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Abstract: Deterministic models have been used in the past to understand the epidemiology of infectious diseases, most 
importantly to estimate the basic reproduction number, Ro by using disease parameters. However, the approach overlooks 
variation on the disease parameter(s) which are function of Ro and can introduce random effect on Ro. In this paper, we 
estimate the Ro as a random variable by first developing and analyzing a deterministic model for transmission patterns of 
pneumonia, and then compute the probability distribution of Ro using Monte Carlo Markov Chain (MCMC) simulation 
approach. A detailed analysis of the simulated transmission data, leads to probability distribution of Ro as opposed to a single 
value in the convectional deterministic modeling approach. Results indicate that there is sufficient information generated 
when uncertainty is considered in the computation of Ro and can be used to describe the effect of parameter change in 
deterministic models.  
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1. Introduction 
Pneumonia is a disease characterized by an inflammatory 

condition of the lungs and is caused by either bacteria, 
fungi, parasites or viruses. A high proportion of cases of 
pneumonia is reported to be caused by bacteria [25,37] 
especially Streptococcus Pneumoniae [5,9,16]. An 
individual can be infected by pneumonia if he/she inhales 
small droplets of coughs or sneezes containing the bacteria. 
Others carry the bacteria in their mouth or flora of 
nasopharynx without causing any harm [9,14,25] (we refer 
to them as carriers). However, the carriers do not get 
infected until the bacteria find its way into the lungs [7,14]. 
This is possible when the immunity of the individual is 
compromised.  

Once the bacteria enter the lungs, they settle in the 
alveoli and passages of the lung where they rapidly grow 
and multiply in number. The invaded area of the lung then 
get filled with fluid and pus as the body attempts to fight 
off the infection [14]. This makes breathing difficult, 
painful and limits the intake of oxygen. Studies indicate 
that the risk factors that are associated with the spread of 
pneumonia include: malnutrition, lack of exclusive 

breastfeeding, indoor pollution, antecedent viral infection 
amongst others [5, 16].  

Deaths due to pneumonia can occur within three days of 
illness and therefore a prompt recognition and treatment 
with an effective drug is crucial. The treatment of 
pneumococcal diseases has been successful by use of 
antibiotics such as: penicillin, chloramphenicol for children 
and erythromycin for those patients who are allergic to 
penicillin [2,10]. However, a number of studies have 
indicated that the bacterium develops penicillin resistance [2, 
22, 10].  Other antibiotics that have been used successfully 
are: amoxicillin and co-trimoxazole which are equally 
effective for non-severe pneumonia [2]. Over the last decade, 
there has been a significant impact on the empiric treatment 
of infections caused by Streptococcus Pneumoniae due to 
the substantial increasing trend of its resistance to antibiotic 
drug [37]. The drug-resistant strains contribute up to 35 
percents of pneumonia cases [17] resulting to high number 
of deaths in many parts of the developing world.  

Vaccination has also been used to reduce the incidence of 
infections due to Streptococcus Pneumoniae in high-risk 
patients [31,10]. Hib vaccine used against the pneumococcal 
diseases was proven to have protective efficacy greater than 
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90% since it’s inclusion in the national immunizations 
programs [10]. Two more vaccines for pneumonia (a 
23-valent polysaccharide for adults and a 7-valent 
protein-conjugated polysaccharide for children) have also 
been in use since in 1983 and 2000 respectively [10,30] 
despite substantial argument over their efficacy [30]. A new 
13-valent pneumococcal polysaccharide-protein conjugate 
vaccine (PCV13 [Prevnar13]) was licensed in 2010 to cover 
for more serotype [20]. Studies show that pneumonia cases 
have been reduced by 20% when vaccination is used, 
however it is faced with a number of challenges of resistance 
that is always developed by the bacteria. Major development 
of the vaccines against the bacteria is also proportional to the 
challenges but yet only 23 strains are covered in the current 
vaccine programs.  

