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ABSTRACT

The synergistic relationship between HIV/AIDS and respiratory infections, such as tu-

berculosis(TB) and pneumonia not only results in high mortality rates but is also a source

of economic burden borne by many nations in the sub-saharan Africa. The search for a

cure or vaccine for HIV/AIDS has yielded no conclusive results so far. Treatment fail-

ure and lack of adherence to treatment schedule which results in the evolution of drug

resistant strains of diseases are challenges to grapple with in the management of diseases

such as HIV/AIDS and TB. Due to global economic recession, provision and access to

subsidised medication may not be sustainable in the long run. Existing HIV/AIDS - TB

models do not consider protection, which may be less costly as an intervention measure.

Notably, the interaction between HIV/AIDS and pneumonia which contribute to a signif-

icant number of mortality cases in HIV/AIDS, has not been mathematically explored. In

this work, two deterministic models based on systems of ordinary differential equations,

one on the co-infection of HIV/AIDS with TB and the second on the co-infection between

HIV/AIDS and pneumonia are formulated and analyzed to investigate protection as a

control strategy. Using the next generation matrix approach the reproduction numbers

for the models are determined and the respective disease free equilibrium points are shown

not to be globally asymptotically stable. This implies that reoccurrence of the disease is

possible especially when the conditions favoring such reoccurrence are prevailing. Four

cases of maximum protection are considered. In all cases, the endemic states are shown

to exist provided that the reproduction number is greater than unity. By use of Routh-

Hurwitz criterion and suitable Lyapunov functions, the endemic states are shown to be

locally and globally asymptotically stable respectively. This implies that with maximum

protection against one infection, the other disease can be controlled with intervention

measures possibly resulting in minimal deaths. This is illustrated by the numerical sim-

ulations which shows that protection as a strategy reduces the disease prevalence in all

the cases considered. Thus, from the findings, emphasis should be placed on advocacy

for protection against infection as a strategy for reducing disease prevalence.
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CHAPTER 1

INTRODUCTION

1.1 Background Information

Human immunodeficiency virus (HIV), whose discovery dates back to 1981[46], is a virus

that overtime weakens the bodys immunity. Immunity system is the body’s main defence

against the threat of invasion by pathogenic organisms such as bacteria and viruses[22].

HIV destroys the CD4+ T cells making the body unable to fight other infections and at

this level, HIV leads to Acquired immunodeficiency syndrome (AIDS). With a compro-

mised immune system, the body is at risk of opportunistic infections (OIs) such as TB

and pneumonia [30, 32, 41]. Synergistic relationship between Malaria and HIV/AIDS has

also been identified[28].

Respiratory infections such as TB and pneumonia account for a significant portion of

illnesses among HIV/AIDS patients, since they take advantage of the weakened immune

system. The mortality and morbidity associated with these illnesses is high in popula-

tions affected by poverty, social unrest and lack of proper health infrastructure, especially

in the developing world[44].

TB is an airborne respiratory bacterial disease in humans caused by Mycobacterium tu-

berculosis (Mtb) [4]. It is a slow dynamics disease [26] and is mostly transmitted through

the air when persons with pulmonary TB cough. The risk factors of TB infection are

generally prolonged close interactions with infectious individuals and immunosuppression

such as in HIV/AIDS[45]. The incubation period for TB is 2 to 10 weeks. Most TB infec-

tions in children and adolescents are asymptomatic [16]. When infection causes disease,

signs or symptoms include; chronic cough, weight loss, fever, growth delay, night sweats

and chills. Infection is often diagnosed by a positive TB skin test result. A chest x-ray

film is needed for those with a positive skin test to determine the extent of the infection

and the necessary treatment. In 2003, the estimated number of new TB cases was 8.8

million with 1.7 million deaths worldwide. Approximately, 27% of the new cases and 31.5

% of the deaths arose in Africa[19]. Thus there is need for protective measures to be put

in place.
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TB is the leading cause of death among people infected with HIV/AIDS[30]. According

to the world health organization (WHO) estimates about 33% of HIV patients worldwide

are co-infected with TB and about half of HIV infected persons are expected to acquire

TB[45, 49]. Unfortunately three quarters of all dually infected people live in sub-saharan

Africa [43]. HIV infected individuals with latent TB are more likely to progress to ac-

tive TB faster than those who are sero-negative for HIV[41]. Furthermore the risk of

recurrent TB disease is high in HIV infected patients due to treatment failure[1, 17, 41].

About 88% of recurrent TB is due to re-infection with a different strain of mycobacterium

tuberculosis[20]. This may easily lead to drug resistant strains of TB.

Pneumonia is a lung infection involving the lung alveoli (air sacs), caused by microbes, in-

cluding bacteria, viruses, or fungi. The viruses which cause pneumonia include influenza

A and B viruses; respiratory syncytial virus (RSV); and haemophilus parainfluenza types

1, 2 and 3. Streptococcus pneumoniae is the most common cause of bacterial pneumonia.

Haemophilus influenzae type b, group A streptococcus, and Mycobacterium tuberculosis

are bacteria that also cause pneumonia. Pneumonia can be transmitted when airborne

microbes from an infected individual are inhaled by a susceptible individual. Generally,

the symptoms of pneumonia include: cough, difficult breathing, fever, muscle aches, loss

of appetite and lethargy. Pneumonia mortality in children is very high especially in the

developing world, with an estimate of 5,500 deaths per day [47].

Initially, intervention for HIV/AIDS was aimed at preventing new infections through

creating awareness and advocating for change of behaviour. Currently, antiretroviral ther-

apy(ARVs) is available as a treatment measure, which help to improve the quality of life of

HIV infected individual hence reducing the morbidity and mortality related to HIV/AIDS.

ARVs restore the immune system by maximal suppression of viral replication[33]. Unless

coupled with counselling, the administration of ARVs can be counter productive since

the individuals on ARVs can continue spreading the infection. The challenge of scarce

economic resources is a threat to sustained access to ARV’s. Furthermore, lack of ad-

herence to treatment schedule is a challenge among HIV/AIDS patients. The search for

HIV/AIDS vaccine has yielded no results so far. Thus effective programs to reduce HIV

transmission are still needed[31]. Prevention against infection seems to be the viable

alternative at the moment. Prevention against HIV/AIDS may include abstinence, being

faithful, use of condoms, male circumcision among others.
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TB treatment involves a 4-drug regimen for a minimum of six months with multiple an-

tibiotics and regimens shorter than six months duration are not recommended by WHO

for bacteriologically unconfirmed TB[13]. Due to this long period of treatment, in some

cases, patients do not adhere to the treatment schedule and this leads to treatment failure

and or drug resistance to TB. Pneumonia is generally treated by use of antibiotics. How-

ever it requires that the bacteria causing the pneumonia be identified so that the right

antibiotic is administered. Severe pneumonia may lead to patients being place under

intensive care unit due to difficulty in breathing.

1.2 Statement of the problem

The search for a cure or vaccine for HIV/AIDS has yielded no conclusive results so

far. Treatment failure and lack of adherence to treatment schedule which results in

the evolution of drug resistant strains of diseases are challenges to grapple with in the

management of diseases such as HIV/AIDS and TB. Due to global economic recession,

provision and access to subsidised medication may not be sustainable in the long run.

Existing HIV/AIDS - TB models do not consider protection, which may be less costly

as an intervention measure. Notably, the interaction between HIV/AIDS and pneumonia

which contribute to a significant number of mortality cases in HIV/AIDS, has not been

mathematically explored.

1.3 Objectives of the study

The broad objective of this study is to develop deterministic models to study the dynamics

of HIV/AIDS co-infection with TB and pneumonia in the presence of protection.

The specific objectives of this research are:

(i) To formulate co-infection models for HIV/AIDS and TB, HIV/AIDS and pneumonia

incorporating protection.

(ii) To determine the long term behaviour of the solutions by analyzing the equilibrium

points.

(iii) To evaluate, through simulation, the role of protection in minimizing the effects of

co-infection.
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1.4 Scope of the study

This study will be carried out at Maseno University, Kenya, Africa. Data for simulation

will be obtained from relevant sources.

1.5 Significance of the study

The findings of the study shall provide useful insights to policy makers and healthcare

providers on the design and assessment of protection as an intervention strategy. The

results also contribute to the body of knowledge and research on mathematical modelling

of co-infections.

1.6 Justification of the study

Respiratory infections such as TB and pneumonia account for a significant portion of

illnesses among HIV/AIDS patients, since they take advantage of the weakened immune

system. The mortality and morbidity associated with these illnesses is high in populations

affected by poverty, social unrest and lack of proper health infrastructure, especially in

the developing world. In the light of scarce resources and failure to adhere to treatment

schedule, protection as a strategy of control may be more viable than treatment.

1.7 Parameter values

Symbol Parameter description

µ Natural death rate
Λ, χ,$, ν, γ Recruitment rates

α1, α2 Loss of protection
ε Treatment rate

δT , δA, δP Death rate due to TB, HIV/AIDS and Pneumonia
τ, τ1, τ2, τ3, τ4 Rate of developing disease symptoms

π, θ, β Probability of acquiring a disease
ιT , ιH , χP , χH Probability of success of protection

C, η, θ Contact rate with HIV/AIDS infectives,
TB and Pneumonia

υ1, φ1, υ2, κ1, κ2, ω, ϕ1, ϕ2, ω1, ω2 Modification parameters
φ2, φ3, ν1, ν2, σ, γ, %, κ, ω3, φ1, φ2 Modification parameters

λT , λH , λP Rate of infections
R Set of real numbers

4



1.8 Model assumptions

(i) The initial population comprises of uninfected individuals

(ii) No simultaneous infection of an individual with two diseases

(iii) No dual protection

(iv) There is successful treatment of TB and pneumonia

1.9 Model limitations

(i) The models cannot be generalized

(ii) The population used is closed i.e a population in which neither immigration nor

emigration occurs. It is governed by rate of birth, growth and death
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CHAPTER 2

LITERATURE REVIEW

The HIV/AIDS epidemic has become a major cause of mortality and has placed high

demands on the world health system and economy since its discovery in 1984. It has

affected all sections of the society such as the children, youths, adults women and men.

In Kenya HIV prevalence is estimated based on demographic and health survey, AIDs

indicator surveys and antenatal clinic sentinel surveillance. In 2011, several heads of

states and governments during a high level meeting committed themselves to redouble

efforts such as universal access to HIV prevention, treatment, care and support as a

critical step towards ending the global HIV epidemic, with a view to achieving Millennium

Development Goal 6 and to halt and begin to reverse the spread of HIV by 2015[24].

