
 
 
 
 
 
 
 
 
 
 
 

 
        INTRODECTION 

When pricing options, it is important to factor 
in replication and volatility [1]. According to 
[2], [3], [4], [5], [6] and [6] a portfolio 
replicates the derivative security if a duplicate 
security can be formed by combining the 
underlying security with an appropriate risk
free asset whose proportions must be 
repeatedly adjusted over the length of the 
trading period, and no extra cash is required to 
self-finance the portfolio. For a call, 
replicating a portfolio requires investors to be 
bullish on the implicit asset’s price movement 
[7]. However, for a put, replicating the 
portfolio requires taking a short position on the 
underlying asset [8]. That is, Suppose we have 
a stock A trading at S = 100, and
can either go up or down by a 
in a single period such that uS 
dS = 90, and it is possible to lend/ borrow 
from the markets at a 4% interest rate, we can 
set up a replicating portfolio with 
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When pricing options, it is important to factor 
According to 

[2], [3], [4], [5], [6] and [6] a portfolio 
if a duplicate 

security can be formed by combining the 
underlying security with an appropriate risk-
free asset whose proportions must be 
repeatedly adjusted over the length of the 
trading period, and no extra cash is required to 

For a call, 
replicating a portfolio requires investors to be 
bullish on the implicit asset’s price movement 
[7]. However, for a put, replicating the 
portfolio requires taking a short position on the 
underlying asset [8]. That is, Suppose we have 

and the price 
 factor of 10 
 = 110, and 

possible to lend/ borrow 
from the markets at a 4% interest rate, we can 
set up a replicating portfolio with ∆c units of 

the stock’s call option and B units
borrowing, such that: 
10∆c.(90) + B(1.04)
obtain ∆c = .50 and 
implies that, we can 
by having a long position
stock and borrowing 43
portfolio (C) will be given
(−43.26)(1) = 6.74. Hence if 
call can be sold to buy
[9]. However, if C <
bought and the replicating portfolio sold. For 
the same underlying stock 
replicating portfolio with 
stock’s call option and 
such that, ∆.p(90) +
∆.p(110) + B(1.04) 
obtain ∆P = −.50 and +52
that, we can replicate the put option by having a 
short position on .50 units of the stock and 
borrowing 52.88. The cost of the portfolio (
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stock and borrowing 43.26. The cost of the 
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Hence if C > 6.74, the 
buy a replicating portfolio 

< 6.74, the call can be 
replicating portfolio sold. For 
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will be given by, (-.50)(100) +(52.88)(1) = 
2.88 implying that if C > 6.74, the put option 
can be bought to sell a replicating portfolio. 
However, if C < 6.74, the put option can be 
sold and the replicating portfolio bought. The 
portfolio will be self-financing in both 
options (see [10], [11], [12], [13], [14] and 
[15]). Portfolio replication should be done to 
build synthetic securities [16], which are 
simply ways in which traders can create the risk 
profile and payoff of a particular asset by using 
combinations of the underlying asset and 
different instrument options [17]. Synthetic 
options enable traders to hedge their positions 
against extreme volatility, while also 
minimizing the opportunity cost by enabling 
them to explore options with similar properties 
[18]. The process of call option hedging at the 
starting point requires investors to determine 
C’s theoretical value. This can be achieved by 
allocating the replicating portfolio with an 
amount C [19]. This way, the delta and 
portfolio value will be analogous to the options 
[20]. After a given time interval, delta will 
change, and investors should repeatedly 
rebalance their positions [21]. As the portfolio 
approaches the time to maturity approaches, it 
will mainly be constituted with stock if the 
price is above K, else, its value will decrease 
till it reaches zero [21]. Research by [22] 
shows that several institutions owning 
significant stock portfolios seek to hedge their 
positions against significant market downturn 
risk. They can achieve this by simply buying a 
put that will be exercised at K. Leland and 
Rubinstein who introduced the idea of option-
based portfolio insurance noted that insurance 
agencies and mutual funds could hedge their 
positions by simultaneously buying a stock and 
a put written on it. This way, the portfolio’s 
value at maturity is always greater than the 
strike price even with excessive volatility [23]. 
For example, a trader could buy a stock on the 
NASDAQ (National Association of Securities 
Dealers Automated Quotations Stock Market) 
and a put option on the same allowing him to 
sell the index at a particular price [24]. If the 
put fell beneath the price, the trader can sell the 
put and use the profit to exercise any losses he 
faces from bearish market, while if the put rises 

