SHORT REPORT

In vitro assessment of ruminal fermentation characteristics of tropical browse mixtures supplemented with yeast

Caroline C. Wambui1,2, Sada Ando3, Shaukat A. Abdulrazak4, Isaac M. Osuga5 and Toshiyoshi Ichinohe2

1 The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
2 Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
3 National Livestock Breeding Center, Nishishirakawa, Fukushima, Japan
4 Kenya National Council for Science and Technology, Nairobi, Kenya
5 School of Agriculture and Enterprise Development, Kenyatta University, Nairobi, Kenya

Introduction

Feeding of browse–foliage mixtures is an effective feeding regimen that can compensate nutrient imbalances and dilute negative nutritional effects of tannins as compared with tanniniferous browses fed as sole diets (Mueller-Harvey 2006). The nutritional interaction caused by feeding diverse browse foliages as opposed to single foliage can alter the type and number of rumen microorganisms and subsequently have an affect upon nutrient digestion. Since mixing of different browse foliages may also cause a positive associative effect on the digestibility or intake of the mixture (Niderkorn and Baumont 2009), the elicited associative effect may consequently alter production performance of small ruminants in tropical areas (Rosales and Gill 1997).

Previous research focusing on the interaction of tannins with dietary components has shown that the nutritive potential of tanniniferous browse species can be achieved by use of a tannin binding agent, polyethylene glycol (PEG). However, the relatively high cost of PEG has limited its use in agronomic practice by farmers all over the world (Ben Salem et al. 2005). Few studies have explored alternative feed additives with potential to modulate rumen ecosystem in the presence of tannins.

Yeast is a microbial feed additive used to manipulate the ruminal microbial ecosystem by providing true protein as well as to enhance fiber digestion and stabilize rumen pH (Yoon and Stern 1995). Moreover, it can be expected to form complexes with foliage tannins that are known to bind proteins and polysaccharides, and lower their digestibilities in the gastro-intestinal tract (Böer et al. 2009). Feeding of browses as supplements to low quality basal forages is commonly practiced by small scale farmers in tropical areas. Nonetheless, feeding strategies that promote nutrient complementarity as well as explore alternative supplements to PEG are needed.

In this study, we measured in vitro ruminal gas production for browse foliages commonly used by Kenyan farmers.

Keywords
Browse mixtures; in vitro digestion; yeast supplementation.

Correspondence
Toshiyoshi Ichinohe, Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan. Email: toshi@life.shimane-u.ac.jp

Received 9 May 2011; accepted 18 October 2011.

doi: 10.1111/j.1744-697X.2011.00236.x

Abstract

An in vitro ruminal gas production study was conducted to assess the effect of yeast supplementation on rumen fermentation of tanniniferous tropical browse mixtures prepared by mixing Berchemia discolor with Acacia brevispica, Acacia elatior, Acacia mellifera, Balanites aegyptiaca, Grewia bicolor or Zizyphus mucronata in a 1:1 dry weight ratio. The six browse mixtures were incubated with buffered rumen fluid alone or supplemented with dried Japanese Sake yeast (JSY) or polyethylene glycol (PEG). Ruminal gas production characteristics were evaluated using the Gompertz equation. The JSY addition increased gas production volume ($P < 0.05$) and numerically increased the maximum gas production rate constant. Time to reach the maximum gas production rate was shortened by PEG addition as compared to the JSY and control treatments. It is possible that JSY promoted the rumen microbial activity in addition to forming complexes with tannins thereby upgrading the in vitro ruminal digestion of tropical browse mixtures.

© 2012 The Authors
with or without addition of yeast or PEG, and estimated the
gas production parameters using the Gompertz model
(Lavrenčić et al. 1998). The aim of the study was to evaluate
the viability of yeast supplementation as an alternative to
PEG in upgrading the ruminal fermentation characteristics
of tannin containing tree foliages.