2.1 Interactions of HIV/AIDS with tuberculosis and pneumonia

About 1/3 of 39.5 million HIV infected people worldwide are co-infected with TB and up

to 50 per cent of individuals living with HIV are expected to develop TB [9, 49]. Unfortu-

nately three quarters of all dually infected people live in sub-saharan Africa[43, 50]. The

risk of developing TB after an infectious contact is estimated to be 5-15%/year in HIV-1

infected patients compared to 5-10% during life time of non HIV-1 infected patients. HIV

patients with latent TB progress faster to active TB due to compromised immune system

[41, 50]. Tuberculosis incidences are increasing and its treatment has increasingly become

more complex and difficult in HIV-1 infected patients due to the rising incidences of multi

drug resistant tuberculosis (MDR-TB)[9] often related to non adherence to therapy, se-

vere immunodeficiency, concurrent anti-fungal therapy and diarrhea.

As HIV infection progresses, immunity declines and patients tend to become more sus-

ceptible to common or even rare infections. The presence of other infections including

TB and pneumonia tend to increase the rate of HIV replication. This acceleration may

result in higher levels of infection and rapid HIV progression to the AIDS stage[28].

The study[25] assessed the incidence and clinical characteristics of patients with HIV in-

fection with concurrent pneumocystis pneumonia (PCP) and TB. A retrospective record

review of HIV infected patients admitted with pulmonary TB and PCP during the same
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hospital admission from 1995 to 2004 was carried out. 2651 patients with HIV infection

and possible TB or PCP were identified. There were 99 cases of PCP (81 presumptive

and 18 confirmed) and 35 were new cases of TB. There were 17 patients who had a new,

concurrent diagnosis of pulmonary TB and PCP. Approximately half of these patients

were unaware of their HIV infections. Most were men and had a CD4+ T count less than

100cells/mm3.

2.2 Mathematical models for HIV/AIDS, tuberculosis and pneumonia

Mathematical models give epidemiologists a powerful tool for quantitatively assessing

effectiveness of control methods and uncovering mechanisms of observed infection data

[34]. Some of the models proposed by various authors for describing the epidemiology as

well as the epidemiological consequences of the HIV/AIDS epidemic was reviewed by[39].

Their study highlight that mathematical models have been very useful in HIV research,

particularly for empirical studies on people living with HIV/AIDS(PLWHA). The enor-

mous public health burden inflicted by TB, pneumonia and HIV/AIDS necessitates the

use of mathematical modelling to gain insights into their transmission dynamics and to

evaluate the control measures in place. The primary disease is HIV/AIDS and host that

are already infected with HIV/AIDS become co-infected with TB and pneumonia.

A mathematical model incorporating TB treatment and the use of ART for HIV/AIDS

was presented by [11]. The major challenges in the process of treatment range from non-

adherence to treatment, stigma and lack of accessibility to these drugs. Unless coupled

with counselling, the administration of ARVs can be counter productive since the indi-

viduals on ARVs can continue spreading the infection. The challenge of scarce economic

resources is a threat to sustained access to ARV’s. The search for HIV/AIDS vaccine

has yielded no results so far. Thus effective preventive programs to reduce HIV/AIDS

transmission are still needed.

An HIV/AIDS model incorporating complacency for the adult population was formu-

lated by [2]. The model analysis and simulation showed that complacency resulting from

dependence of HIV transmission on the number of AIDS cases in a community leads to

damped periodic oscillations in the number of infective with oscillations more marked

at lower rates of progression to AIDS. Their model showed that prolonged survival of
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AIDS cases lowers the endemic equilibrium level which is desirable. In a way this model

advocates for protection which is the opposite of complacency as a means of lowering

transmission rates.

A non linear mathematical model by [14] is proposed and analysed to study the trans-

mission of HIV/AIDS in a population of varying size with treatments and vertical trans-

mission. Stability analysis of the model showed that an increase in the rate of vertical

transmission lead to an increase in the population of infectives which in turn increased

the pre-AIDS and AIDS population. Vertical transmission of HIV has been significantly

reduced especially for expectant mothers attending prenatal clinics. This is because those

who are found to be HIV positive are placed on ARVs. Today HIV/AIDS is largely trans-

mitted sexually[18].

A model on the spread of HIV/AIDS amongst a population of injecting drug users was

developed and analysed by [15]. A threshold parameter Ro which determines the be-

haviour of the model was established. This model had a unique endemic equilibrium that

was found to be locally stable. This model does not consider any intervention strategy.

Findings from several studies have shown that drug abuse can exacerbate HIV disease

progression and prevalence[21].

A non linear mathematical model of the spread of HIV/AIDS in a population of varying

size with immigration of infectives was analyzed by [42]. The findings showed that the

disease was always persistent if the direct immigration of infectives was allowed in the

community. In the absence of inflow of infectives the endemicity of the disease is found

to be higher if pre-AIDS individuals also interacted sexually in comparison to the case

when they did not take part in sexual interactions. Currently there are no laws which

prohibit immigration on the basis of one’s HIV/AIDS status. This really poses a chal-

lenge especially in the light of sex tourism. Consequently, protection may be the best

strategy in reducing new HIV/AIDS infections.

A deterministic model that incorporates the joint dynamics of TB and HIV/AIDS has

been considered by [30]. They provided general insights into the potential effects of

HIV infection on TB and vice versa. Their model did not include protection and treat-

ment though they proposed that treatment be incorporated into models of HIV/TB

co-infection. Synergistic interaction between HIV and mycobacterium tuberculosis using
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a deterministic model, which incorporated many of the essential biological and epidemi-

ological features of the two diseases was addressed by [40]. In their analysis, HIV only

model was shown to have a globally asymptotically stable disease -free equilibrium when-

ever the reproduction number was less than unity and had a unique endemic equilibrium

whenever the number exceeded unity. TB only model underwent backward bifurcation,

where the stable free equilibrium coexisted with a stable endemic equilibrium when the

associated reproduction threshold was less than unity. Their full model, with both HIV

and TB was simulated to evaluate the impact of the various treatment strategies. The

study showed that the HIV only strategy saved more cases of the mixed infection than

the TB only strategy and for low treatment rates, the mixed only strategy saved the least

number of cases in comparison to the other strategies. However, as already pointed out,

treatment has its challenges namely; non-adherence, stigma and accessibility.

An HIV/AIDS and TB co-infection model which considers antiretroviral therapy for the

AIDS cases and treatment of all forms of TB was presented by [11]. This model did not

incorporate protection for the two diseases. They found out that treatment of AIDS cases

resulted in a significant reduction of numbers of individuals progressing to active TB and

treatment of latent and active forms of TB resulted in delayed onset of the AIDS stage

of HIV infection. The danger of this delay is that in the absence of counselling people do

not embrace protection and may be complacent. This may accelerate HIV incidence rates.

Review and comparison of mathematical models of TB dynamics was done by [6]. They

presented a spartial stochastic individual based model and a set of delay differential

equations encapsulating the same biological assumptions. They compared two different

assumptions about partial immunity and explored the effect of treatment. The challenges

that face TB treatment range from incorrect drug prescription to non adherence among

others and this can lead to treatment failure. This model does not incorporate protection

against TB.

A mathematical model for the co-infection of malaria and pneumonia was developed and

analyzed by [23]. Protection as a strategy against infection was not incorporate. Deter-

ministic model for malaria and HIV-coinfection, incorporating protection against malaria

and HIV positive immigrants in the community was developed by [3]. There was no dis-

ease free point, but an initial infective immigration rate existed and a small perturbation

around this point approached global stability if there was reduced susceptibility to HIV

9



by malaria infected individuals. Also, if HIV infectives are protected against malaria, the

same attains global stability. They showed that protection against both diseases altered

the qualitative behaviour of solutions. Motivated by these results, we propose to inves-

tigate the effect of protection on the transmission dynamics of HIV/AIDS, tuberculosis

and pneumonia in two separate co infection models.
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CHAPTER 3

HIV/TB Model

3.1 Model description and formulation

We formulate a model in which total human population at any time t, denoted by

N(t) is subdivided into classes, S(t) the class of individuals susceptible to both TB

and HIV/AIDS infection, PT , individuals who are protected against TB, This protection

is lost at the rate α1. The class LT consists of individuals who are asymptomatically

infected with TB infection. This infection occurs at the rate λT , i.e the rate at which the

disease spread among people. In the absence of treatment, TB symptoms are developed

at the rate τ1. The class IT comprises of individuals symptomatically infected with TB.

Treatment for TB is assumed to be successful and is done at the rate ε. Thus the class TT

consists of individuals who have recovered from TB infection. Mortality occurs among

active TB patients at the rate δT , while natural death is assumed to occur in all classes

at the rate µ.

The class PH consist of individuals who are protected against HIV/AIDS infection. This

protection may be lost due to risky behaviour at the rate α2. Since the modes of trans-

mission for the two diseases are different we do not assume simultaneous infection of an

individual with the two diseases. Furthermore, for purposes of simplicity we do not as-

sume dual protection for TB and HIV/AIDS. The class IH is made up of individuals who

are asymptomatically infected with HIV/AIDS. This infection occurs at the rate λH .

In the absence of intervention (therapy), individuals develop symptoms of HIV/AIDS

and progress from the class IH to the class IA at the rate τ2. Mortality occurs among

HIV/AIDS patients at the rate δA.

Individuals in the class IH can acquire TB at the rate υ1λT and progress to the class

IHL, where υ1 is a modification parameter. This group of individuals develop TB symp-

toms at the rate τ3, where τ3 > τ1, and progress to the class IHT . Individuals in the

class IA can also acquire TB at the rate υ2λT , where υ2 > υ1 and progress to the class

IAL. This group of individuals develop TB symptoms at the rate τ4, where τ4 > τ3, and

progress to the class IAT . In the absence of intervention (therapy), individuals develop

symptoms of HIV/AIDS and progress from the class IHT to the class IAT at the rate
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υ3τ2, where υ3 is a modification. Upon effective TB treatment, treated individuals in the

class IAT will move back to the class IA. Mortality occurs due to the dual infection of

HIV/AIDS and TB at the rate δAT .

Individuals in the class IL can acquire HIV/AIDS at a rate κ1λH and progress to the

class ILH Individuals in the class IT can acquire HIV/AIDS at a rate κ2λH and progress

to the class ITH . κ1 and κ1 are modification parameters and κ2 > κ1.

