Supporting Information for:

Rheological Properties of Blends of Isotactic Polystyrene – Isotactic Poly(*para*-methylstyrene) Films Derived from a Comparative Dewetting Study

Austine A. Mulama^{1,2*}, Konstantinos Roumpos¹, L. Pradipkanti¹, Andrew O. Oduor², Günter Reiter^{1,3}

¹Physikalisches Institut, Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, 79104, Germany

²Department of Physics and Materials Science, School of Physical and Biological Sciences, Maseno University, 333, 40105, Maseno, Kenya

³Freiburg Center for Interactive Materials and Bio-inspired Technologies (FIT), Albert-Ludwigs-Universität, Freiburg, 79110, Germany

*corresponding author: mulamaustine@gmail.com

1. Optical microscopy (OM) and atomic force microscopy (AFM) images

Figure S1: Optical micrographs and atomic force microscopy (AFM) images for the 95 % iPpMS - 5 % iPS binary system dewetted at $T_{dew} = 240$ °C and at different incubation times. (a) shows a 200 nm film before the dewetting experiment. (b) – (d) show the dewetting process for shorter incubation times and (e) – (h) show dewetting process at longer incubation times. (i) - (k) (2D) are the AFM images of (c), the circled section in (g) and circled droplet in (h), respectively. The graphical representation of the cross-sectional profiles for the lines indicated in (i), (j) and (k) are given beneath. The scales for (a) – (d) and for (e) – (h) are 110 × 110 μ m² and 225 × 225 μ m², respectively.

2. Determination of activation energy based on relaxation times $\tau_r \in \{\tau_v, \tau_w\}$: Graphical analysis

For τ_v :

Figure S2: Semi-logarithmic plots of relaxation time $\tau_r \in {\tau_v, \tau_w}$ against $1000/T_{dew}$ for different iPS content, indicated in the graphs.

The activation energies for both cases were deduced from $\ln \tau_r = \ln \tau_0 + E_{\eta} / k_B T_{dew}$.

We set
$$\tau_{\rm r} \in \{\tau_{\rm v}, \tau_{\rm w}\}$$
, $k_{\rm B}T_{\rm dew} \equiv \frac{R}{N_{\rm A}}T_{\rm dew}$, with $R = \frac{8.314 \text{ kJ}}{\text{mol}\cdot\text{K}}$ and $N_{\rm A} = 6.02214076 \cdot 10^{23} \frac{1}{\text{mol}}$.

3. Stress calculations

To calculate the stress acting in the as-prepared films, we require the surface energies of both isotactic polystyrene (iPS) and isotactic poly(*para*-methylstyrene) (iP*p*MS) polymers. Based on the literature, rheological properties of both *isotactic* polymers have not been established completely. Thus, we have used the surface energies of their respective atactic counterparts, aPS and aP*p*MS, respectively. According to reference,¹ the surface tension γ_L of atactic poly(*para*-methylstyrene) is $\gamma_L = 25.8 \text{ mJ/m}^2$ at 20°C and that of atactic polystyrene is $\gamma_L = 28.3 \text{ mJ/m}^2$ at 20°C. For polymers, γ_L decreases with increasing temperature by ca. $- 0.08 \text{ mJm}^{-2}\text{K}^{-1}$.^{1,2,3} For simplicity and as we do not know the exact value of γ_L for iP*p*MS, we used $\gamma_L = 25.8 \text{ mJ/m}^2$ and $\gamma_L = 28.3 \text{ mJ/m}^2$ as a minimum value for iPS for the purpose of estimating the capillary stresses. Using the experimentally determined values of contact angles (in radians) for holes dewetting at 240 °C at different iPS content, Table S1 gives the calculated stresses.

$$\sigma_{\rm cap} = |S|/h_0, \, |S| = \gamma_{\rm L} (1 - \cos \theta_{\rm equ})$$

$$\sigma_{\rm res} = \sigma_{\rm cap} (\overline{B_{\rm v}} - 1)$$

$$\sigma_{\rm tot} = (\sigma_{\rm cap} + \sigma_{\rm res}).$$

iPS %	$\boldsymbol{\theta}_{\mathrm{dyn}}$	$\sigma_{ m cap}$ kPa	$\overline{B_{\rm v}}-1$	$\sigma_{ m res}$ kPa	$\sigma_{ m tot}$ kPa	
0	0.37	17.5	1.6	28.0	45.5	
5	0.40	22.1	4.0	88.4	110.5	
10	0.41	23.1	5.0	115.5	138.6	
15	0.42	24.2	6.0	145.2	169.4	
20	0.41	23.1	7.1	164.0	187.1	
25	0.44	26.5	8.1	214.7	241.2	
50	0.43	25.4	9.0	228.6	254.0	
100	0.42	24.2	10.1	244.4	268.2	

Table S1: Calculated values of σ_{cap} , σ_{res} , and $\sigma_{tot} = \sigma_{cap} + \sigma_{res}$ in iP*p*MS and the corresponding blends at $T_{dew} = 240$ °C. The $\overline{B_v}$ values were taken from Table 1 of the main text.

4. Activation energy based on viscosity, E_{η} , $(\eta(T_{dew}) = \eta_0 \exp(E_{\eta}/k_B T_{dew}))$

iPS %	E_{η} kJ/mol
0	77.15
5	80.73
10	81.39
15	81.89
20	83.56
25	84.22
50	85.80
100	91.62

Table S2 gives the activation energy (which we can refer to as activation energy for flow), deduced from the data shown in Figure 9 (c) of the main text.

Table S2: Obtained values of E_{η} , based on $\eta(T_{\text{dew}}) = \eta_0 \exp(E_{\eta}/k_B T_{\text{dew}})$

The tabulated values from Table S2 were plotted in Figure S3.

Figure S3: Linear plot of activation energy from Table S2 against iPS content.

References

(1) Augsburg, A.; Grundke, K.; Pöschel, K.; Jacobascii, H. J.; Neumann, A. W. Determination of Contact Angles and Solid Surface Tensions of Poly(4-X-Styrene) Films. *Acta Polym.* **1998**, 49, 417 - 426.

(2) Kempf, M.; Barroso, V. C.; Wilhelm, M. Anionic Synthesis and Rheological Characterization of Poly(*p*-methylstyrene) Model Comb Architectures with a Defined and Very Low Degree of Long Chain Branching. *Macromol. Rapid Commun.* **2010**, 31, 2140 – 2145.

(3) Kempf, M.; Ahirwal, D.; Cziep, M.; Wilhelm, M. Synthesis and Linear and Nonlinear Melt Rheology of Well-Defined Comb Architectures of PS and P*p*MS with a Low and Controlled Degree of Long-Chain Branching. *Macromolecules* **2013**, 46, 4978–4994.