocities along the major axis when a = 0.0020, 0.0028, 0.0032

f 1
1 = 0.000 f 1

2 = 21.73 f 1
3 = 33.49 f 1

4 = 39.86 f 1
5 = 43.30 f 1

6 = 45.17 f 1
7 = 46.18

f 2
1 = 0.000 f 2

2 = 21.73 f 2
3 = 33.49 f 2

4 = 39.86 f 2
5 = 43.30 f 2

6 = 45.17 f 2
7 = 46.18

f 3
1 = 0.000 f 3

2 = 21.73 f 3
3 = 33.49 f 3

4 = 39.86 f 3
5 = 43.30 f 3

6 = 45.17 f 3
7 = 46.18

f 1
8 = 46.72 f 1

9 = 47.02 f 1
10 = 47.18 f 1

11 = 47.26 f 1
12 = 47.30 f 1

13 = 47.33 f 1
14 = 47.32

f 2
8 = 46.72 f 2

9 = 47.02 f 2
10 = 47.18 f 2

11 = 47.26 f 2
12 = 47.31 f 2

13 = 47.34 f 2
14 = 47.35

f 3
8 = 46.72 f 3

9 = 47.02 f 3
10 = 47.18 f 3

11 = 47.26 f 3
12 = 47.31 f 3

13 = 47.34 f 3
14 = 47.35

f 1
15 = 47.27 f 1

16 = 47.12 f 1
17 = 46.67 f 1

18 = 45.37 f 1
19 = 41.63 f 1

20 = 30.89 f 1
21 = 0.000

f 2
15 = 47.36 f 2

16 = 47.36 f 2
17 = 47.36 f 2

18 = 47.37 f 2
19 = 47.36 f 2

20 = 47.36 f 2
21 = 47.36

f 3
15 = 47.36 f 3

16 = 47.362 f 3
17 = 47.36 f 3

18 = 47.37 f 3
19 = 47.37 f 3

20 = 47.37 f 3
21 = 47.37

f 2
22 = 47.33 f 2

23 = 47.28 f 2
24 = 47.13 f 2

25 = 46.67 f 2
26 = 45.37 f 2

27 = 41.63 f 2
28 = 30.89

f 3
22 = 47.37 f 3

23 = 47.37 f 3
24 = 47.36 f 3

25 = 47.36 f 3
26 = 47.34 f 3

27 = 47.28 f 3
28 = 47.13

f 2
29 = 0.000
f 3

29 = 46.67 f 3
30 = 45.37 f 3

31 = 41.63 f 3
32 = 30.89 f 3

33 = 0.000

Drawing together velocities in tables 4 against distance of major axis pro-
cures the sketch in figure 6.

5 Conclusion

Velocity figuration for MHD flow in a straight horizontal pipe of elliptical
cross section has been described after formulation and numerical solution of
governing equations. The outcomes reveal that: When Hartmann number is
increased, velocity decreases at the centre of pipe, figure 3. Hike in gravita-
tional force, Reynolds number and distance of half major axis results in rise
in fluid velocity at the centre of pipe, figures 4 to 6, though, the spike is small
for the last situation. Velocity distribution shrinks from the centre of the pipe
to the edges where it is zero in all the four situations.
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