Pneumonia is infectious and is known to be one of the 
leading causes of morbidity and mortality in the developing 
countries with approximately 1.9 million people dying of the 
disease per year [33] translating to 4 individuals dying per 
minute in the developing countries due to pneumonia. 
Despite the increasing focus to reduce mortality in the 
developing countries arising from the Millennium 
Declaration and from the Millennium Development Goal 4 
of United Nation-MDG [37], the under-five mortality rate 
has generated renewed interest in the development of more 
accurate assessments of the number of deaths of individuals  
aged less than 5 years. Moreover, monitoring the coverage 
of interventions to control these deaths has become crucial if 
MDG 4 is to be achieved [16]. Thus it is crucial to establish 
more accurate predictions of the causes of such deaths 
during the period of the first 5 years of living.  

Mathematical models of infectious diseases have been 
used to successfully explain the transmission dynamics of 
many diseases and the use of such models have grown 
exponentially from mid 20th century [39]. A mathematical 
model for the transmission dynamics of streptococcus 
infection was previously developed by Doura et. al [24] and 
Ong’ala et. al [23]. However, their models neither 
incorporated control strategies nor used probabilistic 
approach in their simulation.  

Probability modeling utilizes presumed probability 
distribution of certain input assumption to calculate the 
implied probability distribution of chosen output.  We make 
use of Monte Carlo simulation technique to simulate the 
basic reproduction number of pneumonia dynamics. The 
values of the parameters are sampled from assumed 
probability distribution chosen as the basis for 
understanding the behavior of the parameter [28]. This 
approach of modeling has been described earlier in different 
studies viz: Uncertainty and Sensitivity Analysis of the 
Basic Reproductive Rate: Tuberculosis as an Example [29] 
and The Basic Reproduction Number in SI Staged 
Progression Model: A Probabilistic Approach [19].  

2. Derivation of the Model 
The model considers the transmission dynamics of 

pneumonia in a population divided according their disease 
status of six compartments (Susceptible, Vaccinated, 
Infected, Carriers, Treatment and Recovered). The 
susceptible population can be increased by new recruitment 
of individuals through either birth or immigration at a 
constant rate �. A proportion of susceptible that moves to 
the vaccinated class when they receive a vaccine against the 
disease is � . The vaccine is expected to protect an 
individual from getting infected by the bacteria, however 
there is a possibility of the vaccine to wane [20] at the rate � 
(where 1	 − 	�  is vaccine efficacy) exposing vaccinated 
individuals to infections. The susceptible can be infected by 
either carriers or by symptomatically infected individual 
with a force of infection �.  The force of infection of a 
vaccinated individual is �	 	= 	�� , where �  is the 
proportion of the serotype not covered in the vaccine. A 
newly infected individual can either become a carrier with a 
probability	� or show disease symptoms with a probability 
(1	 − 	�). The carriers can develop disease symptoms and 
become symptomatically infectious [13] at a rate �  or 
recover to gain immunity against the bacteria at an average 
rate �. Therapeutic treatment can be applied to the infected 
at the rate �. The rate of transfer from treatment class is 
denoted by �. The transfer out of the treatment class is due 
to movement to recovery class if the treatment is effective or 
movement to infected class if the treatment is ineffective. 
The proportion of individuals for whom treatment is 
effective is denoted by �. When treatment is applied, we 
assume that bacteria will be cleared and therefore the rate of 
transfer from the symptomatically infected class to the 
carrier class is negligible. The transfer rate from the infected 
individuals on the other hand can recover at a per capita rate 
of � or die from the disease at a rate �. We also assume that 
if treatment strategy is used, the infected individuals can’t 
move to the carrier class. The rate of losing the immunity is 
denoted by � so that the recovered individual moves to the 
susceptible again. We denote the natural per capita mortality 
rate by μ. Using the variables and parameter described here, 
we generate the systems of differential equations for the 
model as in (2.1). 
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We define the force of infection λ as: 

( ) :
I C

k
N

ελ += Ψ Ψ = Ρ              (2.2) 

where, �  is transmission coefficient for the carrier 
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compartment, � is contact rate and � is the probability that 
a contact is effective to cause an infection. In this model, the 
total population at time � is expressed as;  

( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t tN S I C V T R= + + + + +     (2.3) 

For biological reasons, we assume that all state variables 
are more than or equal to zero a any time � hence (2.1) has 
the initial conditions given by; 

(0) (0) (0)

(0) (0) (0)

0, 0, 0,

0, 0, 0

S V C

T R N

≥ ≥ ≥

≥ ≥ ≥
 

From (2.3), boundness of solutions can easily be proven. 
Since; 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 t t t t t t tN S I C V T R
ν
µ

≤ = + + + + + ≤  

Then, any variable of ( ) ( ) ( ) ( ) ( ) ( ) ( ){ , , , , , , }t t t t t t tN S I C V T R

lies in the range	�0, � !.  

System of equations in (2.1) is then studied in a suitable 
region:  

6{( , , , , , ) : ( ) }S V I C T R R N t
ν
µ+Ω = ∈ ≤  

Thus " is a positively invariant and it is sufficient to 
consider solutions starting in " to remain in ". Therefore 
" is biologically feasible region and hence hence 2.1 is 
mathematically posed.  

3. Analysis of the Model 
For easier computation and analysis of (2.1), we use 

proportions instead of the population sizes The proportion 
of each variable can be obtained by dividing the class 
population sizes by the total population to get:  

( ) ( ) ( ) ( ) ( ) ( )
, , , ,

( ) ( ) ( ) ( ) ( ) ( )
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Then by differentiating fractions with respect to time and 
simplifying, we have; 
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ds v
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The rest of the rates of change of proportion are 
determined in the same way. Therefore by substituting 
#	 = 	1	 − 	$	 − 	%	 − 	&	 − 	'	 − 	�  at steady state of (2.1) 
we have; 
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The system (3.1) can now be studied in (	 =
	{(%, ', &, *, $)} . All the solutions of system (3.1) are 
positively invariant in Γ. Consider the first equation in 
system (3.1)  
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Solving for v(t) gives  

( )
0( ) tv t v e ϕ ω µϕ

ϕ ω µ
− + +≤ +

+ +
      (3.2) 

As t	 → 	∞ we obtain 0	 ≤ 	v(t) 	≤ 	1 
Similar proof can be established for '(�), &(�), *(�) and 

$(�). Hence all feasible solutions of system (3.1) starting in 

( remains in ( where; 

6{( , , , , ) , , , , 0}

1

v c i f r R v c i r

and v c i f r

Γ = ∈ ≥
+ + + + ≤

 

3.1. Basic Reproduction Number 

We use the next generation approach to determine the 
basic reproduction number of (3.1). Let 12 be the rate of 
appearance of new infections into the compartment and 

i i iV V V− += − where 324  is the rate of transfer of 

individuals into a particular compartments, 325 is the rates 
of transfer out of the compartment. Then we compute F and 
V which are evaluated by finding the partial derivative at 
disease free equilibrium of 12  and 32 respectively. We 
obtain 678  (the basic reproduction number with treatment 
and vaccination) by defining the spectral radius (dominant 
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eigenvalue) of the matrix 1359as; 

( )(( )( ) ( ) + ))

( )( ) ( )( )( )
Rvt
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Ψ +∈ + + − + + − + + + + +=
+ + + + + + + + + + +
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             (3.3) 

3.2. Vaccination Effect on the Basic Reproduction Number 

Assume there is no treatment, then (3.3) is written in two 
terms as;  

{(1 )( ) } ( )}
[ ] [ ]

( )( )vR
µ ϕ ω ρ π β µ ρπ ρε α µ
µ ϕ ω α µ π β µ
+ ∈ + − + + + + += Ψ
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Equation (3.4) is defined as the basic reproduction 
number with vaccination alone. The first term corresponds 
to the vaccination parameter and can be expressed further as; 
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                 (3.5) 

The second term of (3.4) corresponds to the basic 
reproduction number, 6E  without control any control 
strategy as derived by [23]. Hence we have (3.4) expressed 
as; 

0
(1 )

[1 ]vR R
ϕ

µ ϕ ω
− ∈= −
+ +

               (3.6) 

From (3.5) and (3.6), it implies that 6	 	≤ 	6E	. When 
�	 = 	0  (implying that there is no vaccination), then 
6	 =	6E . The introduction of vaccination implies that 
6	 	≤ 	6E, and consequently if 6E < 	1, then 6	 < 	1		 for 
φ > 0.  