The total human population at any time t is defined as

N(t) = S(t) + PT (t) + PH(t) + IH(t) + IHL(t) + IL(t) + IT (t) + TT (t)

+IHT (t) + IA(t) + IAL(t) + IAT (t)

(3.1.1)

We define the rate at which susceptible individuals acquire TB as

λT =
θη[φ1IT + φ2ITH + φ3IAT ]

N(t)
(3.1.2)

where θ is the probability that a susceptible individual will acquire TB upon contact with

TB infected individuals and η is the contact rate with TB infected individuals while and

φ3 > φ2 > φ1 are modification parameters.

The rate at which a susceptible individual acquire HIV/AIDS is defined as

λH =
πC[IH + γ[ILH + σITH ] + ω[IA + ν1[IAL + ν2IAT ]]]

N(t)
(3.1.3)

where π is the probability that susceptible individuals will acquire HIV upon effective con-

tact with an HIV infected individual and C is the effective contact rate with HIV/AIDS

infected individuals. This effective contact rate may include, sexual intercourse with an

infected individual, blood transfusion with infected blood, sharing sharp objects with

HIV/AIDS infected individuals and vertical transmission from mother to child during

birth and through breastfeeding. while γ, σ, ω, ν are modification parameters.

Disease prevalence is the number of people in a population who have a disease at a

given time. For HIV/AIDS, this prevalence is given by

[IH + γ[ILH + σITH ] + ω[IA + ν1[IAL + ν2IAT ]]]

N(t)
(3.1.4)
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It is assumed that an individual who is asymptomatic infected with HIV/AIDS and

has latent TB is more infectious of HIV/AIDS than one asymptomatically infected with

HIV/AIDS. The same assumption is made for an individual actively infected with TB

and is asymptomatic with HIV/AIDS. Similarly AIDS individuals are more infectious

than individuals asymptomatic with HIV due to high viral load[28].

The aim is to study the effect of protection for TB and HIV/AIDS in the co-infection

model. Protection against these two infections involves limiting exposure to risk factors

that can lead to infection. The risk factors for HIV involves; having unprotected anal

or vaginal sex, having another sexually transmitted infection such as syphilis, herpes,

chlamydia, gonorrhoea and bacterial vaginosis; sharing contaminated needles, syringes

and other injecting equipment and drug solutions when injecting drugs; receiving un-

safe injections, blood transfusions, medical procedures that involve unsterile cutting or

piercing; and experiencing accidental needle stick injuries [7]. Persons at high risk for

developing TB disease fall into two categories; persons who have been recently infected

with TB bacteria and persons with medical conditions that weaken the immune system.

Let ιT and ιH denote the probability of success of protection against TB and HIV/AIDS

respectively. The modified rate of infection for TB is λpT

λpT =
θη(1− ιT )[φ1IT + φ2ITH + φ3IAT ]

N(t)
(3.1.5)

and for HIV is

λpH =
πC(1− ιH)[IH + γ[ILH + σITH ] + ω[IA + ν1[IAL + ν2IAT ]]]

N(t)
(3.1.6)
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Figure 3.1.1: The flow diagram for tuberculosis and HIV/AIDS co-infection.

dS

dt
= (1−$ − χ)Λ + α1PT + α2PH

−(µ+ λH + λT )S

dPT
dt

= $Λ− (µ+ α1 + λH)PT (3.1.7)

dPH
dt

= χΛ− (α2 + µ+ λT+)PH

dIH
dt

= λHPT + λHS − (υ1λT + µ+ τ2)IH

dIA
dt

= τ2IH + εIAT − (µ+ δA + υ2λT )IA

dIL
dt

= λTPH + λTS − (µ+ κ1λH + τ1)IL

dIT
dt

= τ1IL − (µ+ δT + ε+ κ2λH)IT

dTT
dt

= εIT − µTT
dIHL
dt

= υ1λT IH + κ1λHIL − (µ+ τ3)IHL

dIHT
dt

= κ2λHIT + τ3IHL − (µ+ δT + υ3τ2)IHT

dIAL
dt

= υ2λT IA − (µ+ δA + τ4)IAL

dIAT
dt

= υ3τ2IHT + τ4IAL − (µ+ δT + δA + δAT + ε)IAT
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where $Λ is the constant recruitment rate into the class of individuals protected against

TB, χΛ is the constant recruitment rate into the class of individuals protected against

HIV and (1 − $ − χ)Λ is the constant recruitment rate into the class of susceptible

individuals to both TB and HIV virus. Every individual is assumed to be susceptible to

both infections. It is assumed that there is no simultaneous infection with HIV/AIDS

and TB because of the different transmission routes. It is also assumed that when one is

successfully treated against TB recovery does not not confer permanent immunity against

TB infection.

3.2 Positivity and boundedness of solutions

Since the model deals with human population, all the state variables are positive at all

time t. We show that our solutions are bounded in the set Γ where

{S(t), PH(t), PT (t), IH(t), IHL(t), IL(t), IT (t), TT (t),

ITH(t), IA(t), IAL(t), IAT (t)} ∈ Γ ⊂ R12
+ . (3.2.1)

Taking the time derivative of N(t) from Equation (3.1.7), we have

dN(t)

dt
=
dS

dt
+
dPT
dt

+
dPH
dt

+
dIH
dt

+
dIA
dt

+
dIL
dt

+
dIT
dt

+
dTT
dt

+
dIHL
dt

+
dIHT
dt

+
dIAL
dt

+
dIAT
dt

= Λ− µN − (δT + δA + δAT )IAT − δAIAL (3.2.2)

dN(t)

dt
= Λ− µN(t)− (δT + δA + δAT )IAT − δAIAL (3.2.3)

thus

dN(t)

dt
≤ Λ− µN(t) (3.2.4)

dN(t) + (µN(t)− Λ)dt ≤ 0 (3.2.5)

dN(t)eµt + (eµtµN(t)− eµtΛ)dt ≤ 0 (3.2.6)
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Integrating we have ∫
(N, t)dt =

∫
((eµtµN(t)− eµtΛ))dt ≤ 0 (3.2.7)

(N, t) = eµtN(t)− eµt Λ

µ
≤ b (3.2.8)

therefore

eµtN(t)− eµt Λ

µ
≤ b (3.2.9)

at t = 0

N(t)− Λ

µ
= b (3.2.10)

substituting b we get

eµtN(t)− eµt Λ

µ
= N(t)− Λ

µ
(3.2.11)

dividing by eµt we get

N(t) ≤ Λ

µ
+ (N(t)− Λ

µ
)e−(µt) (3.2.12)

as t→∞ we have

N(t) ≤ Λ

µ
(3.2.13)

which shows that the solutions are bounded . Having shown that our solutions are positive

and bounded for all t ≥ 0 in the region Γ, the model is well posed and biologically

meaningful and may now be analyzed in the same region.

3.3 Reproduction number R0

The basic reproduction number is the average number of secondary infections due to a

single infectious individual in a fully susceptible population[38]. It is the spectral radius

of a matrix

FV −1 (3.3.1)
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where F is the Jacobian of F , where F is the rate of appearance of new infections in

compartment and V is the Jacobian of V , where V is the rate of transfer of individuals

into and out of compartment. FV −1 is calculated by the method of next generation

matrix [37]. The disease free equilibrium of Equation (3.1.7) is given by

E0 = {S, PH , PT , IH , IA, IL, IT , TT , IHL, IHT , IAL, IAT} =

(
Λ

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (3.3.2)

We define F as

F =



λHPT + λHS
0

λTPH + λTS
0

υ1λT IH + κ1λHIL
κ2λHIT
υ2λT IA

0


(3.3.3)

We also define V as

V = V− − V+ (3.3.4)

where V− is the rate of transfer of individuals out of a compartment and V+ is the rate

of transfer of individuals into compartment. Thus V is given by

V =



(υ1λT + µ+ τ2)IH
−τ2IH − εIAT + (µ+ δA + υ2λT )IA

(µ+ κ1λH + τ1)IL
−τ1IL + (µ+ δT + ε+ κ2λH)IT

(µ+ τ3)IHL
−τ3IHL + (µ+ δT + υ3τ2)IHT

(µ+ δA + τ4)IAL
−υ3τ2IHT − τ4IAL + (µ+ δT + δA + δAT + ε)IAT


(3.3.5)

The Jacobian of F at the disease free equilibrium denoted as F is given by
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F =



ϑ1 ϑ2 0 0 ϑ3 ϑ4 ϑ5 ϑ6

0 0 0 0 0 0 0 0
0 0 0 ϑ7 0 ϑ8 0 ϑ9

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(3.3.6)

where ϑ1 = πc(1 − ιH), ϑ2 = πc(1 − ιH)ω, ϑ3 = πC(1 − ιH)γ, ϑ4 = πC(1 − ιH)γσ, ϑ5 =

πC(1 − ιH)ων1, ϑ6 = πC(1 − ιH)ων2, ϑ7 = θη(1 − ιT )Ω, ϑ8 = θη(1 − ιT )Ωφ2, ϑ9 =

θη(1− ιT )Ωφ4. Similarly, the Jacobian of V at the disease free equilibrium is denoted by

V and is given by

V =



ϕ1 0 0 0 0 0 0 0
−τ2 ϕ2 0 0 0 0 0 −ε

0 0 ϕ3 0 0 0 0 0
0 0 −τ1 ϕ4 0 0 0 0
0 0 0 0 ϕ5 0 0 0
0 0 0 0 −τ3 ϕ6 0 0
0 0 0 0 0 0 ϕ7 0
0 0 0 0 0 υ3τ2 τ4 ϕ8


(3.3.7)

Where ϕ1=µ+ τ2, ϕ2=µ+ δA, ϕ3=µ+ τ1, ϕ4=µ+ δT + ε, ϕ5=µ+ τ3, ϕ6=µ+ υ3τ2 + δT ,

ϕ7=µ+ δA + τ4 and ϕ8=µ+ δA + δT + δAT + ε Thus the eigenvalues of the matrix FV −1

are RT = θη(1−ιT )τ1φ1
(τ1+µ)(δT +µ+ε)

and RH = πC(1−ιH)(τ1ω+δA+µ)
(δA+µ)(µ+τ2)

. The spectral radius of FV −1 is

max{RT , RH}. Therefore, the effective reproduction number of model (2.1.7) is denoted

as RHT and is defined as R0 = max{RT , RH}.

