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REACHABILITY IN COMPLETE t-ARY TREES

SYLVESTER ARTHUR ABAYO1, ISAAC OWINO OKOTH2∗ AND DONNIE MUNYAO
KASYOKI3

Abstract. Mathematical trees such as Cayley trees, plane trees, binary trees,
noncrossing trees, t-ary trees among others have been studied extensively.
Reachability of vertices as a statistic has been studied in Cayley trees, plane
trees, noncrossing trees and recently in t-ary trees where all edges are oriented
from vertices of lower label towards vertices of higher label. In this paper,
we obtain closed formulas as well as asymptotic formulas for the number of
complete t-ary trees in which there are paths of a given length such that the
terminal vertex is a sink, leaf sink, first child and non-first child. We also
obtain number of trees in which there is a leftmost path of a given length.

1. Introduction

Plane trees (or ordered trees) are rooted trees whose children are ordered and
are one of the structures counted by the famous Catalan numbers. Plane trees
have been enumerated using a number of statistics such as number of vertices [2],
number of leaves [2], degree sequences [3] among many others. A t-ary tree is a
plane tree in which all the internal vertices have at most t children. If all the
internal vertices have exactly t children then such a plane tree is called a complete
t-ary tree. These are the main structures of our investigation. The total number
of t-ary trees on n vertices or complete t-ary trees with n internal vertices is given
by

1

(t− 1)(n− 1) + 1

(
t(n− 1)

n− 1

)
,

where t is a positive integer.
Given a vertex u of a plane tree, a vertex at a lower level which is incident

to u, is said to be a child of u. The vertex at a higher level which is incident
to u is the parent of u. The vertices with the same parent are called siblings.
Since the siblings are linearly ordered, they are always drawn in a left-to-right
pattern where the leftmost sibling is referred to as first child. At a given level,
the leftmost child is the eldest child. A leftmost path refers to a sequence of edges
joining eldest children at each level in a plane tree.
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In 2010, Du and Yin [4] introduced Cayley trees whose edges are oriented from
vertices of lower label towards vertices of higher label. They called this orientation
as local orientation. The study was initiated by an earlier work of Ethan Cotterill
[1]. The study of graphs whose edges are oriented was unified by Remmel and
Williamson in their study of digraphs [12]. Indegree (resp. outdegree) of a vertex
v refers to the number of edges that are directed into (resp. away from) v in a
directed graph. A sink (resp. source) is a vertex with outdegree (resp. indegree)
0 . A leaf sink is a sink with indegree 1. A vertex i is reachable from a vertex j
if there is a sequence of oriented edges from j to i. The number of edges on the
path is the length of the path. These definitions were given in [8].

In his PhD thesis [8], Okoth enumerated Cayley trees whose edges are locally
oriented. The statistics used by Okoth are number of vertices, path length and
exact number of reachable vertices. Besides reachability, Okoth obtained a func-
tional equation satisfied by the generating function of Cayley trees with a given
number of sources and sinks. On reachability, the proofs were based on the de-
composition of trees such that the vertices on a reachable path are roots of forests.
Okoth obtained, mostly closed formulas and in some instances he obtained as-
ymptotic formulae. The aforementioned author extended the work to locally
oriented noncrossing trees. These are trees whose vertices are on the boundary
of a circle such that the edges are line segments which do not cross inside the
circle. Moreover, the edges are locally oriented. The author obtained the number
of locally oriented noncrossing trees with a given number of vertices which are
reachable from the root.

Nyariaro and Okoth [6], in 2020, further extended the work to enumerate plane
trees, whose edges are locally oriented, according to path lengths, reachable sinks,
leaves, first children, leftmost path, non-first children and non-leaves. They also
obtained the formula for the number of trees in which an exact number of vertices
is reachable from the root. An earlier work to take into account the case in which
a given number of vertices are reachable from the root was considered by Seo and
Shin [14]. Such trees are called maximal increasing plane trees.

Recently, Okoth and Nyariaro [10] studied reachability of vertices in t-ary trees
whose edges are again locally oriented. They used path lengths, reachable sinks,
leaves, leftmost path, first children, non-first children and non-leaves as the sta-
tistics of enumeration. The same method used for enumeration of plane trees was
employed here as well. Enumeration of t-ary trees according to a given number
of vertices which are reachable from the root was considered by Seo and Shin [13]
in 2013. Again they called these trees maximal increasing t-ary trees.
In 2023, Nyariaro and Okoth [7] enumerated locally oriented 2-plane trees by

reachability of its vertices. 2-plane trees are plane trees such that the vertices
receive labels 1 and 2 so long as the sum of labels of the endpoints of an edge
does not exceed 3. The statistics of enumeration are leftmost paths, leaf sinks,
non-leaf sinks, first child and non-first child for 2-plane trees with roots of label
1 and label 2. The enumeration of locally oriented 2-plane trees by reachability
was possible following a successful enumeration of 2-plane trees by Lumumba,
Okoth and Kasyoki [5] according to the number of vertices of a given label in a
2-plane that reside at a certain level.
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We need the following theorem in our enumeration:

Theorem 1.1 (Binomial Theorem). For any integer n ≥ 0,

(x+ y)n =
n∑

k=0

(
n
k

)
xkyn−k.

The following identity which is proved in basic combinatorics textbooks is help-
ful in getting our results:

m∑
k=n

(
k
n

)
=

(
m+ 1
n+ 1

)
(Hockey stick identity). (1.1)

For the rest of this paper, we shall refer to complete labelled t-ary trees simply as
trees. We enumerate these trees according to path lengths in Section 2. We obtain
both explicit and asymptotic results. In Sections 3 and 4, we get equivalent results
with the statistics of enumeration being sinks and leftmost paths respectively. We
use first children and non-first children as statistics of enumeration in Sections 5
and 6 respectively. We conclude the paper in Section 7.