the trader loses the amount paid for in the put, 
but continues to enjoy returns from stocks. 
Creating synthetic portfolios is easy and 
uncomplicated [25]. However, in the real 
world, listed options often do not have 
desired strike prices and maturities. 
Furthermore, synthetic options can be 
affected by jumps in transaction costs and 
stock prices. Therefore, there is a need to 
refine existing strategies, so as to improve the 
performance and efficiency of option-based 
portfolio insurance [26]. The Cox 
Rubenstein model and Black Scholes formula 
provide insurance agencies with methods that 
they can use to guarantee minimum portfolio 
values at the end of their respective trading 
periods. However, the latter assumes a 
constant trading strategy, which makes it an 
impractical strategy in hedging constructed 
portfolios. In  [27] its shown that an extension 
of the classical generalized CRR model is 
needed. 
 

1. Materials and Methods 
This section delineates the methodological 
framework employed in this study to derive the 
empirical results. The research methodology is 
anchored on a multifaceted approach, 
encompassing a spectrum of techniques that 
are pivotal in the comprehensive analysis and 
interpretation of the data [28]. These 
techniques encompass the utilization of 
Binomial ex- tensions, the exploration of 
Extended Fibonacci sequence generating 
functions, the formulation of robust 
mathematical models, the application of 
rigorous Convergence tests, and the execution 
of detailed Simulations. Each of these 
methodologies plays a quintessential role in 
underpinning the research findings, ensuring 
both the reliability and validity of the study 
within the context of its overarching 
objectives [29]. 
 
Definition 1.1 ([30]). Derivative securities 
known as options confer rights, but not 
responsibilities, on the holder to acquire or 
surrender financial assets within a specified 
timeframe and subject to particular conditions. 
Remark 1.2. In the finance world, derivatives 
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are contracts whose valuations are dependent 
on underlying assets, which can be bank 
accounts, bonds, commodities, currencies, or 
stocks [31]. There are different kinds of 
derivatives. Options are derivatives that are 
traded only on single securities, such as stocks, 
currencies, or indexes, because their underlying 
assets are fixed, thus, cannot be changed [32]. 
A call option allows the holder to purchase a 
particular asset at a predetermined price. 
Conversely, a put option allows the holder to 
sell a financial asset at a predetermined price 
[33]. A strike price is the monetary value at 
which users can exercise rights to sell or 
purchase an option. It is different from the 
stock’s price, which is the option’s underlying 
stock’s price [34]. There are two generally 
accepted techniques in which options are 
exercised with regard to their expiration dates: 
American options can be exercised during 
the length of the contract, and including on 
their expiration dates [35]. Conversely, 
European options are exercised only on their 
expiration. 
Options also have intrinsic and extrinsic value 
[36]. The former measures the strike and stock 
price difference, while the latter measures the 
premium and intrinsic value difference [37]. 
The former accounts for internal price 
movements of the option from early exercise, 
while the latter accounts for both internal and 
external price movements after some time 
interval [38]. There are three main features that 
govern an American option’s status (intrinsic 
value); description of asset, expiration date, and 
exercise price. Call options have intrinsic value 
if they are below the strike price; calls that 
enables buyers to purchase assets at values 
lower than market rates are more valuable 
than the inverse as it will be profitable upon 
being exercised [39]. Conversely, puts have 
intrinsic value if they are above the strike 
price; puts that enable their holders to sell 
assets at much higher rates than the market 
value is more valuable as it will be profitable 
upon being exercised. The exercise price is 
also important as they determine whether an 
option is profitable (in-the-money) or loss-
making (out-of-the-money) [40]. Finally, the 
expiration date shows the option’s internal 

