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ABSTRACT

The Kotteweg-de Vrr-es(KdV)is a mathematical model of waves on shal-

low water surfaces. The mathematical theory behind the KdV equation

is rich and interesting, and, in the broad sense, is a topic of actiw math-

ematical research. The equation is named after Diederik Korteweg and

Gustav de Vries,

It has long boon known that conservative discretization schemes for

the KdV and other nonlinear equations tend to become numericrtlly un-

stable. Although finite difference approximations have been used, there

are always instabilities of the solutions obtained,

In this work we solved the Korteweg-ds Vries (KdV) equation using an

explicit finite difference method, subject. to various boundery conditions

which are travelling wave solutions to the KdV equation. The methodol-

ogy involved carefully designing ron~vatiV"e finite difference discretiM-

tion that can remain stable and deliver sharp solution profiles fora long

time. We Jthen determined the atcu~y of the finite diffurence scheme by

comparingthe graphical outputs of the numerical results.
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Chapter 1

INTRODUCTION

1.1 Introduction

The Korteweg-de Vries (KdV)eqllation is given by:

(1.1)

Eqmrtioo u.i) describes one-dimensional shallow-water waves, with.

small but finite amplitudes. Form the modern perspective it is used as

a constructive eie:n:rentto formulate the complex dynamical behaviour

of wave systems throughout science: from hydrodynamics to nonlinear

optics, from plasma to shock waves, from tornados to the .groo:t red spot

of Jupiter, from elementary particles of matter to the elementary particles

of thought.

More recently, the KdV equation has been found to describe wave phe·

nomena in plasma physics [3,23], anharmonic crystals [12,24] and bubble-

liquid mixtures [20,21]. The KdV equation is also relevant to the discus-

sion of the interaction between nonlinearity and dispersion, just as the

well-known Burgers equation shows the features of the interaction be-
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CHAPTER 1. INTRODUCTION 2

tween nonlinearity and dissipation.

The Korteweg-de Vries Equation (1.1) is nonlinear because of the sec-
/

ond summand and is of third order because of the third derivative as

highest in the third summand.

For appropriate initial functions Lax and Sjobrerg[13,17] have shown

the existence and uniqueness of solutions of the KdV equation. Approx-

imate solutions in the form of expansions were given by Broer [2], while

Hoogstraten [8] obtained asymptotic solutions for slowly varying wave

trains.

Gardner, Lax et al. [6,14]described analytic considerations concerning

the existence of solitary waves in solutions of certain initial-value prob-

lems. Zabusky and Kruskal [25]encountered this appearance of solitary

waves in studying the results of a numerical analysis.

Jainp, Shankar and Bhardwajs [9jin 1996 developed an algorithm by

using splitting and quintic spline approximation to solve the KdV equa-

tion.

Moreover, it is well known that unexpected instabilities occasionally

arise for reasonable-looking finite difference discretizations.

o UNIVERSITYl
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CHAPTER 1. INTRODUCTION

1.2 Literature Review

3

The Korteweg-de Vries(KdV) equation(1.1) was first derived in 1895 by

Korteweg and de Vries to model water waves in a shallow canal. Their

goal was to settle a long-standing question: whether a solitary wave could

persist under these conditions. Based on his personal observations of

such waves since 1830's, the natural John Scott Russell insisted that such

do occur, but several prominent mathematicians, including Stokes, were

convinced they were impossible.

Korteweg and de Vries proved Russell was correct by finding explicit

closed-form, traveling-wave solutions to their equation that more over

decay rapidly and so represent a highly localized moving hump. The

Kdv eqation did not receive significant further attention until 1965, when

Zabusky and Kruskal [25] published the results of their numerical exper-

imentation with the equation. Their computer generated approximate

solutions to the KdV equation indicating that any localized initial pro-

file that was allowed to evolve according to the KdV equation eventually

consisted of a finite set of localized traveling waves of the same shape

as the original solitary waves discovered in 1895. Further more, when

two localized disturbances collided, they would emerge from the collision

again as another pair of traveling waves with a shift in phase as the only

consequence of their interaction. Since the "solitary waves" which made

up these solutions seemed to behave like particles, Zabusky and Kruskal

coined the name "soliton" to describe them.