2. Enumeration by path lengths

In this section, using path length as the statistic of enumeration, we determine
the average number of vertices in trees on tn + 1 vertices which are reachable
from the root i such that there is a given number of edges on the path. We prove
our first result.

Proposition 2.1. The number of trees on tn+1 vertices such that a given vertex
v is reachable from the root i in ℓ steps is given by

tℓ(ℓt− ℓ+ t)(tn− ℓ− 1)!

(
v − i− 1

ℓ− 1

)(
tn− ℓ

n− ℓ− 1

)
. (2.1)

Proof. Let T (x) be the generating function for these trees where x marks the
number of vertices. Symbolically, the generating function for these trees satisfies
the equation: T (x) = x+ xT (x)t. By the decomposition of the trees in Figure 1,
we have that the generating function for these trees in which there is a path of
length ℓ ≥ 0 is given by:

(xT (x)t−1)ℓx(T (x)t = xℓT (x)ℓt−ℓxT (x)t = xℓ+1T (x)ℓt−ℓ+t.

Applying Lagrange Inversion Formula [15], it follows that

[xtn+1]xℓ+1T (x)ℓt−ℓ+t = [xtn−ℓ]T (x)ℓt−ℓ+t

=
ℓt− ℓ+ t

tn− ℓ
[stn−ℓt−t](1 + st)tn−ℓ.
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i

t subtrees

i+ ℓ

ℓ steps

Figure 1. A tree with path length ℓ starting at vertex i to vertex
i+ ℓ.

By Binomial Theorem (Theorem 1.1), we get

[xtn+1]xℓ+1T (x)ℓt−ℓ+t =
ℓt− ℓ+ t

tn− ℓ
[stn−ℓt−t]

∑
i≥0

(
tn− ℓ

i

)
sti

=
ℓt− ℓ+ t

tn− ℓ

(
tn− ℓ

n− ℓ− 1

)
.

This formula gives the number of trees with path length ℓ ≥ 0. If the path starts

at vertex i and ends at vertex v, then there are

(
v − i− 1
ℓ− 1

)
different labellings of

the vertices on the path. Since the ℓ+ 1 vertices on the path have been labelled,
we only need to obtain the different labellings of the other vertices in the tree.
The vertices to be labelled are (tn+ 1)− (ℓ+ 1) = tn− ℓ. The labellings can be
done in (tn− ℓ)! different ways. Moreover, an edge on a path can be any of the t
edges which connect a vertex to its children. Therefore, there are t positions for
each edge on the path. In total there are tℓ choices for positions of the edges in
the path of length ℓ. So, we have

tℓ(tn− ℓ)!

(
v − i− 1

ℓ− 1

)
ℓt− ℓ+ t

tn− ℓ

(
tn− ℓ

n− ℓ− 1

)
trees on tn + 1 vertices such that vertex v is reachable from vertex i in ℓ steps.
This completes the proof. □
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Corollary 2.2. The total number of labelled trees on tn + 1 vertices such that
vertex v is reachable from the root in ℓ steps is given by:

tℓ(ℓt− ℓ+ t)(tn− ℓ− 1)!

(
v − 1

ℓ

)(
tn− ℓ

n− ℓ− 1

)
. (2.2)

Proof. To get the required formula, we sum over i in Equation (2.1), i.e,

tℓ(ℓt− ℓ+ t)(tn− ℓ− 1)!

(
tn− ℓ

n− ℓ− 1

) v−ℓ∑
i=1

(
v − i− 1

ℓ− 1

)
, (2.3)

is the desired result which we now simplify. Let k = v − i− 1. When i = 1, then
k = v − 2, and when i = v − ℓ, then k = ℓ− 1. So we rewrite the sum as,

v−ℓ∑
i=1

(
v − i− 1

ℓ− 1

)
=

v−2∑
k=ℓ−1

(
k

ℓ− 1

)
Applying Hockey Stick Identity (1.1), we get

v−ℓ∑
i=1

(
v − i− 1

ℓ− 1

)
=

(
v − 1

ℓ

)
. (2.4)

Substituting Equation (2.4) in Equation (2.3), we obtain the required formula.
□

Corollary 2.3. The number of trees on tn + 1 vertices in which there is a path
of length ℓ from vertex i is given by

tℓ(ℓt− ℓ+ t)(tn− ℓ− 1)!

(
tn− ℓ

n− ℓ− 1

)(
tn− i+ 1

ℓ

)
. (2.5)

Proof. We sum over v in Equation (2.1) to get:

tℓ(ℓt− ℓ+ t)(tn− ℓ− 1)!

(
tn− ℓ

n− ℓ− 1

) tn+1∑
v=ℓ+i

(
v − i− 1

ℓ− 1

)

= tℓ(ℓt− ℓ+ t)(tn− ℓ− 1)!

(
tn− ℓ

n− ℓ− 1

) tn−i∑
k=ℓ−1

(
k

ℓ− 1

)
= tℓ(ℓt− ℓ+ t)(tn− ℓ− 1)!

(
tn− ℓ

n− ℓ− 1

)(
tn− i+ 1

ℓ

)
.

The last equality follows by Hockey Stick Identity. This completes the proof. □

Summing over all i in Equation (2.5), we get that there are

tℓ(ℓt− ℓ+ t)(tn− ℓ− 1)!

(
tn− ℓ

n− ℓ− 1

) tn−ℓ+1∑
i=1

(
tn− i+ 1

ℓ

)
= tℓ(ℓt− ℓ+ t)(tn− ℓ− 1)!

(
tn− ℓ

n− ℓ− 1

)(
tn+ 1

ℓ+ 1

)
(2.6)

trees on tn+ 1 vertices such that there is a path of length ℓ.
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Setting ℓ = 0, in Equation (2.6), we rediscover the formula for the number of
trees on tn+ 1 vertices, i.e.,

(tn)!