value as they determine their flexibility. As a 
result of the high levels of flexibility offered 
by American options, they usually have 
higher valuations than European options. The 
following are the main factors that influence an 
option’s extrinsic; volatility, interest rates, and 
rate of stock growth [41]. Volatility refers to 
the degree of dispersion of returns over a 
trading period. It is caused by buyer and 
seller speculation about the option’s price due 
to uncertainty and changes in the external or 
internal business environment [42]. Volatility is 
positively correlated with the value of an 
option. High volatility increases the 
likelihood of an option being profitable, thus 
increasing its extrinsic value [43]. Prevailing 
interest rates also affects the value of options 
by affecting rho which is a variable used in 
many option-pricing models which measures 
the rate at which the price of an option contract 
rises or falls if the risk-free interest rate 
changes by 1% [44]. 
Generally, calls have a positive rho, which 
implies that rising interest rates increases their 
extrinsic value [45]. On the other hand, puts 
have a negative rho; hence, rising interest 
rates decreases their extrinsic value. There are 
two parties involved in every option trade. 
Parties that offer options are called option 
writers while parties that obtains the option 
are called purchasers [46]. Typically, the 
former faces more significant risk than the 
latter, who only risk losing their original 
premium [47]. This is because they must sell 
or buy the options when they are exercised, at 
the terms specified in the options contract. As a 
result, they are required to post security 
deposits called margins that guarantee 
performance. 
Remark 1.3. Let us assume that someone 
holds a call option on a stock with strike 
price K and price at maturity S. The 
option’s value is S − K if S < K, which 
indicates that the option’s value is zero. If, 
on the other hand, S > K, the option’s value 
is reported. As follows, both cases can be 
shown: A call option’s value at maturity 
can be found explicitly in C(S, T ) = max(0, 
S − K). Although the outcome is different 
in this instance as follows, the same logic 
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applies to put options as well; The option is 
put at maturity as P (S, T ) = max(0, K − S). 
When considering an option pricing curve 
with different dates to expiration, [80] states 
that the value of a call option increases with 
the amount of time till expiration. 
Definition 1.4 ([48], Definition 1.2). Let 
C(S, T ) and P (S, T ) be the prices of a 
European put and call, whose underlying 
stock price is S and with a strike price K. 
Then, the put-call parity (the association 
between put and call prices), will be 
determined by the equation C(S, T )− P (S, T ) 
+ dK = S, where d is the discount factor of 
the underlying asset as the options 
approach their expiration date. 
Remark 1.5. This combination is implemented 
to enhance speculative strategies. According to 
[49], combining options with stock makes it 
possible to determine the investment’s returns. 
Definition 1.6 ([50], Definition 1.3). A 
portfolio is a collection of as- sets or financial 
investments that a person or an organization 
owns. Cash equivalents, art, real estate, mutual 
funds, equities, bonds, and commodities could 
all be included in this mix. Through the use of 
portfolios, customers can diversify their 
investments, lowering risks and optimizing 
profits. The author in  [51] notes that 
stochastic processes enable investors to 
efficiently model the dynamics of stocks’ 
prices. That is, given a stock, S(t) = Si(t), 
where Si(t) is the price of the ith stock at time 
t. Consequently, the investors holding 
positions, Ht = (H1(t), ..., Hn(t)), react 
according to the stochastic processes that are 
under their control. Supposing there is no 
consumption from the portfolio, no additional 
capital invested, and no cash dividend payout, 
investors can only earn money from the price 
fluctuations of their underlying assets, which 
can lead to a self-financing portfolio. 
Proposition 1.9 ([52], Proposition 2.1). A 
relative portfolio is self- financing. The 
primary goal of any investor is to maximize 
the returns on their portfolio by controlling 
its holdings. However, this paves way to the 
optimal stochastic control problem, a 
challenge that investors faced when trying to 

control the value process’s movement, V (t) 
through yt. 
Definition 1.10 ([53], Definition 1.1.6). 
Portfolio management combines financial 
instruments with the right tools to generate 
optimum return downsizing risk within a 
given time horizon. One aspect of portfolio 
management is portfolio optimization. 
 