The reproduction number RT gives the expected number of secondary TB infection pro-

duced by a single TB infectious individual during his/her infectious period when intro-

duced into a completely TB susceptible population. Similarly, the reproduction number

RH gives the expected number of secondary HIV/AIDS infection produced by a single

HIV/AIDS infectious individual during his/her infectious period when introduced into a

completely HIV/AIDS susceptible population. Since Equation (3.1.7) satisfy conditions

A1−A5 [48],then the disease free equilibrium E0 = (Λ
µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) is locally

asymptotically stable if RHT < 1 and unstable if RHT > 1. In the absence of protection
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ιT = ιH = 0, implying that the probability of success of protection is considered to be

zero.

3.4 Global stability for the disease free equilibrium

For global stability of the DFE, the technique by [5] is used. There are two conditions

that if met guarantee the global asymptotic stability of the disease free state. Equation

(3.1.7) may be written in the form

dX

dt
= K(X,Z)

dZ

dt
= G(X,Z), G(X, 0) = 0 (3.4.1)

where X ∈ R4 and X = {S, PT , PH , TT} denotes the number of uninfected individuals

and Z ∈ R8 where Z = {IH , IA, IL, IT , IHL, IHT , IAL, IAT} denotes the number of infected

individuals . EO = (Λ
µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) denotes the disease free equilibrium point

of this system where

X∗ = (
Λ

µ
)

conditions (2.4.2) may be met to guarantee global asymptotic stability

dX

dt
= K(X, 0), X∗is globally asymptotic stable

G(X,Z) = AZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0∀(X,Z) ∈ Γ (3.4.2)

where A = DzG(X∗, 0) is an M matrix and Γ is the region where the model has biological

meaning.

Theorem

If system (3.4.1) satisfies conditions (3.4.2), then the fixed point

E0 = (X∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, )

is a globally asymptotically stable equilibrium of the system (3.4.1) provided that RHT <

1 and the assumptions in (3.4.2) are satisfied .

Proof
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Consider K(X, 0) = (Λ− µS) and G(X,Z) = AZ − Ĝ(X,Z) where

A =



−h1 0 0 0 0 0 0 0
τ2 −h2 0 0 0 0 0 ε
0 0 −h3 0 0 0 0 0
0 0 τ1 −h4 0 0 0 0
0 0 0 0 −h5 0 0 0
0 0 0 0 τ3 −h6 0 0
0 0 0 0 0 0 −h7 0
0 0 0 0 0 υ3τ2 τ4 −h8


(3.4.3)

where h1 = µ+τ2, h2 = µ+δA, h3 = µ+τ1,h4 = µ+δT +ε,h5 = µ+τ3, h6 = µ+δT +ν3τ2,

h7 = µ+ δA + τ4, h8 = µ+ δT + δA + δAT + ε

and

Ĝ(X,Z) =



G1

G2

G3

G4

G5

G6

G7

G8


=



−λH(PT + S) + υ1λT
+υ2λT

−λT (PH + S) + κ1λH
κ2λH

−(υ1λT + κ1λH)
−(κ2λH)
−(υ2λT )

0


(3.4.4)

Since all the conditions in Equation (3.4.2) are not satisfied because G5, G6, G7 < 0,

the DFE E0 may not be globally asymptotically stable, implying that we anticipate

an outbreak when particular conditions which favour the outbreak of the disease are

prevailing.

3.4.1 The case of maximum protection against TB

Suppose that there are no new TB infections and the only infection that spread in the

population is that of HIV/AIDS. This can be achieved by ensuring that the probability

of success of protection is high and can be considered as ιT = 1. Thus Equation (3.1.7)
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will be reduced to

dS

dt
= (1− χ−$)Λ + α2PH − (µ+ λH)S

dPH
dt

= χΛ− (α2 + µ)PH (3.4.5)

dPT
dt

= $Λ− (µ+ λH)PT

dIH
dt

= λH(S + PT )− (µ+ τ2)IH

dIA
dt

= τ2IH − (µ+ δA)IA

The rate of infection for Equation (3.4.5) is defined as

λhH =
πC(1− ιH)(IH + ωIA)

N(t)
(3.4.6)

with the effective reproduction number

RH =
πC(1− ιH)(δA + µ+ ωτ2)(µ(1− χ) + α2)

(δA + µ)(µ+ τ2)(µ+ α2)
. (3.4.7)

An endemic state I∗H > 0 where

I∗H =
Λ(RH − 1)(δA + µ)

(Cπ)(1− ιH)(δA + µ+ ωτ2)− δAτ2

(3.4.8)

exists provided RH > 1 with πC < πCιH + τ2 since (1− ιH) > 0

3.4.2 Local stability of the endemic equilibrium

The first four equations in Equation (3.4.5) do not contain the class IA, and so we can

analyze the reduced system

dS

dt
= (1− χ−$)Λ + α2PH − (µ+ λhH)S

dPH
dt

= χΛ− (α2 + µ)PH (3.4.9)

dPT
dt

= $Λ− (µ+ λhH)PT

dIH
dt

= λhH(S + PT )− (µ+ τ2)IH
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The Jacobian matrix of equation (3.4.9) at E∗(S∗, P ∗
H , P

∗
T I

∗
H) , denoted as J(E∗) is given

by

J(E∗) =


−(µ+ λhH) α2 0 −βC(1−ιH)S∗

N(t)

0 −(α2 + µ) 0 0

0 0 −(µ+ λhH)
−βC(1−ιH)P ∗

T

N(t)

λhH 0 λhH −(µ+ τ2)

 (3.4.10)

Clearly−(µ+α2) is an eigenvalue of Equation (3.4.10). The other eigenvalues are obtained

from the reduced matrix B where

B =

 −(µ+ λhH) 0 −βC(1−ιH)S∗

N(t)

0 −(µ+ λhH)
−βC(1−ιH)P ∗

T

N(t)

λhH λhH −(µ+ τ2)

 (3.4.11)

An important creterion by Routh-Hurwitz gives the necessary and sufficient conditions

for all the roots of the characteristic polynomial (with real coefficients) to lie in the left

half of the complex plane. In other words, all the roots of the polynomial are negative or

have negative real roots iff the determinants of all Hurwitz matrices are positive [52].

Clearly, the trace of Equation (3.4.11) is negative and the determinant of Equation

(3.4.11) is given by

detB = [
I∗H(1− ιH)ηθ

N(t)
+ µ][

I∗H(1− ιH)(S∗ − P ∗
T )ηθ

N2(t)

(I∗H(µ+ τ)− (1− ιH)ηθ + µ+ τ)− µ(µ+ τ)]

(3.4.12)

detB > 0 provided that

[
I∗H(1− ιH)(S∗ − P ∗

T )ηθ

N2(t)
(I∗H(µ+ τ)− (1− ιH)ηθ + µ+ τ) ≥ (µ(µ+ τ))

(3.4.13)

Thus, by Routh-Hurwitz creteria, the endemic state E∗(S∗, P ∗
H , P

∗
T I

∗
H) is locally asymp-

totically stable provided that inequality (3.4.13) holds.
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3.4.3 Global stability of the endemic equilibrium

We obtain the global stability by means of Lyapunov’s direct method and LaSalle’s

invariance principle[12]. For Equation (3.4.5), consider the Lyapunov function

L : (S, PH , PT , IH , IA) ∈ Γ ⊂ R5
+ : S, PH , PT , IH , IA > 0 (3.4.14)

where

L : (S, PH , PT , IH , IA) = λhH(S − S∗ − S∗ log
S

S∗ ) + λhH(PH − P ∗
H − P ∗

H log
PH
P ∗
H

) +

λhH(PT − P ∗
T − P ∗

T log
PT
P ∗
T

) + λhH(IH − I∗H − I∗H log
IH
I∗H

) +

λhH(IA − I∗A − I∗A log
IA
I∗A

)

(3.4.15)

L is C1 in the interior of Γ. E∗ is the global minimum of L on Γ and L : (S, PH , PT , IH , IA) =

0. The time derivative of L is given by

dL

dt
= L̇ = λhH(1− S∗

S
)
dS

dt
+ λhH(1− P ∗

H

PH
)
dPH
dt

+ λhH(1− P ∗
T

PT
)
dPT
dt

+

λhH(1− I∗H
IH

)
dIH
dt

+ λhH(1− I∗A
IA

)
dIA
dt

= −λhH(
S − S∗

S
)[(µ+ λhH)(S − S∗) + α2(PH − P ∗

H)]

−λhH(
PH − P ∗

H

PH
)[(α2 + µ)(PH − P ∗

H)]− λhH(
PT − P ∗

T

PT
)[(µ+ λhH)(PT − P ∗

T )]

−λhH(
IH − I∗H
IH

)[(µ+ τ2)(IH − I∗H)]− λhH(
IA − I∗A
IA

)[(µ+ δA)(IA − I∗A)]

(3.4.16)

hence L̇ ≤ 0 is negative . We see that L̇ = 0 at E∗. Thus L̇ is negative definite and

the largest compact invariant set in {S, PH , PT , IH , IA} ∈ Γ : L̇ = 0 is the Singlet on E∗,

where E∗ is the endemic equilibrium. Thus E∗ is globally asymptotically stable in the

interior of Γ. Mathematically, we have shown that protection produces desired results

in terms of disease intervention. Therefore, at this point, we see the positive impact

protection against one disease has on the dynamics of the other disease.
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3.4.4 Case of maximum protection against HIV/AIDS

Assuming that there is no new HIV/AIDS infections in the TB and HIV/AIDS co-

infection model, the resulting model will be

dS

dt
= (1−$ − χ)Λ + α1PT − (µ+ λT )S

dPT
dt

= $Λ− (µ+ α1)PT (3.4.17)

dPH
dt

= χΛ− (µ+ λT )PH

dIL
dt

= λT (S + PH)− (µ+ τ1)IL

dIT
dt

= τ1IL − (µ+ δT + ε)IT

dTT
dt

= εIT − µTT

The rate of infection for Equation (3.4.17) is

λtT =
θη(1− ιT )IT

N(t)
(3.4.18)

and the effective reproduction number is given by

RT =
θη(1− ιT )(µ(1−$) + α1)

(δT + µ+ ε)(µ+ τ1)(µ+ α1)
(3.4.19)

An endemic state I∗L > 0 where

I∗L =
Λ(δA + ε+ µ)(RT − 1)