(
tn+ 1

n

)
. (2.7)

Corollary 2.4. On average, the number of trees on tn + 1 vertices in which

there are oriented paths of length ℓ from the root tends to
tℓ− ℓ+ t

t(ℓ+ 1)!
as n tends

to infinity.

Proof. We obtain the formula by dividing Equation (2.6) by Equation (2.7) and
tending n to infinity.

We have,

tℓ(ℓt− ℓ+ t)(tn− ℓ− 1)!
(

tn−ℓ
n−ℓ−1

)(
tn+1
ℓ+1

)
(tn)!

(
tn+1
n

)
=

tℓ(tℓ− ℓ+ t)(tn− ℓ− 1)! (tn−ℓ)!
(n−ℓ−1)!(tn−n+1)!

· (tn+1)!
(ℓ+1)!(tn−ℓ)!

(tn)! (tn+1)!
n!(tn−n+1)!

=
tℓ(tℓ− ℓ+ t)(tn− ℓ− 1)!(tn− ℓ)!n!(tn− n+ 1)!(tn+ 1)!

(tn)!(tn+ 1)!(ℓ+ 1)!(tn− ℓ)!(tn− n+ 1)!(n− ℓ− 1)!

=
tℓ(tℓ− ℓ+ t)

(ℓ+ 1)!
· n!(tn− ℓ− 1)!

(tn)!(n− ℓ− 1)!

=
tℓ(tℓ− ℓ+ t)

(ℓ+ 1)!
· n(n− 1)(n− 2) · · · (n− ℓ)

tn(tn− 1)(tn− 2) · · · (tn− ℓ+ 1)(tn− ℓ)
.

Let

X =
n(n− 1)(n− 2) · · · (n− ℓ)

tn(tn− 1)(tn− 2) · · · (tn− ℓ+ 1)(tn− ℓ)
.

Now,

lim
n→∞

X = lim
n→∞

n(n− 1)(n− 2) · · · (n− ℓ)

tn(tn− 1)(tn− 2) · · · (tn− ℓ+ 1)(tn− ℓ)
= lim

n→∞

nℓ+1 + · · ·
tℓ+1nℓ+1 + · · ·

=
1

tℓ+1
lim
n→∞

1 + · · ·
1 + · · ·

=
1

tℓ+1
.

As n → ∞, the average number of trees on tn + 1 vertices in which there are
oriented paths of length ℓ from the root tends to

tℓ(tℓ− ℓ+ t)

(ℓ+ 1)!
· lim
n→∞

X =
tℓ(tℓ− ℓ+ t)

(ℓ+ 1)!
· 1

tℓ+1
=

tℓ− ℓ+ t

t(ℓ+ 1)!
.

□

3. Enumeration by sinks

In this section, we determine the number of vertices in labelled trees on tn+1
vertices which are reachable from a given vertex such that there is a given number
of edges on a path leading to a sink which is either a non-leaf sink or a leaf sink.
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Proposition 3.1. The number of trees on tn + 1 vertices such that there is a
path of length ℓ starting at the root i and ending at a non-leaf sink v is given by:

tℓ(tn− ℓ− t)!

(
v − ℓ− 1

t

)
ℓt− ℓ+ t

tn− ℓ

(
tn− ℓ

n− ℓ− 1

)(
v − i− 1

ℓ− 1

)
. (3.1)

Proof. Let T (x) be the generating function for trees where x marks the number of
vertices. Then T (x) = x+xT (x)t. By the decomposition of the trees as in Figure
2 where vertex i + ℓ is a non-leaf sink of degree t, we have that the generating

i

t subtrees

i+ ℓ

ℓ steps

Figure 2. Unlabelled tree with path length ℓ with final vertex a
non-leaf sink.

function for trees in which there is a path of length ℓ from vertex i is given by:

(xT (x)t−1)ℓxT (x)t = xℓT (x)ℓt−ℓxT (x)t = xℓ+1T (x)ℓt−ℓ+t.

Applying Lagrange Inversion Formula [15], we have

[xtn+1]xℓ+1T (x)ℓt−ℓ+t = [xtn−ℓ]T (x)ℓt−ℓ+t

=
ℓt− ℓ+ t

tn− ℓ
[stn−ℓt−t](1 + st)tn−ℓ.

By Binomial Theorem, we get

[xtn+1]xℓ+1T (x)ℓt−ℓ+t =
ℓt− ℓ+ t

tn− ℓ
[stn−ℓt−t]

∑
i≥0

(
tn− ℓ

i

)
sti

=
ℓt− ℓ+ t

tn− ℓ

(
tn− ℓ

n− ℓ− 1

)
.

This is the number of trees with path length ℓ starting at vertex i to a non-leaf
sink i + ℓ. Instead of the path terminating at vertex i + ℓ, let the path start at
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i and end at non-leaf sink v. There are

(
v − i− 1
ℓ− 1

)
different labellings of the

vertices on the path. Since the terminating vertex v is a sink of degree t, then the

labels of the children of v must be less than v. Therefore, there are

(
v − ℓ− 1

t

)
choices for labels of the children of v. Note that the ℓ+ 1 vertices on the path of
length ℓ and t children of v have been labelled. Overall, there are still a total of
(tn − ℓ − t) vertices to be labelled. There are (tn − ℓ − t)! choices for labelling
them. Moreover, an edge on a path, can be any of the t edges which connect a
vertex to its children. Therefore, there are t positions for each edge on the path.
In total there are tℓ choices for positions of the vertices in the path of length ℓ.
Putting everything together, we have

tℓ(tn− ℓ− t)!