It was not until the mid 1960's when applied scientists began to use

modern digital computers to study nonlinear wave propagation that the
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soundness of Russell's early ideas began to be appreciated. He viewed

the solitary wave as a self sufficient entity, a "thing" displaying many
'-"

properties of a particle.

The inverse scattering theory [15-17] provides analytic solutions in prin-

ciple. This method has had enormous impact on the analysis of the KdV

equation and other completely integrable equations,but can also be used

numerically.

Helge Holden, Kenneth Hvistendahl, Karlsen and Nils Risebro [16] ap-

plied the method of operator splitting on the generalized KdV equation

Ut + J(u)x + EUxxx = 0 (1.2)

by solving the nonlinear conservation law

Ut+J(U)x=O (1.3)

and the linear dispersive equation

Ut + EUxxx = 0 (1.4)

sequentially. They proved that if the approximation obtained by op-

erator splitting converges, then the limit function is a weak solution of

the generalized KdV equation. A.C.Vliegenthart[17] ,used a centred fi-

nite difference scheme for the KdV equation which also has been used by

Zabusky and Krusal[13] which is given by

MASENO ~~. !VERSrT1Y ..j:···
S.G. S. lJ8RARY j
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CHAPTER 1. INTRODUCTION 5

In 1996 Jain, Shankar and Bhardwaj [9]solved the KdV equation numer-

ically by using splitting method and quintic approximation technique.

It has long been known that conservative discretization schemes for the

KdV equation and other nonlinear equations tend to become numerically

unstable.

To date, a solution of equation (1.1) by carefully designing an explicit

finite difference discretization that remains stable for a long time, is lack-

mg.

1.3 Statement of the Problem

It has long been known that conservative discretization schemes for the

KdV equation and other nonlinear equations tend to become numerically

unstable. Although finite difference approximations have been used; there

are always instabilities of the solutions obtained.

There is therefore need to develop a scheme which can solve the Korteweg-

de Vries equation using an explicit finite difference numerical scheme

which gives a stable solution subject to variuos boundary conditions, al-

ways with consistent initial conditions which are traveling wave solutions

to equation (1.1)
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1.4 Objective of the Study

The objectives of this study are:

• To find the solution of the KdV equation using explicit finite differ-

ence approximations.

• To analyze the stability of the finite difference discretization used

• To compare the graphical outputs of the numerical results to deter-

mine the accuracy of the finite difference scheme.

• To determine the parameters that give a stable result for the explicit

finite difference scheme.

1.5 Significance of the Study

The results of this study provide an alternate numerical approach for

solving the KdV equation with a finite difference scheme, which may

be exploited to obtain a meaningful result. This is also a significant

contribution to knowledge and further research.

1.6 Research Methdology

We have solved the KdV equation using an explicit numerical scheme

subject to various boundary conditions, with consistent initial conditions

which are traveling wave solutions to equation (1.1).

We introduced a finite difference scheme and determined its stability con--
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ditions. We also compared the graphical outputs of the numerical results

to determine the accuracy of the finite difference scheme.
"-'



Chapter 2

BASIC CONCEPTS

2.1 Hyperbolic Partial Differential Equa-

tions

Hyperbolic (and parabolic) equations result from problems involving time

as one independent variable and semi:"infinite domain (time is unbounded).

They require boundary and initial conditions. Hyperbolic equations gen-

erally originate from vibration problems or from problems where discon-

tinuities can persist in time (shock waves).

Analytic solutions of two independent variables often use the method of

characteristics, which reduce the solution to solving ordinary differential

equations. Unlike elliptic and parabolic solutions, the influence of the

domain on a particular point is limited in extent (see the following exam-

ple).

Example (2.1): Solve Utt = c2uxx, -00 < X < 00.