Materials and methods

Experimental procedures

Six browse mixtures were prepared by mixing one part of
Berchemia discolor with one part of Acacia brevispica, Acacia
elatior, Acacia mellifera, Balanites aegyptiaca, Grewia bicolor
or Zizyphus mucronata on dry weight basis. The leaves of the
tree species were collected from Baringo District, a semiarid
region in Kenya. The fodder tree species were selected based
on primary data on feeds and feeding practices within the
locality in Kenya. Among the seven browses, Berchemia discolor
has been reported to show relatively greater ruminal
digestibility (Wambui et al. 2010), palatability and live
weight gain of growing goats when supplemented to Rhodes-
grass hay (Osuga et al. 2008, 2011). The leaf samples col-
clected at the end of the rainy season were oven dried at 50°C
for 48 h to a constant weight, ground to pass through a
2 mm screen for chemical analysis and a further 1 mm
screen for in vitro gas production study.

The six browse mixtures were incubated with buffered
sheep rumen fluid alone (control) or supplemented with
dried Japanese Sake yeast (JSY) obtained from a commer-
cial Sake Company (Gekkeikan Sake Co., Ltd. Kyoto,
Japan) or PEG (molecular weight = 6000). The sample
(alone) or supplemented with additive were incubated
in vitro with buffered rumen fluid (30 mL) in calibrated
glass syringes in triplicate by following the procedure of
Menke and Steinigass (1988). Syringes containing only
the incubation medium, JSY or PEG supplemented medium
were incubated as blanks to correct for the gas production
from buffered rumen fluid, JSY and PEG, respectively. The
cumulative gas production readings were recorded at 3, 6,
9, 12, 24, 48, 72 and 96 h of incubation and gas production
originating from incubated browse mixtures were calculated
using values of blanks.

The gas production parameters of the tested browse mix-
tures were estimated by fitting the produced gas volume
(mL 200 mg\(^{-1}\) dry matter [DM]) at each incubation time to
the Gompertz model as outlined by Lavrenčić et al. (1998):

\[G = Be^{-Ce^{-At}} \]

(1)

where \(G\) is cumulative gas production (mL 200 mg\(^{-1}\) DM)
at time \(t\) (hour), \(B\) is asymptote gas production volume (mL
200 mg\(^{-1}\) DM) and \(C\) is the relative gas production rate
affected by constant \(A\) describing the decay in fermentation rate. The first derivative of Eqn 1 can be given as follows:

\[\frac{dG}{dt} = ABC e^{-At}e^{-C e^{-At}} \]

(2)

The second derivative of Eqn 1 with respect to \(t\) can be
given as follows:

\[\frac{d^2G}{dt^2} = \left[A^2B^2C^2(e^{-At})^2e^{-Ce^{At}}\right] - \left[A^2BCe^{-At}e^{-Ce^{At}}\right] \]

(3)

The inflection point of Eqn 1 can be given by setting
Eqn 3 equal to zero, and solving for \(t\). The solution of
Eqn 3, \(t = \ln C \cdot A^{-1}\), can be regarded as time to reach
the maximum gas production rate (TMGP, h) during in vitro
incubation. The rate constant of maximum gas production
(MGPR, % h\(^{-1}\)) was calculated by substituting the TMGP
for Eqn 2.

Chemical analyses

The DM, crude ash and crude protein (CP) concentration
were determined according to AOAC (1984). Neutral deter-
gen fiber (NDF), acid detergent fiber and acid detergent lig-
nin (ADL) were determined according to the methods of
Van Soest et al. (1991) for browse samples and JSY. Total
extractable phenolics (TEPH), total extractable tannins
(TET) and total condensed tannins (TCT) of the samples
were determined by the procedure described by Makkar
(2000).

Statistical analyses

In vitro gas production data was fitted to the Gompertz
model using commercial software (Curve Expert Ver 3.1),
and one-way analysis of variance was performed for the
analysis of gas production variables using general linear
model of StatView for Windows® (SAS institute 1999).
Statistical differences of the means between the browse mix-
tures and treatment supplements were tested using Fisher’s
least significance difference at \(P < 0.05\).