(ηθτ1)(1− ιT )
(3.4.20)

exist provided that RT > 1 with (1− ιT ) > 0.
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3.4.5 Local stability of the endemic equilibrium

Since the first five equations of Equation (3.4.17) are independent of TT , we analyze the

reduced system

dS

dt
= (1−$ − χ)Λ + α1PT − (µ+ λtT )S (3.4.21)

dPT
dt

= $Λ− (µ+ α1)PT

dPH
dt

= χΛ− (µ+ λtT )PH

dIL
dt

= λtT (S + PH)− (µ+ τ1)IL

dIT
dt

= τ1IL − (µ+ δT + ε)IT

The Jacobian of Equation(3.4.21) at the endemic state E∗(S∗, P ∗
H , P

∗
T , I

∗
L, I

∗
T ) is given by

J(E∗) =


−(µ+ λtT ) α1 0 0 −θηS∗(1−ιT )

N(t)

0 −(µ+ α1) 0 0 0

0 0 −(µ+ λtT ) 0
−θηP ∗

H(1−ιT )

N(t)

λtT 0 λtT −(µ+ τ1) 0
0 0 0 τ1 −(µ+ δT + ε)

 (3.4.22)

Since −(µ + α1) is an eigenvalue of Equation (3.5.22). Next we consider the reduced

matrix

B1 =


−(µ+ λtT ) 0 0 −θηS∗(1−ιT )

N(t)

0 −(µ+ λtT ) 0
−θηP ∗

H(1−ιT )

N(t)

λtT λtT −(µ+ τ1) 0
0 0 τ1 −(µ+ δT + ε)

 (3.4.23)

The trace of Equation (3.4.23) is negative and the determinant is given by

detB1 =
1

N(t)
{[I∗T (1− ιT )θη +Nµ]

(I∗T )2(1 + P ∗
H)(1− ιT )3θ3η3 + (N(t))2[(I∗T )2(1− ιT )θη +N(t)µ](µ+ δT + ε)(µ+ τ1)}

(3.4.24)

Which is positive since (1 − ιT ) > 0. Thus, the endemic state E∗(S∗, P ∗
H , P

∗
T , I

∗
L, I

∗
T ) is

locally asymptotically stable.
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3.4.6 Global stability of the endemic equilibrium

Consider the non-linear Lyapunov function

Le : (S, PH , PT , IL, IT , TT ) ∈ Γ ⊂ R6
+ : S, PH , PT , IL, IT , TT > 0 (3.4.25)

defined as

Le : (S, PH , PT , IL, IT , TT ) = λtT (S − S∗ − S∗ log
S

S∗ )

+λtT (PH − P ∗
H − P ∗

H log
PH
P ∗
H

) + λtT (PT − P ∗
T − P ∗

T log
PT
P ∗
T

) + λtT (IL − I∗L − I∗L log
IL
I∗L

) +

λtT (IT − I∗T − I∗T log
IT
I∗T

) + λtT (TT − T ∗
T − T ∗

T log
TT
T ∗
T

)

(3.4.26)

where Le is C1 in the interior of Γ. E∗ is the global minimum of Le on Γ and Le :

(S, PH , PT , IL, IT , TT ) = 0. The time derivative of Le is given by

dLe
dt

= L̇e = λtT (1− S∗

S
)
dS

dt
+ λtT (1− P ∗

H

PH
)
dPH
dt

+ λtT (1− P ∗
T

PT
)
dPT
dt

+

λtT (1− I∗L
IL

)
dIL
dt

+ λtT (1− I∗T
IT

)
dIT
dt

+ λtT (1− T ∗
T

TT
)
dTT
dt

= −λtT (
S − S∗

S
)[(µ+ λtT )(S − S∗) + α1(PT − P ∗

T )]

−λtT (
PT − P ∗

T

PT
)[(α1 + µ)(PT − P ∗

T )]− λtT (
PH − P ∗

H

PH
)[(µ+ λtT )(PH − P ∗

H)]

−λtT (
IL − I∗L
IL

)[(µ+ τ1)(IL − I∗L)]

−λtT (
IT − I∗T
IT

)[(µ+ δT + ε)(IT − I∗T )]− λtT (
TT − T ∗

T

TT
)[µ(TT − T ∗

T )]

(3.4.27)

hence L̇e < 0. We see that L̇e = 0 iff S = S∗, PH = P ∗
H , PT−P ∗

T , IL = I∗L, IT = I∗TandTT =

T ∗
T . Thus the largest compact invariant set in {S, PH , PT , IL, IT , TT} ∈ Γ : L̇e = 0 is the

Singlet on E∗, where E∗ is the endemic equilibrium. Thus E∗ is globally asymptotically

stable in the interior of Γ.

26



3.4.7 Numerical simulations

Numerical simulations are carried out to graphically illustrate the effect of protection on

the dynamics of infection.

Table 3.1: Parameter values used in simulation of HIV/AIDS and tuberculosis model

Parameter description Symbol Value Source

Natural death rate µ 7.0× 10−3days−1 [8]
Recruitment rate Λ 8.7× 10−3days−1 [8]

Rate of recruitment into HIV protected class χ 6.7× 10−3 Estimated
Rate of recruitment into TB protected class $ 1.2× 10−3 Estimated

Loss of protection against HIV/AIDS α2 1.0× 10−4 Estimated
Death due to HIV/AIDS δA 2.3× 10−4days−1 [29]

Rate of progression to AIDS stage τ2 1.25× 10−1days−1 [36]
Probability of acquiring HIV/AIDS π 1.1× 10−10days−1 [10]
Probability of success of protection

against HIV/AIDS ιH 9.0× 10−1 Estimated
Contact rate with HIV/AIDS infectives C 8.0× 10−2 Estimated

Loss of protection against TB α1 0.1× 10−3 Estimated
Death due to TB δT 3.95× 10−1days−1 [30]

Rate of progression to symptomatic TB τ1 5.0× 10−1days−1 [27]
Probability of acquiring TB θ 1.1× 10−4 Estimated

Probability of success of protection against TB ιT 9.0× 10−1 Estimated
Contact rate with TB infectives η 2.0× 10−4 Estimated
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3.4.7.1 The effect of varying the protection term on HIV/AIDS infections

Numerical simulations were carried out to investigate the effect of protection on HIV/AIDS

and TB prevalence. The following graphs were obtained for a given set on initial condi-

tions and parameter values in table 3.1
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Figure 3.4.1: Simulation of model showing the evolution of HIV/AIDS against time

time; red Continuous line: π = 1.1× 10−2, ιH = 1.0× 10−4

blue dotted line: π = 1.1× 10−10, ιH = 9.0× 10−1
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Figure 3.4.2: The graph of IH against PH
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3.4.7.2 The effect of varying the protection term on TB infection
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Figure 3.4.3: Evolution of TB against time

time; red Continuous line: θ = 1.1× 10−2, ιT = 4.0× 10−1

blue dotted line: θ = 1.1× 10−4, ιT = 9.0× 10−1
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CHAPTER 4

HIV/Pneumonia model

4.1 Model description and formulation

We formulate a model in which the total human population at any time t denoted by

N(t), is subdivide into subclasses, S(t) the class of individuals susceptible to both pneu-

monia and HIV/AIDS infection, PP , individuals who are protected against pneumonia.

The protection is lost at the rate α1. The class IP consists of individuals who are infected

with pneumonia at a rate λP . Treatment for pneumonia is assumed to be successful

and is done at the rate ε. The class TP consists of individuals who have recovered from

pneumonia infection. Mortality occurs among pneumonia patients at the rate δP , while

natural death is assumed to occur in all classes at the rate µ.

The class PH consist of individuals who are protected against HIV/AIDS infection. For

various forms of protection against HIV/AIDS, see for instance[51, 46]. This protection

may be lost due to risky behaviour at the rate α2. Since the modes of transmission for

the two diseases are different and also for purposes of simplicity we do not assume dual

protection for pneumonia and HIV/AIDS. The class IH is made up of individuals who

are asymptomatically infected with HIV/AIDS. This infection occurs at the rate λH .

In the absence of intervention (therapy), individuals develop symptoms of HIV/AIDS

and progress from the class IH to the class IA at the rate τ . Mortality occurs among

HIV/AIDS patients at the rate δA.

Individuals in the class IH can acquire pneumonia at the rate ϕ1λP and progress to

the class IHP , where ϕ1 is a modification parameter accounting for the fact that individ-

uals who have HIV virus are more susceptible to pneumonia infection than HIV negative

individuals due to immunosuppression. Individuals in the class IA can also acquire pneu-

monia at the rate ϕ2λP , where ϕ2 > ϕ1 and progress to the class IAP . In the absence

of intervention (therapy), individuals in the class IHP develop symptoms of HIV/AIDS

and progress to the class IAP at the rate %τ , where % is a modification parameter. Upon

effective pneumonia treatment, individuals in the class IHP and IAP move to the classes

IH and IA respectively. Mortality occurs due to the dual infection of HIV/AIDS and

pneumonia at a rate δAP .
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Individuals in the class IP can acquire HIV/AIDS at a rate κλH and progress to the class

IHP where 0 < κ < 1 is a modification parameter accounting for the fact that individuals

infected with pneumonia, due to morbidity have reduced activity and are less susceptible.

The total population

N(t) = S(t) + PP (t) + PH(t) + IH(t) + IHP (t) + IP (t) + TP (t)

+IA(t) + IAP (t) (4.1.1)

We define the rate at which susceptible individuals acquire pneumonia as

λP =
πθ[IP + φ1IHP + φ2IAP ]

N(t)
, (4.1.2)

where π is the probability that one will acquire pneumonia upon contact with pneumonia

infected individuals and θ is the contact rate with pneumonia infected individuals while

φ2 > φ1 are modification parameters accounting for the assumed increased infectivity due

to dual infection.

The rate at which susceptible individuals acquire HIV/AIDS is defined as

λH =
βC[IH + ω1IHP + ω2IA + ω3IAP ]

N(t)
, (4.1.3)

where β is the probability that susceptible individuals acquire HIV upon contact with

an HIV infected individual and C is the effective contact rate with HIV/AIDS infected

individuals. ω3 > ω2 > ω1, are modification parameters showing the infectious rate

per class.with the assumption that an individual who is asymptomatic with HIV/AIDS

and has pneumonia is more infectious of HIV/AIDS than one asymptomatically infected

with HIV/AIDS. Similarly AIDS individuals are more infectious than individuals asymp-

tomatic with HIV/AIDS due to high viral load[28].