(
v − ℓ− 1

t

)
ℓt− ℓ+ t

tn− ℓ

(
tn− ℓ

n− ℓ− 1

)(
v − i− 1

ℓ− 1

)
trees on tn + 1 vertices such that non-leaf sink v is reachable from vertex i in ℓ
steps. □

Corollary 3.2. The total number of trees on tn+1 vertices in which a fixed root
v is a non-leaf sink is given by:

(tn− t)!

n

(
v − 1

t

)(
tn

n− 1

)
. (3.2)

Proof. The result follows by setting ℓ = 0 and i = v in Equation (3.1), i.e,

(tn− t)!

(
v − 1

t

)
t

tn

(
tn

n− 1

)(
−1

−1

)
with

(−1
−1

)
= 1. □

Corollary 3.3. The total number of trees on tn+ 1 vertices in which the root is
a non-leaf sink is given by:

(tn− t)!

n

(
tn+ 1

t+ 1

)(
tn

n− 1

)
. (3.3)

Proof. From Equation (3.2), we get that the number of the required trees is

tn+1∑
v=t+1

(tn− t)!

n

(
v − 1

t

)(
tn

n− 1

)
=

(tn− t)!

n

(
tn

n− 1

) tn+1∑
v=t+1

(
v − 1

t

)
. (3.4)

Let k = v − 1, so that

tn+1∑
v=t+1

(
v − 1

t

)
=

tn∑
k=t

(
k

t

)
=

(
tn+ 1

t+ 1

)
. (3.5)

The last equality follows by Hockey Stick Identity.
Substituting Equation (3.5) in Equation (3.4), we obtain the required formula.

□
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Corollary 3.4. The total number of trees on tn + 1 vertices in which a child
v > i of a root i is a non-leaf sink is given by

(2t2 − t)(tn− t− 1)!

tn− 1

(
tn− 1

n− 2

)(
v − 2

t

)
. (3.6)

Proof. We get the result by setting ℓ = 1 in Equation (3.1). □

Summing over all v in Equation (3.6), we find that there are

(2t2 − t)(tn− t− 1)!

tn− 1

(
tn− 1

n− 2

) tn+1∑
v=t+2

(
v − 2

t

)

=
(2t2 − t)(tn− t− 1)!

tn− 1

(
tn− 1

n− 2

) tn−1∑
k=t

(
k

t

)
=

(2t2 − t)(tn− t− 1)!

tn− 1

(
tn− 1

n− 2

)(
tn

t+ 1

)
children of the root which are also non-leaf sinks in trees on tn+ 1 vertices.

Corollary 3.5. The total number of trees on tn + 1 vertices such that vertex v
which is a non-leaf sink is reachable from the root in ℓ steps is given by

tℓ(tn− ℓ− t)!

(
v − ℓ− 1

t

)
ℓt− ℓ+ t

tn− ℓ

(
tn− ℓ

n− ℓ− 1

)(
v − 1

ℓ

)
. (3.7)

Proof. To get the required formula, we sum over i in Equation (3.1), i.e.,

tℓ(tn− ℓ− t)!

(
v − ℓ− 1

t

)
ℓt− ℓ+ t

tn− ℓ

(
tn− ℓ

n− ℓ− 1

) v−ℓ∑
i=1

(
v − i− 1

ℓ− 1

)
, (3.8)

is the desired result which we can now simplify. Let k = v−i−1. When i = 1,then
k = v − 2 and when i = v − ℓ then k = ℓ− 1. So, we have

v−ℓ∑
i=1

(
v − i− 1

ℓ− 1

)
=

v−2∑
k=ℓ−1

(
k

ℓ− 1

)
Applying Hockey Stick Identity, we get

v−l∑
i=1

(
v − i− 1

ℓ− 1

)
=

(
v − 1

ℓ

)
(3.9)

Substituting Equation (3.9) in Equation (3.8), we get the equation in the state-
ment of the corollary. □

Corollary 3.6. The total number of trees on tn+ 1 vertices such that there is a
path of length ℓ from the root to a non-leaf sink is given by

tℓ(tn− ℓ− t)!
ℓt− ℓ+ t

tn− ℓ

(
tn− ℓ

n− ℓ− 1

) tn+1∑
v=t+1

(
v − ℓ− 1

t

)(
v − 1

ℓ

)
.

Proof. To get the result, we sum over all v in Equation (3.7). □
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For the remainder of this section, our statistic of enumeration is leaf sink.

Proposition 3.7. The number of trees on tn + 1 vertices in which a leaf sink v
is reachable, at length ℓ ≥ 0, from the root i is given by

tℓ(tn− ℓ)!
ℓt− ℓ

tn− ℓ

(
tn− ℓ

n− ℓ

)(
v − i− 1

ℓ− 1

)
. (3.10)

Proof. Let T (x) be the generating function for a tree where x marks the number
of vertices. Then T (x) = x + xT (x)t. These trees in which there is a path of
length ℓ from the root i to a leaf sink i+ ℓ is decomposed as shown in Figure 3.

i

i+ ℓ

ℓ steps

Figure 3. Unlabelled tree with path length ℓ with final vertex a
leaf sink.

By the decomposition, we have that the generating function for the trees in
which there is a path of length ℓ from a root i to a leaf sink i+ ℓ is given by

(xT (x)t−1)ℓx = xℓT (x)ℓt−ℓx = xℓ+1T (x)ℓt−ℓ. (3.11)

Applying Lagrange Inversion Formula [15], it follows that

[xtn+1]xℓ+1T (x)ℓt−ℓ = [xtn−ℓ]T (x)ℓt−ℓ =
ℓt− ℓ

tn− ℓ
[stn−ℓt](1 + st)tn−ℓ. (3.12)

By Binomial Theorem, we have

[xtn+1]xℓ+1T (x)ℓt−ℓ =
ℓt− ℓ

tn− ℓ
[stn−ℓt]

∑
i≥0

(
tn− ℓ

i

)
sti =

ℓt− ℓ

tn− ℓ

(
tn− ℓ

n− ℓ

)
.