Results and discussion

The chemical profile of the browse foliages was within
the range reported for similar browse species from Kenya
(Ondiek et al. 2010). The concentration of CP (121–
216 g kg\(^{-1}\) DM) and NDF (288–431 g kg\(^{-1}\) DM) of the
seven browse species (Table 1) indicate that the tested
browses can be used as supplementary feed to low quality
diets such as natural pasture and crop residue predominant
in the tropics (Wambui et al. 2006). The browses studied in
the current experiment except *Acacia mellifera* and *Balanites aegyptiaca* had TEPH and TET concentrations above the levels suggested (45 and 20 g kg-1 DM, respectively) not likely to produce significant adverse nutritional effects on ruminant livestock (Getachew et al. 2002). In addition to phenolic concentrations, variations of tannin structures also affect their binding capacity with protein and fiber fraction. The feeding value and growth performance appear to differ between the seven tested browses when fed to ruminant livestock (Osuga et al. 2008; Wambui et al. 2010).

Gas production technique is a useful tool in predicting feeding value of forages (Rodrigues et al. 2002). Lavrenčič et al. (1998) used the Gompertz equation for interpreting nylon bag data of grass and legume hays. Schofield et al. (1994) indicated that the Gompertz growth model can also be applicable to gas production data for evaluating forage fermentation characteristics in the rumen. The Gompertz model well describes the ruminal fermentation nature of the foliages in the early phases of incubation (Lavrenčič et al. 1998). The gas production curves of Kenyan browse with treatment supplements fitted the Gompertz model well ($r^2 = 0.995–0.999$).

The Gompertz gas production parameters were influenced by browse species and treatment supplements (Table 2). The differences in gas production parameters among the browse mixtures indicating that there were differences in nutrients according to the substrates being fermented in the rumen. It was prominent that the JSY supplement elicited higher value of B for all foliages ($P < 0.05$), and also showed numerically or significantly higher values ($P < 0.05$) for MGPR than for PEG and control treatments. These results concur with Tang et al. (2008) who reported an increased rate of gas production and cumulative gas volume for cereal straws by addition of yeast culture. Yeast supplementation to low quality basal forages promoted the

Table 1 Chemical composition of browse foliages and yeast (g kg-1 DM)

<table>
<thead>
<tr>
<th>Material</th>
<th>OM</th>
<th>CP</th>
<th>NDF</th>
<th>ADF</th>
<th>ADL</th>
<th>TEPH</th>
<th>TET</th>
<th>TCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia brevispica</td>
<td>936.5</td>
<td>154.7</td>
<td>345.7</td>
<td>201.2</td>
<td>100.3</td>
<td>134.2</td>
<td>105.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Acacia elatior</td>
<td>901.6</td>
<td>138.4</td>
<td>341.1</td>
<td>230.8</td>
<td>123.8</td>
<td>45.2</td>
<td>32.4</td>
<td>ND</td>
</tr>
<tr>
<td>Acacia mellifera</td>
<td>893.2</td>
<td>215.8</td>
<td>352.1</td>
<td>226.7</td>
<td>92.9</td>
<td>18.4</td>
<td>7.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Balanites aegyptiaca</td>
<td>897.9</td>
<td>121.1</td>
<td>304.9</td>
<td>222.2</td>
<td>117.0</td>
<td>20.4</td>
<td>4.2</td>
<td>ND</td>
</tr>
<tr>
<td>Berchemia discolor</td>
<td>913.4</td>
<td>165.4</td>
<td>320.5</td>
<td>165.9</td>
<td>70.9</td>
<td>72.3</td>
<td>33.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Grewia bicolor</td>
<td>922.5</td>
<td>157.0</td>
<td>431.0</td>
<td>251.2</td>
<td>76.0</td>
<td>59.9</td>
<td>22.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Zizyphus mucronata</td>
<td>904.6</td>
<td>151.2</td>
<td>288.0</td>
<td>156.2</td>
<td>64.5</td>
<td>59.9</td>
<td>22.0</td>
<td>0.4</td>
</tr>
<tr>
<td>JSY</td>
<td>806.0</td>
<td>433.8</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ADF, acid detergent fiber; ADL, acid detergent lignin; CP, crude protein; DM, dry matter; JSY, Japanese Sake yeast; ND, not detected; NDF, neutral detergent fiber; OM, organic matter; TCT, total condensed tannins; TEPH, total extractable phenolics; TET, total extractable tannins.