1. b.c(l):u(x,O) = f(x)

2. b.c (2):ut(x,0) = g(x) .

8



CHAPTER 2. BASIC CONCEPTS 9

where b.c is short for boundary condition.

Use the alternative form uE,1J= 0, where ~. = x - ct, and 7) = x + ct
"-'Integrate u(~, 7)) = H(7)) + F2(~) or u(x, t) = F1(x + ct) + F2(X - ct)

2. b.c. (2):g(x) = cF{(x) - cF~(x)

u(x, t) = ~[J(x+ct) - f(x - ct)] + tcc: g(T)dT Note solution at (xo, to)

only depends on initial data: Xo - to :S x :S Xo + to This is the behaviour

characteristic of all hyperbolic equations.

2.2 Difference Approximations To Deriva-

tives

From the Taylor Series if f(x) is a function of a variable x with h, a small

change in x,then

f(x + h) = f(x) + hf'(x) + h; f"(x) + ~~(x) + O(h4)

we have

and
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If we add equation (2.1) to equation (2.2), we obtain

G

u(x + h) + u(x - h) = 2u(x) + h2UI/(x) +0(h4) (2.3)

By solving equation (2.3) we get

ul/(x) = (~:~)x=x = 1~2{u(x + h) - 2u(x) + u(x - h)} + 0(h2) (2.4)

Further subtracting equation (2.2) from equation (2.1) yields

u(x + h) - u(x - h) = 2h'(x) + 0(h2) (2.5)

From which a solution for u'(x) will be

1
u'(x) = 2h {u(x +h) - u(x ~ h)} + 0(h2) (2.6)

Equations (2.5) and (2.6) represent central-difference approximations

of the derivatives, and both have errors of 0(h2) and can be approximated

by the slope ofthe tangent at P in figure (2.1) by the slope of chord AB.

But solving equations (2.1) and (2.2) for u'(x) directly yields

u'(x) = ~{u(x + h) - u(x)} + O(h)' (2.7)

representing the forward difference approximation which can also be given

by slope of chord PB.

And
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u(x)
B

(x+h)

A

x-I x x+1

Figure 2.1: Approximations to derivatives

1
u'(x) = h{u(x) - u(x - h)} + O(h) (2.8)

representing the backward difference approximation also given by the

slope of chord AP.

N ote:The forward and backward difference approximations have error of

order O(h), where as the central difference approximations have error of

order O(h2).

2.3 Finite-Difference Method

The finite-difference method replaces the continuous problem by a discrete

or finite difference mesh or grid.

,..
ERSITY
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n+1 t

n •
I

n-1

k-l k k+1 x

Figure 2.2: The Explicit finite-difference molecule

We define Xi == its», Xi+l = (i + l)i':::..x for u; == U(Xi)

In a similar manner, the time domain is discretized to get:

For u(t, x) : ui == u(ni':::..t,Xi)

Finite-difference method also replaces the derivatives in a partial dif-

ferential equation (PDE) with finite approximations.

Example (2.3.1)

With u(t, x)
. . . au u~·+l-'ll':-

The forward approximation IS (at )t=t,;=x, ~ 't:.t.'

Th al diff . ti . (a2U) Ui+l -2un+U':'_1e centr 1 erence approxima IOn IS i3x2 t=t';=Xi. ~ t:.;2'

au fpu un+1_u':' u':' -2un+u~· .
at - ox2 =} 't:.t ,. = ,+1 t:.;2 ,-1 Assummg all values at t" are

known, solve for the unknown u~+1 as shown in figure (2.2)

n+l _ n + (1 2) ~ + nui - rUi+l - r ui rUi_l
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where r = ~c,x2

Therefore, given boundary values and initial values, U~':lcan be cal-'--

culated for all future times at all positions.

In general the approximations of partial derivatives can be given as
n+l n

(a,,)n = "; -Ui + O(5t)at • M
11.+1 11.