This formula gives the number of trees in which there is a path of length ℓ from
the root. Let the path start at i and end at leaf sink v, then there are

(
v−i−1
ℓ−1

)
different labellings of the vertices on the path. Since the ℓ + 1 vertices on the
path have been labelled, there are still a total of (tn− ℓ) vertices to be labelled.
This can be done in (tn− ℓ)! ways. An edge on a path can be any of the t edges
which connects a vertex to its children. Thus, there are t positions for each edge
on the path. In total, there are tℓ choices for positions of the vertices in the path
of length ℓ. Collecting everything together, we get the desired formula. □
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Corollary 3.8. The total number of trees on tn+1 vertices in which vertex v is
a leaf sink reachable from the root i in ℓ steps is given by

tℓ(tn− ℓ− 1)!(ℓt− ℓ)

(
tn− ℓ

n− ℓ

)(
v − 1

ℓ

)
. (3.13)

Proof. We obtain the required formula by summing over all i in Equation (3.10),
i.e.,

tℓ(tn− ℓ)!
ℓt− ℓ

tn− ℓ

(
tn− ℓ

n− ℓ

) v−ℓ∑
i=ℓ

(
v − i− 1

ℓ− 1

)
. (3.14)

By Hockey Stick Identity, we get
v−ℓ∑
i=1

(
v − i− 1

ℓ− 1

)
=

(
v − 1

ℓ

)
. (3.15)

Substituting Equation (3.15) in Equation (3.14), we get Equation (3.10). This
completes the proof. □

Corollary 3.9. The number of trees on tn + 1 such that there is a leaf sink at
length ℓ which is reachable from the root i is given by

tℓ(tn− ℓ− 1)!(ℓt− ℓ)

(
tn− ℓ

n− ℓ

)(
tn− i+ 1

ℓ

)
. (3.16)

Proof. We obtain the result by summing over v in Equation 3.10, i.e.,

tℓ(tn− ℓ− 1)!(ℓt− ℓ)

(
tn− ℓ

n− ℓ

) tn+1∑
v=ℓ+i

(
v − i− 1

ℓ− 1

)
. (3.17)

Let k = v − i − 1. When v = tn + 1, k = tn − i and when v = ℓ + i, k = ℓ − 1.
We have,

tn+1∑
v=ℓ+i

(
v − i− 1

ℓ− 1

)
=

tn−i∑
k=ℓ−1

(
k

ℓ− 1

)
.

By Hockey Stick Identity, we get
tn−i∑
k=ℓ−1

(
k

ℓ− 1

)
=

(
tn− i+ 1

ℓ

)
. (3.18)

By Equations (3.17) and (3.18), we obtain the desired result. □

Corollary 3.10. The total number of leaf sinks, in trees on tn + 1 vertices is
given by

tℓ(tn− ℓ− 1)!(ℓt− ℓ)

(
tn− ℓ

n− ℓ

)(
tn+ 1

ℓ+ 1

)
. (3.19)

Proof. We obtain the equation by summing over v in Equation 3.13, i.e.,

tℓ(tn− ℓ− 1)!(ℓt− ℓ)

(
tn− ℓ

n− ℓ

) tn+1∑
v=ℓ+1

(
v − 1

ℓ

)
. (3.20)



78 S. A. ABAYO, I. O. OKOTH, D. M. KASYOKI

Let k = v − 1. When v = tn+ 1, k = tn and when v = ℓ+ 1, k = ℓ. So, we get

tn+1∑
v=ℓ+1

(
v − 1

ℓ

)
=

tn∑
k=ℓ

(
k

ℓ

)
.

Making use of Hockey Stick Identity, we get

tn∑
k=ℓ

(
k

ℓ

)
=

(
tn+ 1

ℓ+ 1

)
. (3.21)

By Equations (3.20) and (3.21), we obtain the required result. Alternatively, the
corollary can be proved by summing over all i in Equation (3.16). □

Setting ℓ = 0, in Equation (3.19), we see that the root cannot be a leaf sink
in any tree. Also, setting ℓ = 1 in the same equation, we find the number of leaf
sinks which are children of the root in trees on tn+ 1 vertices.

Corollary 3.11. On average, the number of leaf sinks which are reachable at

length ℓ from the root in trees on tn+ 1 vertices tends to
ℓ(t− 1)2

t(ℓ+ 1)!
as n tends to

infinity.

Proof. We obtain the formula by dividing Equation (3.19) by Equation (2.7) and
tending n to infinity. □

4. Enumeration by leftmost paths

In this section, we enumerate trees according to the length of leftmost paths.

Proposition 4.1. The number of trees on tn + 1 vertices such that there is the
leftmost path of length ℓ starting at root i and ending at a vertex v is given by:

(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

)(
v − i− 1
ℓ− 1

)
. (4.1)

Proof. Let T (x) be the generating function for trees where x marks the number of
vertices. By the decomposition of the trees, as shown in Figure 4, the generating
function is given by

(xT (x)t−1)ℓxT (x)t = xℓ+1T (x)tℓ−ℓ+t. (4.2)

By Lagrange Inversion Formula [15], we have

[xtn+1]xℓ+1T (x)tℓ+t−ℓ = [xtn−ℓ]T (x)tℓ+t−ℓ =
tℓ+ t− ℓ

tn− ℓ
[stn−tℓ−t](1 + st)tn−ℓ. (4.3)
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i

t subtrees

i+ ℓ

ℓ steps

Figure 4. Unlabelled tree with a leftmost path of length ℓ.