HIV/AIDS prevalence denoted by Φ will be

Φ =
λH
βC

. (4.1.4)

This study seeks to investigate the effect of protection for HIV/AIDS and pneumonia in

the co-infection model. Let χP and χH denote the probability of success of protection
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against pneumonia and HIV/AIDS respectively. The modified rates of infection λrP and

λpH become

λrP = λP (1− χP ) (4.1.5)

and

λpH = λH(1− χH) (4.1.6)

From the above definitions, the resulting flow diagram for the co-infection is given below.

SSPP PH

λ P    

λ H

α 1 α 2

μ

μ

μ+ δP

μ

μ

μ

μ+ δA

μ
IpIH

IA IAP

IHP

TP

λ H     
λ P     

ϑ1 λ P     κ λ H     

μ+δP+ δA

νᴧ

(1-ϒ-ν)ᴧ
ϒᴧ

ε

ε

ϑ2 λ P     

τ ρ
τ

ε

Figure 4.1.1: The flow diagram for the pneumonia and HIV/AIDS co-infection.
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dS

dt
= (1− ν − γ)Λ + α1PP + α2PH − (µ+ λH + λP )S

dPP
dt

= νΛ− (µ+ α1 + λH)PP (4.1.7)

dPH
dt

= γΛ− (α2 + µ+ λP )PH

dIH
dt

= λHPP + λHS + εIHP − (ϕ1λP + µ+ τ)IH

dIA
dt

= τIH + εIAP − (µ+ δA + ϕ2λP )IA

dIP
dt

= λPPH + λPS − (µ+ κλH + ε+ δP )IP

dTP
dt

= εIP − µTP
dIHP
dt

= ϕ1λP IH + κλHIP − (µ+ %+ δP + ε)IHP

dIAP
dt

= %τIHP + ϕ2λP IA − (µ+ δA + δP + δAP + ε)IAP

where νΛ is the constant recruitment rate into the class of individuals protected against

pneumonia, γΛ is the constant recruitment rate into the class of individuals protected

against HIV and (1−ν−γ)Λ is the constant recruitment rate into the class of susceptible

individuals to both pneumonia and HIV virus.

4.2 Positivity and boundedness of solutions

The model Equation (4.1.7) is studied in the feasible region Ω such that

{S(t), PH(t), PP (t), IH(t), IHP (t), IP (t), TP (t),

IA(t), IAP (t)}∈Ω ⊂ R9
+. (4.2.1)

Based on the fact that the model deal with human population, all the state variables

and parameters are non-negative for all t ≥ 0. It can be shown that the solutions are

bounded such that

0 ≤ N ≤ Λ

µ

Since the solutions are positive and bounded the two models are epidemiologically well

posed.
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4.3 Reproduction number R0

The basic reproduction number is the average number of secondary infections due to a

single infectious individual in a fully susceptible population[38]. It is the spectral radius

of a matrix

FV −1 (4.3.1)

where F is the Jacobian of F , where F is the rate of appearance of new infections in

compartment and V is the Jacobian of V , where V is the rate of transfer of individuals

into and out of compartment. FV −1 is calculated by the method of next generation

matrix [37]. The disease free equilibrium of Equation (4.1.7) is given by

E0
1 = {S, PP , PH , IH , IA, IP , TP , IHP , IAP} =

(
Λ

µ
, 0, 0, 0, 0, 0, 0, 0, 0) (4.3.2)

We define F into a class as

F =


λH(PP + S)

0
λP (PH + S)
ϑ1λP + κλHIP

ϑ2λP IA

 (4.3.3)

We also define V as

V = V− − V+ (4.3.4)

where V− is the rate of transfer of individuals out of a compartment and V+ is the rate

of transfer of individuals into compartment. Thus V is given by

V =


(ϕ1λP + µ+ τ)IH − εIHP

−τIH − εIAP + (µ+ δA + ϕ2λP )IA
(µ+ κλP + ε+ δP )IP

(µ+ %+ δP )IHP
%τIHP + (µ+ δA + δP + δAP + ε)IAP

 (4.3.5)

The Jacobian of F at the disease free equilibrium denoted as F and is given by

F =


βC(1− χH) βC(1− χH)ω2 0 βC(1− χH)ω1 βC(1− χH)ω3

0 0 0 0 0
0 0 πθ(1− χP ) πθ(1− χP )φ1 πθ(1− χP )φ2

0 0 0 0 0
0 0 0 0 0


(4.3.6)
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Similarly, the Jacobian of V at the disease free equilibrium is denoted by V and is given

by

V =


µ+ τ 0 0 −ε 0
−τ µ+ δA 0 0 −ε
0 0 µ+ ε+ δP 0 0
0 0 0 µ+ %+ δP 0
0 0 0 −%τ µ+ δP + δA + δAP + ε

 (4.3.7)

Thus the eigenvalues of the matrix FV −1 are

RP =
πθ(1− χP )

ε+ µ+ δP

and

RH = Cβ(1− χH)(
µ+ δA + τω2

(µ+ τ)(µ+ δA)
)

where RP is the reproduction number for pneumonia and RH is the reproduction number

for HIV/AIDS in the Equation (4.1.7). The spectral radius of FV −1 is max{RP , RH}.
Therefore, the basic reproduction number of Equation (4.1.7) is denoted as R1

0 and is

defined as R1
0 = max{RP , RH}.

The reproduction number RP gives the expected number of secondary Pneumonia in-

fection produced by a single pneumonia infectious individual during his/her infectious

period when introduced into a completely Pneumonia susceptible population. Simi-

larly,The reproduction number RH gives the expected number of secondary HIV/AIDS

infection produced by a single HIV/AIDS infectious individual during his/her infec-

tious period when introduced into a completely HIV/AIDS susceptible population. Since

Equation (4.1.7) satisfy conditions A1 − A5 [48],then the disease free equilibrium E0
1 =

(Λ
µ
, 0, 0, 0, 0, 0, 0, 0, 0) is locally asymptotically stable if R1

0 and unstable if R1
0. in the

absence of protection χP = χH = 0 and R1
0 = max{RP , RH} .

4.4 Global stability for the disease free equilibrium

there are two conditions that if met they guarantee the global asymptotic stability of the

disease free state. Equation (4.1.7) may be written in the form

dX

dt
= K(X,Z)

dZ

dt
= W (X,Z),W (X, 0) = 0 (4.4.1)
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where X ∈ R4 and X = {S, PP , PH , TT} denotes the number of uninfected individuals

and Z ∈ R5 where Z = {IH , IA, IP , IHP , IAP} denotes the number of infected individuals

. EO
1 = (Λ

µ
, 0, 0, 0, 0, 0, 0, 0, 0) denotes the disease free equilibrium of this system where

X∗ = (
Λ

µ
)

conditions (4.4.2) may be met to guarantee global asymptotic stability

dX

dt
= K(X, 0), X∗is globally asymptotic stable

W (X,Z) = BZ − Ŵ (X,Z), Ŵ (X,Z) ≥ 0∀(X,Z) ∈ Ω (4.4.2)

where H = DzN(X∗, 0) is an M matrix and Ω is the region where the model has biolog-

ical meaning.

Theorem

If system (4.4.1) satisfies conditions (4.4.2), then the fixed point EO
1 = (Λ

µ
, 0, 0, 0, 0, 0, 0, 0, 0)

is a globally asymptotically stable equilibrium of the system (4.4.1) provided that R1
0 < 1

and the assumptions in (4.4.2) are satisfied .

Proof

Consider F (X, 0) = (Λ− µSH) and W (X,Z) = AZ − Ŵ (X,Z) where

H =


−y1 0 0 ε 0
τ −y2 0 0 ε
0 0 −y3 0 0
0 0 0 −y4 0
0 0 0 %τ −y5

 (4.4.3)

Where y1 = (µ + τ), y2 = (µ + δA), y3 = (µ + ε + δP ), y4 = (µ + % + δP + ε), y5 =

(µ+ δA + δP + δAP + ε)

and

Ŵ (X,Z) =


W1

W2

W3

W4

W5

 =


−λH(PP + S) + ϕ1λP

+ϕ2λP
−λP (PH + S) + κλH
−(ϕ1λP + κλH)
−(ϕ2λP )

 (4.4.4)

Since W4,W5 < 0,all the conditions in Equation (4.4.2) may not satisfied. Hence E0
1 not

globally asymptotically
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4.4.1 The case of maximum protection against pneumonia

In this case the probability of the success of protection is unity, That is χP = 1. Assuming

that there are no new pneumonia infections in the population, then λP = IP = 0.

Therefore Equation (4.1.7) becomes

dS

dt
= (1− ν − γ)Λ + α2PH − (µ+ λH)S

dPP
dt

= νΛ− (µ+ λH)PP (4.4.5)

dPH
dt

= γΛ− (α2 + µ)PH

dIH
dt

= λHPP + λHS − (µ+ τ)IH

dIA
dt

= τIH − (µ+ δA)IA

The rate of infection for Equation (4.4.5) is given by

λhH =
Cβ(1− χH)(IH + θIA)

N(t)
(4.4.6)

The effective reproduction numberRH , computed using the next generation matrix method

approach[37] for Equation (4.4.5) is given by

RH =
Cβ(1− χH)(δA + µ+ θχH)(µ(1− γ) + α2)

(δA + µ)(µ+ τ)(µ+ α2)
(4.4.7)

The endemic state is defined as

I∗H =
Λ(δA + µ)(RH − 1)

(1− χH)(δA + µ+ θτ)− δAτ
. (4.4.8)

For an infection to be endemic in a population, I∗H > 0. This inequality holds provided

that RH > 1 with (1− χH) > 0 and [(1− χH)(δA + µ+ θτ)] > (δAτ)

4.4.2 Local stability of the endemic equilibrium

The long term behaviour of Equation (4.4.5) can be deduced from its stability analysis.