<table>
<thead>
<tr>
<th>Material</th>
<th>OM</th>
<th>CP</th>
<th>NDF</th>
<th>ADF</th>
<th>ADL</th>
<th>TEPH</th>
<th>TET</th>
<th>TCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia brevispica</td>
<td>936.5</td>
<td>154.7</td>
<td>345.7</td>
<td>201.2</td>
<td>100.3</td>
<td>134.2</td>
<td>105.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Acacia elatior</td>
<td>901.6</td>
<td>138.4</td>
<td>341.1</td>
<td>230.8</td>
<td>123.8</td>
<td>45.2</td>
<td>32.4</td>
<td>ND</td>
</tr>
<tr>
<td>Acacia mellifera</td>
<td>893.2</td>
<td>215.8</td>
<td>352.1</td>
<td>226.7</td>
<td>92.9</td>
<td>18.4</td>
<td>7.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Balanites aegyptiaca</td>
<td>897.9</td>
<td>121.1</td>
<td>304.9</td>
<td>222.2</td>
<td>117.0</td>
<td>20.4</td>
<td>4.2</td>
<td>ND</td>
</tr>
<tr>
<td>Berchemia discolor</td>
<td>913.4</td>
<td>165.4</td>
<td>320.5</td>
<td>165.9</td>
<td>70.9</td>
<td>72.3</td>
<td>33.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Grewia bicolor</td>
<td>922.5</td>
<td>157.0</td>
<td>431.0</td>
<td>251.2</td>
<td>76.0</td>
<td>59.9</td>
<td>22.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Zizyphus mucronata</td>
<td>904.6</td>
<td>151.2</td>
<td>288.0</td>
<td>156.2</td>
<td>64.5</td>
<td>59.9</td>
<td>22.0</td>
<td>0.4</td>
</tr>
<tr>
<td>JSY</td>
<td>806.0</td>
<td>433.8</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ADF, acid detergent fiber; ADL, acid detergent lignin; CP, crude protein; DM, dry matter; JSY, Japanese Sake yeast; ND, not detected; NDF, neutral detergent fiber; OM, organic matter; TCT, total condensed tannins; TEPH, total extractable phenolics; TET, total extractable tannins.

Table 2 Gas production parameters obtained from fermentation of browse mixtures when supplemented with Japanese Sake yeast (JSY) or polyethylene glycol (PEG)

<table>
<thead>
<tr>
<th>Mixture</th>
<th>B (mL 200 mg$^{-1}$ DM)$^+$</th>
<th>MGPR (% h$^{-1}$)$^+$</th>
<th>TMGP (h)$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>JSY</td>
<td>PEG</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>JSY</td>
<td>PEG</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>JSY</td>
<td>PEG</td>
</tr>
<tr>
<td>Acacia brevispica + Berchemia discolor</td>
<td>36.3ab</td>
<td>49.3ab</td>
<td>35.7ab</td>
</tr>
<tr>
<td>Acacia elatior + Berchemia discolor</td>
<td>34.9ab</td>
<td>42.5ab</td>
<td>35.5ab</td>
</tr>
<tr>
<td>Acacia mellifera + Berchemia discolor</td>
<td>36.9ab</td>
<td>47.5ab</td>
<td>35.1ab</td>
</tr>
<tr>
<td>Balanites aegyptiaca + Berchemia discolor</td>
<td>39.2a</td>
<td>50.7a</td>
<td>37.4a</td>
</tr>
<tr>
<td>Grewia bicolor + Berchemia discolor</td>
<td>36.0a</td>
<td>45.9a</td>
<td>31.9b</td>
</tr>
<tr>
<td>Zizyphus mucronata + Berchemia discolor</td>
<td>39.7a</td>
<td>48.9a</td>
<td>34.4a</td>
</tr>
</tbody>
</table>

abMeans with different superscripts in the same column differ ($P < 0.05$).

ARMeans with different superscripts in the same row in the same parameter differ ($P < 0.05$).

$^+$Asymptote gas production volume.

$^+$The maximum rate constant of gas production.

$^+$Time to reach maximum gas production rate.