By Binomial Theorem, we get

[xtn+1]xℓ+1T (x)ℓt−ℓ+t =
ℓt− ℓ+ t

tn− ℓ
[stn−ℓt−t]

∑
i≥0

(
tn− ℓ

i

)
sti

=
ℓt− ℓ+ t

tn− ℓ
[st(n−ℓ−1)]

∑
i≥0

(
tn− ℓ

i

)
sti

=
ℓt− ℓ+ t

tn− ℓ

(
tn− ℓ

n− ℓ− 1

)
. (4.4)

Equation (4.1) gives the number of trees on tn + 1 vertices such that there is a
leftmost path of length ℓ from vertex i to terminal vertex i+ ℓ. Let the terminal

vertex be v, then there are

(
v − i− 1
ℓ− 1

)
different labellings of the vertices on the

path. The other vertices, the ones not on the path, are labelled in ((tn + 1) −
(ℓ+ 1))! = (tn− ℓ)! ways. We thus have the trees under consideration are

(tn− ℓ)!
ℓt− ℓ+ t

tn− ℓ

(
v − i− 1
ℓ− 1

)(
tn− ℓ

n− ℓ− 1

)
in number. □

Corollary 4.2. The total number of trees on tn + 1 vertices which there is a
leftmost path of length ℓ from the root i is given by

(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

)(
tn− i+ 1

ℓ

)
. (4.5)
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Proof. We obtain the desired formula by summing over v in Equation (4.1):

(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

) tn+1∑
v=ℓ+i

(
v − i− 1

ℓ− 1

)

= (tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

) tn−i∑
k=ℓ−1

(
k

ℓ− 1

)
= (tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

)(
tn− i+ 1

ℓ

)
.

□

Corollary 4.3. There are

(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

)(
v − 1

ℓ

)
(4.6)

trees on tn + 1 vertices in which there are leftmost paths of length ℓ terminating
at vertex v.

Proof. We sum over all i in Equation (4.1) to obtain the result:

(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

) v−ℓ∑
i=1

(
v − i− 1

ℓ− 1

)

= (tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

) v−2∑
k=ℓ−1

(
k

ℓ− 1

)
= (tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

)(
v − 1

ℓ

)
.

□

Corollary 4.4. The total number of trees on tn+ 1 vertices such that there is a
leftmost path of length ℓ is given by

(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

)(
tn+ 1

ℓ+ 1

)
. (4.7)

Proof. We obtain the result by summing over all i in Equation (4.5) or over all v
in Equation (4.6):

(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

) tn−ℓ+1∑
i=1

(
tn− i+ 1

ℓ

)

= (tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

) tn∑
k=ℓ

(
k

ℓ

)
= (tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

)(
tn+ 1

ℓ+ 1

)
.

□



REACHABILITY IN COMPLETE t-ARY TREES 81

Setting ℓ = 0 in Equation (4.7), we rediscover the formula for the number of
trees on tn+ 1 vertices, stated earlier as Equation (2.7).

Corollary 4.5. On average, the number of non-leaf vertices at length k on left-
most paths which are reachable from the roots of trees on tn+ 1 vertices tends to
tℓ− ℓ+ t

tℓ+1(ℓ+ 1)!
as n tends to infinity.

Proof. We obtain the formula by dividing Equation (4.7) by Equation (2.7) and
tending n to infinity. □

5. Enumeration by first children

In this section, we enumerate trees according to level of first children.

Proposition 5.1. The number of trees on tn+1 vertices in which there is a path
of length ℓ starting at the root i and terminating at a first child v is given by:

tℓ−1(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
v − i− 1

ℓ− 1

)(
tn− ℓ

n− ℓ− 1

)
. (5.1)

Proof. Let T (x) be the generating function for trees. Then T (x) = x + xT (x)t.
By the decomposition of trees as shown in Figure 5,

i

t subtrees

i+ ℓ

ℓ steps

Figure 5. A tree with path length ℓ starting at vertex i to first
child i+ ℓ.

the generating function for trees in which there is a path of length ℓ > 0 is
given by:

(xT (x)t−1)ℓ−1xT (x)t−1xT (x)t = xℓ+1T (x)ℓt−ℓ+t.
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Applying Lagrange Inversion Formula [15], it follows that

[xtn+1]xℓ+1T (x)ℓt−ℓ+t = [xtn−ℓ]T (x)ℓt−ℓ+t

=
ℓt− ℓ+ t

tn− ℓ
[stn−ℓt−t](1 + st)tn−ℓ.

By Binomial Theorem, we get

[xtn+1]xℓ+1T (x)ℓt−ℓ+t =
ℓt− ℓ+ t

tn− ℓ
[stn−ℓt−t]

∑
i≥0

(
tn− ℓ

i

)
sti

=
ℓt− ℓ+ t

tn− ℓ

(
tn− ℓ

n− ℓ− 1

)
. (5.2)

Equation (5.2) gives the number of trees on tn + 1 vertices such that there is a
path of length ℓ from vertex i to a first child i+ ℓ. Let the terminal first child be

v, then there are

(
v − i− 1
ℓ− 1

)
different labellings of the vertices on the path. The

other vertices which are not on that path can be labelled in (tn − ℓ)! ways. An
edge on a path can be any of the t edges which connect a vertex to its children.
Therefore, there are t positions for each edge on the path, except the final edge
whose endpoint is the first child. In total there are tℓ−1 choices for positions of
the edges on the path of length ℓ, (the final edge has one choice for position).
Thus there are

tℓ−1(tn− ℓ)!
ℓt− ℓ+ t

tn− ℓ

(
v − i− 1
ℓ− 1

)(
tn− ℓ

n− ℓ− 1

)
trees of order tn+1 such that there is a path of length ℓ starting at a vertex i to
a first child v. □

Corollary 5.2. The total number of trees on tn + 1 vertices in which there is a
first child at length ℓ from the root i is given by

tℓ−1(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

)(
tn− i+ 1

ℓ

)
. (5.3)

Proof. We obtain the desired formula by summing over v in Equation (5.1):

tℓ−1(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

) tn+1∑
v=ℓ+i

(
v − i− 1

ℓ− 1

)

= tℓ−1(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

) tn−i∑
k=ℓ−1

(
k

ℓ− 1

)
= tℓ−1(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

)(
tn− i+ 1

ℓ

)
.