(a,,)n = ";, -"i-1 + O(5x2)
ax • 20x

n+l 2 n+ n
(8

2,,)n = "i - "i "i-1 + O(5x2)
8x2 • ox2

n 2 n+1+2 n + n
(8

3,,)n = "i+2- "i "i-1 "i-2 + O(5x3)
8x3 • ox3

Higher order finite difference approximations can be obtained by tak-

ing more terms in Taylor series expansion.

2.4 Stability of Solutions

Fourier or Von Neumann analysis shows that a difference expression is

stable if 0 < r ::;~ where r = f;2
In general, finite difference approximations of hyperbolic partial differ-

ential equations ~~ = -c~~ has restrictions based on c~!,which is the

Courant-Friedrichs-Lewy (CFL) condition that states:

That a necessary condition for an explicit finite difference scheme to

solve a hyperbolic (PDE) to be stable is that, for each mesh point, the

domain of dependence of the finite difference approximation contains the

domain of dependence of the PDE. That is if: r ::; 1, where r = c~!,then

the scheme is stable.



Chapter 3

WAVE AND KdV

EQUATIONS

The wave equation and the Korteweg-de Vries equations are some of the

hyperbolic partial differential equations which have practical applications

in real life. We discuss them below. ,

3.1 Wave Equation

Consider a simple example of a hyperbolic partial differential (or wave)

equation with one spatial independent variable

(3.1)

where c is the speed of the wave.

We take a rectangular net with constant intervals h = 6x, k = tit. The

equivalent finite difference approximation is given by:
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In the equation (3.2), we use the central difference formulafor the deriv-

atives with respect to t as well as with respect to x. If we let /

r = k/h = (6.t)
6.x (3.3)

The first initial condition specifies Ui,o on the line t = O. We can

use the second condition to find values on the line t = k by using an

"imaginary" boundary and the second order central difference formula

(3.4)

Writing g(i6.x) = gi, we have the approximation

(3.5)

that is, when Ui,-l appears, we replace it by its value in equation (3.5),

Ui,-l = Ui,l - 2kgi. With j = 0 in equation (3.2) we have

Upon replacing Ui,-l with its value, from equation (3.5) and solving for,

U,», we find

(3.7)

For the stability of the scheme let Zi,j = Ui,j - Ui,j be the difference

between the true solution at (i, j), Ui,j, and the finite difference solution
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Ui,j. By Taylor's series, then we determine the truncation e~ror for various
"-'

terms and find the difference expression

Since U agrees with u on the initial line, Zi,O = 0, for all i, if we employ

equation (3.2) in the first time step, and note that Zl,O = 0, we find

(3.9)

To investigate stepwise stability of equation (3.8), we examine the

propagation effect of a single term of the form exp[ (-1) ~/1x], where /1

is any real number, say, along the line t = 0. the errors are propagated

according to the form of equation (3.8), that is, equation (3.2) with Ui,j

replaced by Zi,j. The initial condition, according to our methodology is

1
Zi,O = exp[(-1)2/1ih] (3.10)

Upon attempting a solution by separation of variables, we try

1
Zi,j = exp( exj k )exp[ (~ 1)2/1ih] (3.11)

Setting this into equation (3.8) results in eCik + CCik = (2 - 4r2sin2~/1h)

which can be expressed as the quadratic equation

(3.12)
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To avoid an increasing exponential solution as j -+ 00, ~t is necessary

that leakl ::; 1 for all real values of {3. From equation (3.12) the product

of the two values of eak is clearly 1. Thus there exist solutions of the

form of equation(3.11) that grow exponentially as j increases unless the

discriminant of equation (3.12) is non-positive. That is

(3.13)

Example 3.1

Solve the wave equation

v« = Uxx, 0 < x < 1, t ;:::0

subject to the boundary conditions

U(O, t) = 0 = u(l, t), t ;:::0

and initial conditions

U(x,O) = sinatx, 0 < x < 1, Ui(X, 0) = 0, 0 <x < 1

Solution 3.1

The analytic solution is easily obtained as

U(x, t) = suut xcostct (3.14)