From Equation (4.4.5) N(t) = S + PP + PH + IH + IA. We can study the first four
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equations of Equation (4.4.5) since IA = N(t)− (S + PP + PH + IH). Thus

dS

dt
= (1− ν − γ)Λ + α2PH − (µ+ λhH)S

dPP
dt

= νΛ− (µ+ λhH)PP (4.4.9)

dPH
dt

= γΛ− (α2 + µ)PH

dIH
dt

= λhHPP + λhHS − (µ+ τ)IH

The Jacobian of Equation (4.4.9) at the endemic state E∗
1(S∗, P ∗

P , P
∗
H , I

∗
H), denoted as

J(E∗
1) is given by

J(E∗
1) =


−(µ+ λhH) 0 α2

−CβS∗(1−χH

N

0 −(µ+ λhH) 0
−CβP ∗

P (1−χH

N

0 0 −(α2 + µ) 0
λhH λhH 0 −(µ+ τ)

 (4.4.10)

Clearly −(α2 + µ) is an eigenvalue of Equation (4.4.10). The other eigenvalues can be

obtained from the reduced matrix defined by

B2 =

 −(µ+ λhH) 0 −CβS∗(1−χH)
N(t)

0 −(µ+ λhH)
−CβP ∗

P (1−χH)

N(t)

λhH λhH −(µ+ τ)

 (4.4.11)

The trace of Equation (4.4.11) is negative and its determinant is given by

detB2 = [
I∗H(1− χH)βC

N(t)
+ µ][

I∗H(1− χH)(S∗ − P ∗
P )βC

N2

(I∗H(µ+ τ)− (1− χH)βC + µ+ τ)− µ(µ+ τ)]

(4.4.12)

detB2 > 0 provided that

[
I∗H(1− χH)(S∗ − P ∗

P )βC

N2
(I∗H(µ+ τ)− (1− χH)βC + µ+ τ) ≥ (µ(µ+ τ))

(4.4.13)

Since the trace is negative and the determinant is positive provided that inequality

(4.4.13) hold, the eigenvalues of Equation (4.4.11) will have negative real parts. Therefore

the endemic equilibrium E∗
1(S∗, P ∗

P , P
∗
H , I

∗
H) is locally asymptotically stable.
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4.4.3 Global stability of the endemic equilibrium

The global stability of the equilibria are obtained by means of Lyapunov’s direct method

and LaSalle’s invariance principle[12]. Consider the non-linear Lyapunov function

Ve : (S, PP , PH , IH , IA) ∈ Ω ⊂ R5
+ : S, PP , PH , IH , IA > 0 (4.4.14)

defined as

Ve : (S, PP , PH , IH , IA) = λhH(S − S∗ − S∗ log
S

S∗ ) + λhH(PP − P ∗
P − P ∗

P log
PP
P ∗
P

) +

λhH(PH − P ∗
H − P ∗

H log
PH
P ∗
H

) + λhH(IH − I∗H − I∗H log
IH
I∗H

) +

λhH(IA − I∗A − I∗A log
IA
I∗A

)

(4.4.15)

where Ve is C1 in the interior of the region Ω. E∗
1 is the global minimum of Ve on Ω and

Ve : (S, PP , PH , IH , IA) = 0. The time derivative of Equation(4.4.15) is given by

dVe
dt

= V̇e = λhH(1− S∗

S
)
dS

dt
+ λhH(1− P ∗

P

PP
)
dPP
dt

+ λhH(1− P ∗
H

PH
)
dPH
dt

+

λhH(1− I∗H
IH

)
dIH
dt

+ λhH(1− I∗A
IA

)
dIA
dt

= −λhH(
S − S∗

S
)[(µ+ λhH)(S − S∗) + α2(PH − P ∗

H)]

−λhH(
PH − P ∗

H

PH
)[(α2 + µ)(PH − P ∗

H)]− λhH(
PP − P ∗

P

PP
)[(µ+ λhH)(PP − P ∗

P )]

−λhH(
IH − I∗H
IH

)[(µ+ τ2)(IH − I∗H)]− λhH(
IA − I∗A
IA

)[(µ+ δA)(IA − I∗A)]

(4.4.16)

Hence V̇e < 0. We see that V̇e = 0 iff S = S∗, PH = P ∗
H , PP = P ∗

P , IH = I∗H and IA = I∗A.

Thus the largest compact invariant set in {S, PH , PP , IH , IA} ∈ Ω : V̇e = 0 is the Singleton

E∗
1 , where E∗

1 is the endemic equilibrium. Thus E∗
1 is globally asymptotically stable in

the interior of the region Ω.

4.4.4 Case of maximum protection against HIV/AIDS

In this case the probability of the success of protection is unity, i.e χH = 1. Assuming

that there are no new HIV/AIDS infections in the population, then λH = IH = IA = 0.
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Therefore Equation (4.1.7) becomes

dS

dt
= (1− ν − γ)Λ + α1PP − (µ+ λP )S

dPP
dt

= νΛ− (µ+ α1)PP (4.4.17)

dPH
dt

= γΛ− (µ+ λP )PH

dIP
dt

= λPPH + λPS − (µ+ ε+ δP )IP

dTP
dt

= εIP − µTP

The rate of infection Equation (4.4.17) is now defined as

λpP =
πθ(1− χP )IP

N(t)
(4.4.18)

while the effective reproduction number is given by

RP =
πθ(1− χP )(µ(1− ν) + α1)

(δP + µ+ ε)(µ+ α1)
. (4.4.19)

For the infection to be endemic in a population I∗P > 0 where

I∗P =
Λ(RP − 1)

(πθ)(1− χP )− δP
> 0 (4.4.20)

provided RP > 1 with δP < πθ(1− χP ).

4.4.5 Local stability of the endemic equilibrium

The total population N(t) from Equation (4.4.17) is N(t) = S + PP + PH + IP + TP for

which TP = N(t)−S+PP +PH + IP . Thus we study the first four equations of Equation

(4.4.17) at the endemic state E∗
2(S∗, P ∗

H , P
∗
P I

∗
P ).

dS

dt
= (1− ν − γ)Λ + α1PP − (µ+ λpP )S

dPP
dt

= νΛ− (µ+ α1)PP (4.4.21)

dPH
dt

= γΛ− (µ+ λpP )PH

dIP
dt

= λpPPH + λpPS − (µ+ ε+ δP )IP
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The Jacobian of Equation (4.4.21) is given by

J(E∗
2) =


−(µ+ λpP ) α1) 0

−πθS∗(1−χp
P )

N

0 −(µ+ α1 0 0

0 0 −(µ+ λpP )
−πθP ∗

H(1−χP )

N

λpP 0 λpP −(µ+ ε+ δP )

 (4.4.22)

Clearly −(µ+α1) is an eigenvalue of Equation (4.4.22). To obtain the other eigenvalues,

we analyze the system

B3 =

 −(µ+ λpP ) 0 −πθS∗(1−χP )
N

0 −(µ+ λpP )
−πθP ∗

H(1−χP )

N

λpP λpP −(µ+ ε+ δP )

 (4.4.23)

trB3 < 0 and

detB3 =
1

N2(t)
[
I∗P (1− χP )πθ

N(t)
+ µ][(1− χP )2π2θ2I∗P (P ∗

H + S∗) +

N(t)(I∗P (1− χP )πθ +N(t)µ)(ε+ µ+ τ)]

(4.4.24)

detB3 is positive since (1−χP ) > 0. Therefore the endemic equilibrium E∗
2(S∗, P ∗

H , P
∗
P I

∗
P )

is locally asymptotically stable.

4.4.6 Global stability of the endemic equilibrium

Consider the non-linear Lyapunov function

V : (S, PP , PH , IP , TP ) ∈ Ω ⊂ R5
+ : S, PP , PH , IP , TP > 0 (4.4.25)

defined as

V : (S, PP , PH , IP , TP ) = λpP (S − S∗ − S∗ log
S

S∗ ) +

λpP (PP − P ∗
P − PP log

PP
P ∗
P

) + λpP (PH − P ∗
H − P ∗

H log
PH
P ∗
H

) +

λP (IP − I∗P − I∗P log
IP
I∗P

) +

λpP (TP − T ∗
P − T ∗

P log
TP
T ∗
P

)

(4.4.26)
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where V is C1 in the interior of the region Ω. E∗
2 is the global minimum of V on Ω and

V : (S, PP , PH , IP , TP ) = 0. The time derivative of Equation (4.4.26) is given by

dV

dt
= V̇ = λpP (1− S∗

S
)
dS

dt
+ λpP (1− P ∗

P

PP
)
dPP
dt

+ λpP (1− P ∗
H

PH
)
dPH
dt

+

λpP (1− I∗P
IP

)
dIP
dt

+ λpP (1− T ∗
P

TP
)
dTP
dt

(4.4.27)

with the derivatives of Equation S, PP , PH , IP , TP defined in Equation (4.4.17) and by

using

(1−ν−γ)Λ = −α1P
∗
P +(µ+λpP )S∗, νΛ = (µ+α1)P ∗

P , γΛ = (µ+λpP )P ∗
H , λ

p
P (PH+S) =

(µ+ ε+ δP )I∗P , and εIP = µTP into Equation (4.4.27) we obtain

V̇ = −λpP (
S − S∗

S
)[(µ+ λpP )(S − S∗) + α1(PP − P ∗

P )]

−λpP (
PP − P ∗

P

PP
)[(α1 + µ)(PP − P ∗

P )]− λpP (
PH − P ∗

H

PH
)[(µ+ λpP )(PH − P ∗

H)]

−λpP (
IP − I∗P
IP

)[(µ+ ε+ δP )(IL − I∗L)]− λpP (
TP − T ∗

P

TP
)[µ(TP − T ∗

P )]

(4.4.28)

hence V̇ < 0. Thus E∗
2 is globally asymptotically stable in the interior of the region Ω.
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4.4.7 Numerical simulations

To graphically illustrate the effect of protection on the dynamics of infection, numerical

simulations are carried out.

Table 4.1: Parameter values used in simulation of HIV/AIDS and pneumonia model

Parameter description Symbol Value Source

Natural death rate µ 7.0× 10−3days−1 [8]
Recruitment rate Λ 8.7× 10−3days−1 [8]

Rate of recruitment into
pneumonia protected class γ 1.2× 10−3 Estimated

Rate of recruitment into
HIV/AIDS protected class ν 5.97× 10−1 [35]

Loss of protection against pneumonia α2 5.0× 10−3 Estimated
Death due to pneumonia δA 3.4× 10−2days−1 [35]

Probability of acquiring pneumonia π 1.1× 10−9 Estimated
Probability of success of

protection against pneumonia χP 9.0× 10−1 Estimated
Contact rate with pneumonia infective θ 8.0× 10−1 Estimated
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4.4.7.1 The effect of varying the protection term on pneumonia infection against time
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Figure 4.4.1: Simulation of Equation (4.4.17) showing the evolution of pneumonia

Continuous line: π = 1.1× 10−3, χP = 6.0× 10−3

Broken line: π = 1.1× 10−9, χP = 9.0× 10−1
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Figure 4.4.2: The graph of IP against PP
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CHAPTER 5

Discussion, conclusion and recommendations

5.1 Discussion

The disease free equilibrium points for Equation(3.1.7) and Equation (4.1.7) are shown

not to be globally asymptotically stable. This implies that reoccurrence of the disease is

possible especially when the conditions favoring such reoccurrence are prevailing. Four

cases of maximum protection are considered. In all cases, the endemic states are shown

to exist provided that the reproduction number is greater than unity. By use of Routh-

Hurwitz criterion and suitable Lyapunov functions, the endemic states are shown to be

locally and globally asymptotically stable respectively. This implies that disease trans-

mission levels can be kept quiet low or manageable with minimal deaths in the presence

of protection.