Definition 1.11 ([54], Definition 1.7). 
Portfolio Optimization is a pro- cess in which 
investors factor the minimization of risk and 
maximization of expected returns during the 
selection of one out of a possible set of 
probable portfolios. 
Remark 1.12. It is based on modern 
portfolio theory (MPT), which states that 
investors want the highest possible returns for 
the lowest risks [55]. To achieve this, assets 
selected should have a low correlation with 
each other such that if one asset class under 
performs, the entire portfolio does not crash. 
Portfolio optimization is a 2-stage process 
that involves the selection of asset classes 
depending on relative weight, and the se- 
lection of particular assets and the quantity 
they want to include in the portfolio for 
optimum returns [56]. The optimum return 
is, in most cases uncertain. Return 
uncertainty can be treated with three different 
mathematical methods: First, mean-variance 
analysis, secondly utility function analysis, 
and lastly through arbitrage or comparison 
analysis. 
Mean-variance analysis is a technique used in 
modern portfolio theory (MPT) to calculate 
the variance of assets against expected 
returns. It was advanced by Markowitz [57]. 
It enables analyst to pick investments that 
have the biggest returns at particular levels of 
risk. On the other hand, utility function 
analysis enables investment managers to 
calculate the optimal portfolio that meets an 
investor’s objectives and preference. This 
model was advanced by authors in [58] who 
argued that rational investors should only 
select portfolios that maximize their wealth’s 
expected utility from a set of investment 
alternatives (see also [59] and [60]). Finally, 
arbitrage analysis is a mathematical 
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technique used to determine underpriced 
assets and their expected rates of returns 
relative to systematic risks [61]. Insurance 
companies, Life Insurance Companies in 
particular, need a deeper understanding of their 
portfolio and its management to help achieve 
portfolio efficiency, risk mitigation, capital 
appreciation, investment goals, asset allocation, 
diversification, among other reasons. 
Definition 1.13 ([62], Definition 1.8). 
Diversification of a portfolio is the process 
of investing in different assets to minimize 
the portfolio’s overall risk. 
Remark 1.14. Investors can reduce the 
variance of their portfolio’s returns by 
including many assets in the portfolio. Often, 
portfolios with fewer assets attract high-levels 
of risk, because they have more consider- able 
variance. 
Definition 1.15 ([63], Definition 1.1.9). 
Hedging is a strategy in which investors 
reduce the risk of adverse price movements 
in an asset. 
Remark 1.16. Hedging enables investors to 
protect themselves against risk, thus is crucial 
to the core functioning of financial markets. 
Insurance can be considered a form of hedging, 
since people pay premiums so that they can 
protect themselves against certain risks. 
Upon the occurrence of such risks, an 
individual is liable for compensation [64]. 
Definition 1.17 ([65], Definition 10). 
Strategy is a general direction set to achieve a 
desired state in the future. 
Definition 1.18 ([66], Definition 1.1). 
Insurance is a contract between two parties. 
The first is the policyholder, the person, firm, 
or company confronted by risk. The other is 
the insurer, a person, firm, or company 
specializing in assuming the risk the exposure 
units face and making their losses collectively 
predictable. 
Definition 1.19 ([67], Definition 12). A 
Stochastic process refers to processes and 
events that produce random outcomes and 
variables. 
Remark 1.20. For non-stochastic events, the 
observations and outcomes at certain times can 
be random; however, for stochastic events, the 
observed value at each time is a random 

variable. 
Definition 1.21 ([68], Definition 1.3). Risk 
refers to future uncertainty in the deviation of 
expected earnings. As such, it is a measure 
of the uncertainty that will be experienced 
before an investor profits from a particular 
investment. 
Definition 1.22 ([69], Definition 14). Noisy 
observations are the error between true and 
observed values due to a lack of accuracy in 
measurement. In most cases, noise represents 
the risk encountered in an investment. 
Definition 1.23 ([70], Definition 1.5). Life 
insurance is a contract between the insured 
and the insurer. The insurer agrees to pay a 
sum of money in exchange for a premium 
after agreed time or upon maturity or upon 
death of the insured. 
Definition 1.24 ([71], Definition 1.1.16). 
(The Black-Scholes Formula) Assume that r 
is the interest rate and controls a security’s 
price. The price of this security’s derivative, 
f (S, t), satisfies the partial differential 
equation. Portfolio return is the amount of 
money generated by a particular investment 
[72]. To visualize it, let’s assume that we 
bought an asset at t0 and sold it one year 
later. If X0 and X1 are amounts invested and 
amounts received respectively, then Rę is the 
total return. Usually, scholars use the term 
return to denote the total return of a portfolio. 

2. Results and Discussion 
This section focuses on establishing 
optimization conditions for the ex- tended (p, 
q)-binomial Cox-Ross-Rubinstein (CRR) 
model given below, 

Ξpr,qr (θ, ξ) - θ = J…………………..(1) 
 particularly in the context of managing 
portfolios in life insurance under varying noise 
conditions. 
 