3.3. Treatment Effect on the Basic Reproduction Number 

Consider a case when treatment only is used as control 
strategy where φ = 0(no vaccination) then (3.3) is written as  

t
( ){(1 )( ) }

[ ][ ]
( ) ( ) ( )
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µ ϑ ρ π β µ ρπ ρε
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Differentiating 6G with respect to τ yields  

t 2

( )( )
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R

µ ϑ µ µρ π β ρβ ϑξ
π β µ ϑ α µ ξτ µ α ξ µ

Ψ + − + + −=
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Then 6G	 is a decreasing function with respect to � ; 
implying that any increase in the treatment efficacy is a 
significant strategy for controlling the disease. 

4. Probabilistic Simulating of the Basic 
Reproduction Number  

The basic reproduction number is defined as the expected 
number of secondary infections realized when an infected 
individual is introduced into a purely susceptible population. 
It is one of the most important concern parameter for a 
disease to invade a population [30]. It is clear that when the 
basic reproduction number is below one, each infected 
individual produces less than one newly infected individual 
on an average hence possibility of clearing the infection 
from the population. We determine which control measures 
and at what magnitude would reduce the Basic Reproduction 
number below one at a greater percentage by using Markov 
Chain Monte Carlo (MCMC) technique to simulate the 
variation of basic reproduction number.  

The basic reproduction numbers 6	 and 6G given in (3.3) 
and (3.7) respectively are derived from a mathematical 
model that reflects the biology of the transmission dynamics 
of Pneumonia. The 6	  is a function of 13 different 
parameters while 6G is a function of 10 different parameters. 
When we compute the values of the basic reproduction 
numbers using single values of the parameters, then the 
result is a single value. Since each of the model’s parameters 
are uncertain, we consider the parameters to be random 
variable following different probability distributions then 
study the distribution of the basic reproduction number with 
the random effects of the parameters.  

A probability density function is assigned to each 
parameter based on their possible values and probability of 
occurrence of any specific values.  The possible values of 
the parameters are estimated from literature (see Table 1). 
The parameters with peak values are considered to follow 
approximately triangular probability distribution while those 
without peak values assumed to follow approximately 
uniform probability distribution. 

Table 1. The model parameter values and assumed distributions: The Probability Distribution are either uniform (when the minimum and maximum values 
are given) or triangular (when peak values are given.. 

Parameter Units  Values  Reference 
  Min Peak Max  
ν   µN0  [24] 
κ per day 1  10 Estimated 
P  0.89  0.99 [24] 
ψ   κP  Expressed as in (2.2) 
ε   0.001124  [24] 



 Science Journal of Applied Mathematics and Statistics 2014; 2(2): 53-59  57 
 

Parameter Units  Values  Reference 
ρ  0.085 0.28 0.338 [26], [15] 
π per day 0.00274  0.01096 [24] 
η per day 0.0238  0.0476 [34] 
α  0.15  0.33 Estimated 
δ  0  0.3 Estimated 
µ per day 0 0.00004793 0.0002 [39] 
β  0 0.0115 0.0165 [32] 
φ  0.7 0.8 0.9 [11] 
ω  0.15  0.44 [3] 
ϵ  0.2 0.48 0.76 [12] 
τ  0.3  0.5 Estimated 
ξ  0.43 0.56 0.78 [15] 

 

5. Results  
Monte Carlo Markov Chain simulation methods employ 

the most appropriate sampling scheme resulting into N = 10, 
000 samples for each parameter. For each sample, the basic 
reproduction number (Ro, Rt, Rv and Rvt) are computed and 
their empirical probability values calculated when their 
value(s) is less than one and when more than one after from 
all the 10,000 sample (Table 2).  