□

Corollary 5.3. There are

tℓ−1(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

)(
v − 1

ℓ

)
(5.4)
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trees of order tn + 1 in which there are paths of length ℓ from the root to a first
child v.

Proof. We sum over all i in Equation (5.1) to obtain the result:

tℓ−1(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

) v−ℓ∑
i=1

(
v − i− 1

ℓ− 1

)
= tℓ−1(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

)(
v − 1

ℓ

)
.

□

Corollary 5.4. The total number of trees on tn+ 1 vertices such that there is a
path of length ℓ from the root terminating at a first child is given by

tℓ−1(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

)(
tn+ 1

ℓ+ 1

)
. (5.5)

Proof. We obtain the result by summing over all i in Equation (5.3) or over all v
in Equation (5.4):

tℓ−1(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

) tn−ℓ+1∑
i=1

(
tn− i+ 1

ℓ

)
= tℓ−1(tn− ℓ− 1)!(ℓt− ℓ+ t)

(
tn− ℓ

n− ℓ− 1

)(
tn+ 1

ℓ+ 1

)
.

□

Corollary 5.5. On average, the number of first children, at length ℓ, which are

reachable from the roots of trees on tn+ 1 vertices tends to
tℓ− ℓ+ t

t2(ℓ+ 1)!
as n tends

to infinity.

Proof. We obtain the formula by dividing Equation (5.5) by Equation (2.7) and
tending n to infinity. □

6. Enumeration by non-first children

In this section, we enumerate trees according to non-first children which reside
at a given level from a specified vertex.

Proposition 6.1. The number of trees on tn + 1 vertices in which a non-first
child v is reachable from the root i in ℓ steps is given by:

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
v − i− 1
ℓ− 1

)(
tn− ℓ− 1
n− ℓ− 2

)
. (6.1)

Proof. We consider a tree of order tn+ 1 with root i such that there is a path of
length ℓ from the root to a non-first child i + ℓ. The path decomposes the tree
into left and right sub trees until step ℓ. Since vertex i + ℓ is a non-first child,
there has to be an elder sibling of i+ℓ. The vertex v can have a sub-tree attached
to it or it can be empty. Let T (x) be the generating function for trees. Again
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T (x) = x+xT (x)t. Here, x marks the number of vertices. Then we have that the
generating function for trees in which there is a path of length ℓ > 0 terminating
at a non-first child is given by:

(xT (x)t−1)ℓ−1xT (x)t−2xT (x)txT (x)t = xℓ+2T (x)ℓt−ℓ+2t−1.

This decomposition is given in Figure 6.

i

t subtreest subtrees

i+ ℓ

ℓ steps

Figure 6. A tree with path length ℓ starting at vertex i to non-
first child of label i+ ℓ.

By Lagrange Inversion Formula [15] and binomial theorem, it follows that

[xtn+1]xℓ+2T (x)ℓt−ℓ+2t−1 = [xtn−ℓ−1]T (x)ℓt−ℓ+2t−1

=
ℓt− ℓ+ 2t− 1

tn− ℓ− 1
[stn−ℓt−2t]

∑
i≥0

(
tn− ℓ− 1

i

)
sti

=
ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 2

)
.

There are

(
v − i− 1
ℓ− 1

)
choices for these labels on the path from i to non-first child

v. Note that when the ℓ+1 vertices on the path of length ℓ have been relabelled,
we still have tn − ℓ vertices to label. This can be done in (tn − ℓ)! ways. An
edge on a path can be any of the t edges which connect a vertex to its children.
Therefore, there are t positions for each edge on the path, except the final edge
whose endpoint is the non-first child. In total there are (t − 1)tℓ−1 choices for
positions of the edges in the path of length ℓ, (the final edge has (t− 1) choices
for position). Putting everything together, we obtain the desired formula. □
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Corollary 6.2. The total number of trees on tn + 1 vertices in which there is a
non-first child at length ℓ from the root i is given by

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 2

)(
tn− i+ 1

ℓ

)
. (6.2)

Proof. We obtain the desired formula by summing over v in Equation (6.1):

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 2

) tn+1∑
v=ℓ+i

(
v − i− 1

ℓ− 1

)

= (t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 2

) tn−i∑
k=ℓ−1

(
k

ℓ− 1

)
= (t− 1)tℓ−1(tn− ℓ)!

ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 2

)(
tn− i+ 1

ℓ

)
.

□

Corollary 6.3. There are

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 2

)(
v − 1

ℓ

)
(6.3)

trees of order tn+1 in which there are paths of length ℓ from the root that terminate
at a non-first child v.

Proof. We sum over all i in Equation (6.1) to obtain the result:

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 2

) v−ℓ∑
i=1

(
v − i− 1

ℓ− 1

)

= (t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 2

) v−2∑
k=ℓ−1

(
k

ℓ− 1

)
= (t− 1)tℓ−1(tn− ℓ)!

ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 2

)(
v − 1

ℓ

)
.

□

Corollary 6.4. The total number of trees on tn+ 1 vertices such that there is a
path of length ℓ from the root terminating at a non-first child is given by

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 2

)(
tn+ 1

ℓ+ 1

)
. (6.4)
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Proof. We obtain the result by summing over all i in Equation (6.2) or over all v
in Equation (6.3):

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 2

) tn−ℓ+1∑
i=1

(
tn− i+ 1

ℓ

)

= (t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 2

) tn∑
k=ℓ

(
k

ℓ

)
= (t− 1)tℓ−1(tn− ℓ)!