First, we give the convergence analysis. We 
provide a detailed analysis of the convergence 
of the (p, q)-extension model Equation 1 in 
this section. First, we consider the general 
setup. Then we consider convergence in the 
Skorohod space. Let p = pr and q = qr where 
qr ∈ [0, 1] and pr ∈ [qr, 1] where limr→∞ qr = 
1 and limr→∞ pr =1. We take the limit in the 
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increasing sense since in Ω↑
Γ(A)

a class of strictly increasing continuous 
functions of the form θ : [0, 1] → for which 
θ(0) = 0 and θ(0) = 1. We state the following 
theorem for a general setting. 
Theorem 3.1. Let Ω↑

Γ(A) be 

space and p = pr, q = qr where lim
lim qr = 1 for 0 < qr < pr ≤ 
functions θ ∈ Γ(A)[0, 1] and the model in 

Equation 1, we have limr→∞  Ξ
θ  Γ(A)= 0. 

 
Proof. From the Theorem we see
three conditions suffice. Indeed, we only let 
→ p and qr → q as r → 0.
approximation property outlined 
4.15 in the general setting we now consider the 
convergence with respect to finite dimensional 
distributions. In this regard, we
terminal time τ > 0. This completes the 
proof. 
Theorem 4.2 The extended (p,q)
CRR model Converges to Black
model 
Proof. Consider the time movement
to 0, τ for any dimensional random 
pm and q = qm. Let p ≥ 1 and q
consider τ ∈ [0, 1] where 0 = τ0

≤ τp ≤ 1 and 0 = τ1 ≤ τ2 ≤ ...
Then we have (ln A[mτ1 ♩, m, 

... ln A[mτp♩, m) and (ln A... ln 

Which converges to Black-Scholes model 
Indeed by Proposition (4.1) in
central limit theorem, the law
numbers suffices. Hence, Equation 4.2.13 
converges in probability since Brownian 
motion xτ increaments are independent. By 
triangular transitions we obtain that
4.2.8 holds for both p ≥ 1 and q ≥ 
Remark 4.17. It is evident that for a strike 
price J, the value of European option is 
convergent to the solution (St)t∈

stochastic differential equation. 
In the context of optimizing portfolios with 
noisy observations in life insurance, the 3D 
convergence graph provides valuable insights.
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Figure 1: Convergence
Figure 1 illustrates the 
the extended (p, q)
Rubinstein model for a specific case where 
1. The graph is designed to visually represent 
how the predictions of the model approach
stable value as the number of time steps,
increases. This visual analysis is crucial in 
assessing the stability and reliability of the 
model, especially when dealing with financial 
portfolios in the domain of life in
3D graph typically includes multiple surfaces,
each represented by
indicating the results of the model for 
different values of N. 
surface might represent
model’s predictions for a smaller number of 
time steps. A green surface
to N = 50, illustrating
for a medium number of time steps.
surface might denote N 
model’s predictions for a larger number of 
time steps. 
By observing the behavior of these surfaces and 
their intersections, one 
the model converges to a stable value and 
understand the impact of different parameters on 
the rate of convergence. This
pivotal for making informed
realm of life insurance and ensuring the 
robustness of the financial model under 
consideration. The second case foll
similar structure to create a 3D plot 
illustrating the convergence
for η = 1. The only difference lies in the option 
prices eta 1 array, which contains the option 
prices corresponding to 
of the extended (p, 
Rubinstein model for
with noisy observations
3D convergence graph for 
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Convergence for η = -1 
 convergence behavior of 
)-binomial Cox- Ross-

Rubinstein model for a specific case where η = -
The graph is designed to visually represent 

how the predictions of the model approach a 
stable value as the number of time steps, N, 

This visual analysis is crucial in 
ity and reliability of the 

model, especially when dealing with financial 
portfolios in the domain of life insurance. The 
3D graph typically includes multiple surfaces, 
each represented by a different color, 
indicating the results of the model for 

 For example: A blue 
represent N = 25, showing the 

predictions for a smaller number of 
steps. A green surface could correspond 

illustrating the model’s behavior 
for a medium number of time steps. A red 

N = 100, showcasing the 
model’s predictions for a larger number of 

By observing the behavior of these surfaces and 
 can assess how quickly 

the model converges to a stable value and 
the impact of different parameters on 

the rate of convergence. This analysis is 
informed decisions in the 

life insurance and ensuring the 
robustness of the financial model under 

The second case follows a 
similar structure to create a 3D plot 

convergence of option prices 
difference lies in the option 

prices eta 1 array, which contains the option 
prices corresponding to η = 1. In the context 

 q)-binomial Cox-Ross-
model for optimizing portfolios 
observations in life insurance, the 