From Figure 3.4.1(a), we see that , with a low protection rate the probability of in-

fection is high and therefore the number of infectives IH rises sharply in a short span

before drastically dropping. This sharp drop may be attributed to the depletion of sus-

ceptibles or the susceptibles embracing protective measures. From the same figure a very

high protection rate with a low probability of transmission results in reduced disease

prevalence. The time evolution of IA, is lower than that of IH as depicted by Figure

3.4.1(b) since it takes time to progress from IH to IA as the body’s immunity tries to

fight the HIV virus. From Figure 3.4.3, with a high rate of protection, and a low prob-

ability of disease transmission, the diseases prevalence for TB also goes down. On the

other hand, a low protection rate leads to a high disease prevalence. From Figure 3.4.2,

we observe that the number of IH infections reduces with increased protection. Similarly,

Figure 3.4.4 shows that the number of IT infectives reduces with increased protection.

From Figure 4.4.1, a high rate of protection against pneumonia leads to a low probabil-

ity of disease transmission and a low protection rate leads to a high disease prevalence.

Figure 4.4.2 shows that the number of IP infectives reduces with increased protection.

This is consistent with reality[3] and the mathematical analysis which shows the attain-

ment of local and global stability of the endemic equilibrium in the presence of protection.

In order to reduce the number of new HIV/AIDS and TB infections, and reduce the
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impact of HIV/AIDS on individual, families and communities, there is need to employ

strategies such as increasing the public awareness drive to behaviour change and en-

courage openness, increasing access to voluntary HIV testing and counselling, promoting

increased condom use to reduce the spread of HIV infection, improving access to antiretro-

viral drugs (ARV’s) for people living with AIDS, practising proper hygiene in the case

of TB and avoiding clouded places. These strategies will help in reducing the economic

burden that are borne by a country in giving care and treating the infected individuals.

As evidence from these results, it is indeed true that prevention is better than cure.

5.2 Conclusion

In this work, we first formulated a model for the co-infection of HIV/AIDS with TB

incorporating protection. To investigate the effect of protection, two cases were consid-

ered. That is, case of maximum protection against HIV/AIDS and the case of maximum

protection against TB. The existence of the endemic equilibrium for the two cases was

established and the stability of the same was analysed. In both cases the endemic equi-

librium is found to be globally asymptotically stable.

Secondly, we formulated a model for the co-infection of HIV/AIDS with pneumonia in-

corporating protection. To investigate the effect of protection, two cases were considered,

namely the case of maximum protection against HIV/AIDS and the case of maximum

protection against pneumonia. The existence of the endemic equilibrium for the two

cases was established and the stability of the same was analysed. From the numerical

simulations, we observe that protection against a disease has the effect of reducing the

disease prevalence. This is in agreement with the mathematical analysis which shows

that in the presence of protection, the endemic equilibria are both locally and globally

asymptotically stable.

5.3 Recommendations

The government, through the relevant people in the health sector, need to sensitize the

public on the need of embracing protective measures in the view of reducing disease
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prevalence in the population. Since protection has been used in a general sense, further

research may be carried out to analyze the contribution of specific protective measures

in the overall reduction of disease prevalence rates
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Appendix A

Matlab code for HIV/AIDS infectives against time

clear

options=odeset(’RelTol’,1e-4,’AbsTol’,[1e-6 1e-4 1e-6 1e-4 1e-6]);

[T1,Y1]=ode45(’JOYCE512’, [0:10:1000],[100,0 , 8, 7, 5],options);

[T2,Y2]=ode45(’JOYCE513’, [0:10:1000],[100,0 , 8, 7, 5],options);

subplot(2,2,1)

plot(T1,Y1(:,4),’--’,T2,Y2(:,4),’-r’);

title(’a’);

xlabel ’Timet in days’;

ylabel ’Infectives at I_H’;

hold on

subplot(2,2,2)

plot(T1,Y1(:,5),’--’,T2,Y2(:,5),’-r’);

title(’b’);

xlabel ’Time t in days’;

ylabel ’Infectives at I_A’;

hold off

function dy=JOYCE512,JOYCE513(t,y)

dy=[10000 400 400 200 200]’;

dy(1)=(1-a(1)-a(2))*a(3)+a(4)*y(2)-(a(5)+a(6))*y(1);

dy(2)=a(1)*a(3)-(a(4)+a(5))*y(2);

dy(3)=a(2)*a(3)-(a(5)+a(6))*y(3);

dy(4)=a(6)*(y(1)+y(3))-(a(5)+a(7))*y(4);

dy(5)=a(7)*y(4)-(a(5)+a(8))*y(5);
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Appendix B

Matlab code for HIV/AIDS infectives against protection

[T,Y]=ode45(’p3’, (0:2:1000),[800,100 , 0, 45, 55]);

plot(Y(:,3),Y(:,4),’LineWidth’,3);

xlabel ’P_H’;

ylabel ’ I_H’;

function dy=p3(t,y)

dy=[10000 400 400 200 200]’;

dy(1)=(1-h(1)-h(2))*h(3)+h(4)*y(3)-(h(5)+h(6))*y(1);

dy(2)=h(1)*h(3)-(h(5)+h(6))*y(2);

dy(3)=h(2)*h(3)-(h(4)+h(5))*y(3);

dy(4)=h(6)*(y(1)+y(2))-(h(5)+h(7))*y(4);

dy(5)=h(7)*y(4)-(h(5)+h(8))*y(5);
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Appendix C

Matlab code for tuberculosis infectives against time

%options=odeset(’RelTol’,1e-,’AbsTol’,[1e-6 1e-4 1e-6]);

[T1,Y1]=ode45(’KJNNN2’, (0:2:100),[50,0,5,5,5,10]);

[T2,Y2]=ode45(’KJN22’, (0:2:100),[50,0,5,5,5,10]);

plot(T1,Y1(:,4),’--’,T2,Y2(:,4),’-r’);

xlabel ’Time(days)’;

ylabel ’Infectives I_L’;

function dy=KJNNN2,KJN22(t,y)

dy=[1000 600 500 400 300 200]’;

dy(1)=(1-d(1)-d(2))*d(3)+d(4)*y(2)-(d(5)+d(6))*y(1);

dy(2)=d(1)*d(3)-(d(4)+d(5))*y(2);

dy(3)=d(2)*d(3)-(d(5)+d(6))*y(3);

dy(4)=d(6)*(y(1)+y(3))-(d(5)+d(7))*y(4);

dy(5)=d(7)*y(4)-(y(5)+d(9)+d(8))*y(5);

dy(6)=d(8)*y(5)-d(5)*y(6);
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Appendix D

Matlab code for tuberculosis infectives against protection

[T,Y]=ode45(’KJNNN’, (0:10:10),[50,0,5,5,5,10]);

plot(Y(:,2),Y(:,4),’LineWidth’,3);

xlabel ’P_T’;

ylabel ’ I_T’;

function dy=KJNNN(t,y)

dy=[1000 600 500 400 300 200]’;

dy(1)=(1-d(1)-d(2))*d(3)+d(4)*y(2)-(d(5)+d(6))*y(1);

dy(2)=d(1)*d(3)-(d(4)+d(5))*y(2);

dy(3)=d(2)*d(3)-(d(5)+d(6))*y(3);

dy(4)=d(6)*(y(1)+y(3))-(d(5)+d(7))*y(4);

dy(5)=d(7)*y(4)-(y(5)+d(9)+d(8))*y(5);

dy(6)=d(8)*y(5)-d(5)*y(6);
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Appendix E

Matlab code for pneumonia infectives against time

[T1,Y1]=ode45(’JK’, (0:5:100),[50,0 , 1, 0.1, 4]);

[T2,Y2]=ode45(’JK1’, (0:5:100),[50,0 , 1, 0.1, 4]);

subplot(1,1,1)

plot(T1,Y1(:,4),’--’,T2,Y2(:,4),’-r’);

title(’a’);

xlabel ’Timet in days’;

ylabel ’Infectives I_P’;

xlabel ’Time t in days’ ;

function dy=JK,JK1 (t,y)

dy=[1000 100 100 50 50]’;

dy(1)=(1-b(1)-b(2))*b(3)+ b(4)*y(2)-(b(5)+b(6))*y(1);

dy(2)=b(1)*b(3)-(b(4)+b(5))*y(2);

dy(3)=b(2)*b(3)-(b(5)+b(6))*y(3);

dy(4)=b(6)*(y(1)+y(3))-(b(5)+b(7)+b(8))*y(4);

dy(5)=b(7)*y(4)-b(5)*y(5);
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Appendix F

Matlab code for pneumonia infectives against protection

[T,Y]=ode45(’JK’, (0:5:100),[50,0 , 1, 0.1, 4]);

plot(Y(:,2),Y(:,4),’LineWidth’,3);

xlabel ’P_P’;

ylabel ’ I_P’;

function dy=JK(t,y)

b(1)=0.00597;

b(2)=0.00067;

b(3)=0.0008748;

b(4)=0.0005;

b(5)=0.007;

b(6)=(0.0000000011*0.000008*(1-0.9)*y(4))/(y(1)+y(2)+y(3)+y(4)+y(5));

b(7)=0.098;

b(8)=0.0000034;

dy=[1000 100 100 50 50]’;

dy(1)=(1-b(1)-b(2))*b(3)+ b(4)*y(2)-(b(5)+b(6))*y(1);

dy(2)=b(1)*b(3)-(b(4)+b(5))*y(2);

dy(3)=b(2)*b(3)-(b(5)+b(6))*y(3);

dy(4)=b(6)*(y(1)+y(3))-(b(5)+b(7)+b(8))*y(4);

dy(5)=b(7)*y(4)-b(5)*y(5);
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