ℓt− ℓ+ 2t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 2

)(
tn+ 1

ℓ+ 1

)
.

□

Corollary 6.5. The average number of non-first children which are reachable
from the root in ℓ steps in a random tree is given by

(t− 1)(ℓt− ℓ+ 2t− 1)

(ℓ+ 1)!t3
.

Proof. We obtain the formula by dividing Equation (6.4) by Equation (2.7) and
tending n to infinity. □

For the rest of this section, we enumerate trees by the number of non-first
children which are reachable at a given length such that the non-first child is a
leaf.

Proposition 6.6. The number of trees of order tn + 1 such that there is a path
of length ℓ starting at root i and ending at a non-first child v which is also a leaf
is given by:

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ t− 1

tn− ℓ− 1

(
v − i− 1
ℓ− 1

)(
tn− ℓ− 1
n− ℓ− 1

)
. (6.5)

Proof. Let T (x) be the generating function for trees. Then T (x) = x + xT (x)t.
Here, x marks vertices. Let’s consider a path of length ℓ from vertex i to a non-
first child i+ ℓ. Moreover, let vertex i+ ℓ be a leaf. By the decomposition of the
trees as in Figure 7, the generating function for these trees is given as

(xT (x)t−1)ℓ−1xT (x)t−2xT (x)tx = xℓ+2T (x)ℓt+t−ℓ−1.

By Lagrange Inversion Formula [15], we have

[xtn+1]xℓ+2T (x)ℓt−ℓ+t−1 = [xtn−ℓ−1]T (x)ℓt−ℓ+t−1

=
ℓt− ℓ+ t− 1

tn− ℓ− 1
[stn−ℓt−t](1 + st)tn−ℓ−1.

Now, Binomial Theorem gives

[xtn−ℓ−1]T (x)ℓt−ℓ+t−1 =
ℓt− ℓ+ t− 1

tn− ℓ− 1
[stn−ℓt−t]

∑
i≥0

(
tn− ℓ− 1

i

)
sti

=
ℓt− ℓ+ t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 1

)
.
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i

t subtrees

i+ ℓ

ℓ steps

Figure 7. A tree with path length ℓ starting at vertex i to non-
first child of label i+ ℓ. The non-first vertex is also a leaf.

There are

(
v − i− 1
ℓ− 1

)
choices for labels on the path from i to non-first child v.

Since there are ℓ + 1 vertices on the path of length ℓ which have been labelled,
then there are still tn − ℓ vertices to be labelled. This can be done in (tn − ℓ)!
ways. An edge on a path can be any of the t edges which connect a vertex to
its children. Therefore, there are t positions for each edge on the path, except
the final edge whose endpoint is the non-first child. In total there are (t− 1)tℓ−1

choices for positions of the edges in the path of length ℓ, (the final edge has (t−1)
choices for position). We obtain the result by putting everything together. □

Corollary 6.7. The total number of trees on tn+ 1 vertices such that there is a
non-first child, which is also a leaf, at length ℓ from the root i is given by

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 1

)(
tn− i+ 1

ℓ

)
. (6.6)

Proof. We obtain the desired formula by summing over all v in Equation (6.5):

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 1

) tn+1∑
v=ℓ+i

(
v − i− 1

ℓ− 1

)

= (t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 1

) tn−i∑
k=ℓ−1

(
k

ℓ− 1

)
= (t− 1)tℓ−1(tn− ℓ)!

ℓt− ℓ+ t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 1

)(
tn− i+ 1

ℓ

)
.

□
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Corollary 6.8. There are

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 1

)(
v − 1

ℓ

)
(6.7)

trees of order tn+1 in which there are paths of length ℓ from the root that terminate
at a non-first child v which is also a leaf.

Proof. We sum over all i in Equation (6.5) to obtain the result:

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 1

) v−ℓ∑
i=1

(
v − i− 1

ℓ− 1

)

= (t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 1

) v−2∑
k=ℓ−1

(
k

ℓ− 1

)
= (t− 1)tℓ−1(tn− ℓ)!

ℓt− ℓ+ t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 1

)(
v − 1

ℓ

)
.

□

Corollary 6.9. The total number of trees on tn+ 1 vertices such that there is a
path of length ℓ from the root terminating at a non-first child which is also a leaf
is given by

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 1

)(
tn+ 1

ℓ+ 1

)
. (6.8)

Proof. We obtain the result by summing over all i in Equation (6.6) or over all v
in Equation (6.7):

(t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 1

) tn−ℓ+1∑
i=1

(
tn− i+ 1

ℓ

)

= (t− 1)tℓ−1(tn− ℓ)!
ℓt− ℓ+ t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 1

) tn∑
k=ℓ

(
k

ℓ

)
= (t− 1)tℓ−1(tn− ℓ)!

ℓt− ℓ+ t− 1

tn− ℓ− 1

(
tn− ℓ− 1
n− ℓ− 1

)(
tn+ 1

ℓ+ 1

)
.

□

Corollary 6.10. On average, the number of non-first children (also non-leaves),

which are reachable from the roots of trees on tn+1 vertices tends to
(t− 1)2(ℓt− ℓ+ t− 1)

(ℓ+ 1)!t3

as n goes to infinity.

Proof. We obtain the formula by dividing Equation (6.8) by Equation (2.7) and
tending n to infinity. □
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7. Conclusion

In this work, we have built on the previous work of Okoth, Okoth and Nyariaro
and Seo and Shin to enumerate labelled complete t-ary trees according to path
lengths, reachable sinks, leaves, first children, leftmost paths and non-first chil-
dren. The work can be extended to obtain equivalent results for t-ary trees whose
vertices are labelled with integers 1, 2, . . . , k such that if the rightmost child has
label j and its parent label i then i ≤ j. These trees were introduced and studied
by Panholzer and Prodinger in [11].
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