3D convergence graph for η = 1 offers 
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valuable insights. When η = 1, the model is 
expected to exhibit a distinct behavior 
compared to other η values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Convergence for η = 1 
 
Figure 2 illustrates how the portfolio value 
converges to the Black- Scholes model as the 
number of time steps N increases. For η = 1, 
the convergence is observed to be relatively 
smoother and faster.  This is indicative of the 
model’s sensitivity to the η parameter and its 
impact on the portfolio optimization process. 
In the 3D graph, different colors represent 
different values of the portfolio. For instance: - 
**Blue**: Represents lower portfolio values. - 
**Green**: Indicates intermediate portfolio 
values. - **Red**: Denotes higher portfolio 
values. 
By analyzing the graph, one can observe that as 
N increases, the portfolio values tend to stabilize 
and converge towards the Black-Scholes value, 
demonstrating the efficacy and reliability of the 
extended model in the scenario where η = 1. 
 
Table 1: Convergence Table presents 
numerical estimates for the graphs 

η θ N =
25 

N =
50 

N =
75 

N = 
100 

N = 
1000 

N = 
10000 

N = 
15000 

Black-
Scholes 

η = 
1 

θ = 1 11.1
6 

11.1
7 

11.1
8 

11.19 11.1
9 

11.19 11.19 11.19 

η = 
1 

θ = 
1.1 

1.23 11.2
5 

11.2
6 

11.26 11.2
6 

11.26 11.26 11.26 

η = 
0 

θ = 1 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 

η = 
0 

θ = 
1.1 

8.96 8.95 8.95 8.95 8.95 8.95 8.95 8.95 

η = 
-1 

θ = 1 7.01 6.99 6.99 6.99 6.99 6.99 6.99 6.99 

η = θ = 7.03 6.99 6.99 6.99 6.99 6.99 6.99 6.99 

-1 1.1 

 
Table 1 shows the numerical values for the 
convergences for η = -1 and η = 1 illustrating 
how the option price converges as the number 
of time steps increases. 
Finally we embark on the main aim of this 
paper. The preference and main aim of 
investors is to make profits when they invest 
regardless of presence of noisy observations or 
not. In this section we investigate conditions 
under which portfolio optimization is attained 
with respect to the extended CRR Model. 
Consider assets χ with noisy observations, 
we need to optimize the situation here. Let S 
= 0 be the price of χ. Now χ is given by 
vector α whose future is determined to pay 
off randomly at t = 1. The payoff is 
described by a random vectors V in same 
Skorohod Space (X, Ω, P) which is 
probabilistic. We make the following 
assumptions: 

(i). The vectors are strictly 
having +ve entries 

 
(ii). χ is strictly risky. 

Define portfolio Fr by Fr = (Fo, F ) ∈ R 

x Rχ.  The future value of F¯ = Fr·α. For 
sale of the Fr, its price regardless of the risk 
involved should be less or equal to initial 
capital. So the constrained budget becomes 
Frα ≤ C where C is the capital. Now we 
consider the expected utility Eu(Fr · α). We 
maximize Eu(Fr · α) over Fr under 
constraint Frα ≤ C. Let Q be a χ dimensional 
random vector of discounted net gains  
We state our optimum problem as follows: 
Let u : D → R be the utility function. 
Maximize Eu(Fr · Q) over all risky portfolio 
Fr that satisfies Fr · Q ∈ D. 
Further assumptions: 
 

(i). D = R and u is bounded above 
 

(ii). D = [χ, ∞) for some x < 0 and 
we optimize over the set of Fr such 
that Fr · Q ≥ x almost surely. So 
Eu(Fr · Q) is finite. 

 
3. Conclusion 
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In this paper, we have established optimization 
conditions for the extended (p, q)-binomial 
Cox-Ross-Rubinstein (CRR) model, 
particularly in the context of managing 

portfolios in life insurance under varying noise 
conditions. We also give the convergence 
analysis of the model. 
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