C, control treatment with no supplement; DM, dry matter.
growth of fibrolytic bacteria through its ability to scavenge oxygen and production of metabolites such as peptides, amino acids and branched-chain organic acids in the rumen (Fonty and Chaucheyras-Durand 2006). Although neither the binding capacity of yeast to tannin nor measurement of metabolites production was conducted in the current study, tannins are known to have a high affinity for proteins with respect to fiber fractions (Waghorn 2008). It can therefore be expected that the addition of yeast, which had 434 g CP kg\(^{-1}\) DM, may have formed tannin-protein complexes easily. In this respect, plant CP and fiber fraction were available for fermentation by the rumen microbes hence the improvement of gas parameters observed upon JSY addition. Boer et al. (2009) reported that the presence of plant phenolic compounds induced tannase production from yeast and anaerobic bacteria. The enzyme catalyses the breakdown of tannins into gallic acid and glucose, hence it could be expected to mitigate negative effects of tannins on ruminal digestion when tannase was produced in the rumen. However, further studies are needed to ascertain the mode of biological actions of dried JSY supplement to browse foliages in elucidating nutritional benefits of yeast for applying as diet supplement to ruminants. On the other hand, PEG supplement did not increase the gas production parameters of browse mixtures markedly, which concurred with Rogosic et al. (2008). In their study, PEG supplementation did not increase the intake by goats and sheep of foliage as the diversity of shrubs provisions were increased. Rogosic et al. (2008) have suggested that shrub mixing facilitate interactions between plant secondary metabolites, and the resultant complexes can lower negative impacts of tannins on the rumen digestion due to altered microbial activities in the rumen, hence prominent effects of PEG supplementation could not be obtained. The TMGP differed among browse mixtures and was significantly shortened \((P < 0.05) \), by the addition of JSY and PEG supplements. The TMGP gives an indication of the time taken for feedstuff to achieve extensive ruminal degradation (Lavrenčič et al. 1998) and residence time in the lag compartment in the rumen (Van Milgen et al. 1991). It was assumed that a reduction in time taken for the ingested feed particles to be hydrated and colonized by rumen microbes before degradation processes begin in conjunction with an increased degradation rate would result in an increase in ruminal degradability of nutrients (Van Milgen et al. 1991), and could subsequently reflect the ruminal passage kinetics of digesta particles (Lavrenčič et al. 1998) and voluntary feed intake (Rodrigues et al. 2002).

It was noteworthy that Balanites aegyptiaca and Berchemia discolor mixture showed higher values of B, MGPR and lower TMGP value as compared with the other mixtures in all the supplement treatments (Table 2). This is an indication of higher susceptibility to ruminal degradation and higher feeding value of the supplement feed. The concentration, chemical structure and biological activities of tannins affect protein and fiber digestion in the rumen and \textit{in vitro} gas production parameters (Barahona et al. 2003). In this study, asymptote \textit{in vitro} gas production volume \((B) \) correlated negatively with concentration of TET \((r^2 = 0.604, P = 0.037) \) and NDF \((r^2 = 0.627, P = 0.031) \) among the browse mixtures for control treatment (data not shown). The data shows that high tannin and fiber concentrations in browse foliages reduce ruminal fermentation parameters. Balanites aegyptiaca had the lowest TET concentration among the tested browses and quite low TCT concentration (Table 1), which might partly explain the reason for mixture exhibiting better ruminal fermentation characteristics than the other mixtures in the control treatment with no supplements. In addition to tannins, lignin content and lingo-cellulose formation also contribute to species differences in nutrient degradability in the rumen (Barahona et al. 2003; Tiemann et al. 2008). Although the calculated value indicating the extent of lignification of Balanites aegyptiaca + Berchemia discolor was relatively higher (9.4 g ADL kg\(^{-1}\) DM and 29.8 g ADL kg\(^{-1}\) NDF) than the other browse mixtures (data not shown), the mixture exhibited better ruminal fermentation status than the other mixtures in all treatment supplements.

It was concluded that browse foliage mixing would alleviate the negative effects of tannins, which are usually elicited in single species diets and may be a useful tool in designing feed regimens that increase animal productivity from range-lands. With both practical and economical perspective, yeast (brewer’s residue) supplementation has a potential to improve the rumen fermentation of tanniferous tropical browses and offers a suitable substitute to expensive PEG addition.

\textbf{References}

and characterization of the recombinant enzyme. Yeast 26: 323–337.