Table 2. The empirical probability values when the basic reproduction 
number is less than one and when more than one. 

 
Count Empirical Probability 

 
<1 <1 >1 

Ro 52 0.0052 0.9948 
Rt 2889 0.2889 0.7111 
Rv 3755 0.3755 0.6245 
Rvt 4836 0.4836 0.5164 

The histograms and probability distribution for Ro, Rvt, Rt  
and Rv are obtained as shown in Figure 1. The fitted 
probability distribution for the histograms in Figure 1 is 
approximation of the observed data whose parameters are 
given in Table 1 and their P-P plots illustrated in Figure 2.  

 

Figure 1. Histograms and probability density functions of Ro, Rt, Rv and Rvt 

of pneumonia model. 

The best fit probability distributions for Ro, Rt, Rv and Rvt are 
shown in Table 3 which indicates that when no control 
strategy are used, the basic reproduction number is normally 
distributed with a mean of 5.60 and a standard deviation of 
2.75. This means that any shift on the value of the mean to 
the right will propagate the disease positively and viceversa. 

Table 3. Probability distributions with their parameters specified. 

Distribution Parameters Estimates Mean 

Ro ∼ N (µ, σ2 ) µ = 5.60, σ = 2.75 E(Ro )=5.60 

Rt ∼ Γ(κ, β) κ = 1.7270, β = 0.8995 E(Rt )=1.9199 

Rv  ∼ Weib(κ, λ) κ = 1.363, λ = 1.7007 E(Rv )=1.556 

Rtv  ∼ Weib(κ, λ) κ = 1.4833, λ = 1.2686 E(Rtv )=1.149 

The basic reproduction number when considering 
vaccination only in distributed according to Weibull with a 
shape parameter of 1.363 and a scale parameter of 1.7. When 
treatment strategy is applied, then the basic reproduction 
number is distributed according to gamma with shape 
parameters of 1.727 and rate parameter of 0.89. Finally, 
when both the treatment and vaccination strategy are used, 
then the basic reproduction number is distributed according 
to the Weibull with a shape parameter of 1.48 and a scale 
parameter of 1.27.  

The value of the basic reproduction number R is a useful 
indicator because it helps to determine whether or not an 
infectious disease can spread through a population. 

 

Figure 1. P-P Plot for Ro, Rt, Rv and Rvt of pneumonia model. 
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When 6	 < 	1 then the infection will die out in the long 
run. But if 6	 > 	1 then the infection will be able to spread 
in a population. Using the results in Table 3, we show in 
Table 4 that the probability that the infection will die out or 
spread in the population by computing P r(R ≤ 1) and P r(R > 
1) respectively. 

Table 4. Probability of disease inversion. 

 
P r(Disease will die out) P r(Disease will invade) 

Ro 0.0473 0.9527 

Rt 0.3063 0.6937 

Rv 0.3841 0.6158 

Rtv 0.5047 0.4953 

6. Conclusion  
A quantitative analysis can be performed by using 

single-point estimates (referred to as deterministic). Using 
this method, one may assign values for discrete parameters 
to see what outcome they might have on the basic 
reproduction number from each. For example, what 
parameter values will result to a basic reproduction number 
of 1, less than 1 or more than 1. However, the approach 
considers only a few discrete outcomes, ignoring hundreds 
or thousands of others. It also gives equal weight to each 
outcome. That is, no attempt is made to assess the likelihood 
of each outcome.  

Monte Carlo simulation is a better way of addressing the 
drawbacks where uncertain inputs in a model (basic 
reproduction number) are represented using ranges of 
possible values of known (or assumed) probability 
distributions. By using probability distributions, parameters 
can have different probabilities of different outcomes 
occurring.  Probability distributions are a much more 
realistic way of describing uncertainty in parameters used in 
computing the basic reproduction number. Fitting the 
probability distributions remove any noise that may be 
available in your data hence improves the results. This 
explains the difference in Table 1 (probabilities computed 
from the simulated data) and Table 3(probabilities computed 
from the fitted probability distribution).  
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