Using the explicit finite difference scheme of equation (3.4) with r = 1,

we obtain

u(i,j + 1) = u(i - l,j) +u(i + l,j) - u(i,j - 1),j ;:::1 (3.15)
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For j = 0, substituting
- u(i,l)-u(i,-l) - 0

Ut - 2~t -

or u(i, 1) = u(i, -1)

into equation (3.15) gives the starting formula

u(i, 1) = ~[U(i - 1,0) + u(i + 1,0)] (3.16)

Since c = 1 and r = 1, /st. = ~x. Also, since the problem is sym-

metric with respect to x = 0.5, we solve for u using equations (3.15) and

(3.16) within 0 < x < 0.5, t ~ O. We can either calculate the values by

hand or write a computer program. The results in table (3.1) is obtained

for ~t = ~x = 0.1. The finite difference solution agrees with the exact

solution in equation (3.14) to six decimal places. The accuracy of the

finite difference solution can be increased by choosing a smaller spatial

increment ~x and a smaller time increment ~t.

x 0.1 0.2 0.3 0.4 0.5 0.6

0.0 0.3090 0.5879 0.8990 0.9511 1.0 0.9511

0.1 0.2939 0.5590 0.7694 0.9045 0.9511 0.9045

0.2 0.2500 0.4755 0.6545 0.7694 0.8090 0.7694

0.3 0.1816 0.3455 0.4755 0.5590 0.5878 0.5590,
0.4 0.0955 0.1816 0.2500 0.2939 0.3090 0.2930

0.5 0 0 0 0 0 0

0.6 -0.0955 -0.1816 -0.2500 -0.2939 -0.3090 -0.2939

0.7 -0.1816 -0.3455 -0.4755 -0.5590 -0.5878 -0.5590

1 1 1 1 1 1 1

Table 3.l:Results for ~x = ~t = 0.1
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3.2 Exact Solution To The KdV Equation

We recall that the simplest form u(x, t) = f(x - ct) which i'Ssolution to

the simple partial differential equation Ut + CUx = ° where c d~notes the

speed of the wave. For the well known wave equation Utt - c2uxx = 0, the

famous d' Alembert solution leads to two wave fronts represented by the

terms f(x - ct) and f(x + ct).

Hence we start with a trial solution

U(x, t) = z(x - (3t) == z(O (3.14)

where we denote the parameter c by (3, the function f by z and the

solution by ~ into equation (1.1) we are led to the Ordinary Differential

Equation

(3.15)

Integrating can be done directly since equation (3.15) is a form of a total

derivative. It follows from equation (3.15) that

(3.16)

where Cl is a constant of integration. In order to obtain the first order

equation for z multiplication with ~ is done, so that

_{3zdz + Z2dz + d2zdz = Cldzd1;. d1;. d1;.2d1;. .u;

=? -{3zdz + z3 + ~;dz = c1dz

Integrating both sides (with C2 as the constant of integration) leads to

.~~:~!V~~T'(J
'---_.---



CHAPTER 3. WAVE AND KDV EQUATIONS 20

f3 2 3 1 tiz 2
- - Z + z + - (-) = C1Z + C2

2 2 d~
(3.17)

Now it is required that when x -l ±oo we should have Z -l eJ, ~ -l 0

1 d2z 0ane df,2-l .

From these requirements it follows that C1 = C2 = 0

Remark (3.1)

More general solutions can be found for other choices of C1 and C2·

These solutions can be represented in terms of elliptic integrals, for details

see Drazin and Johnson [3]

With (;1 = C2 = O. Equation (3.17) can be written as

(3.18)

By separation of variables we may write

lz d( lE~;::;;:::::::= - dn
o (Jf3 - 2( - 0

(3.19)

The choice of 0 for lower integration limits does not bring any loss of

generality since the starting point can be transformed linearly.

The integration of the left hand side of equation (3.19) can be done by,

using the transformation

(3.20)

The role of s here is played by the variable ( and we obtain

1l1i1~~.,;,llENOUN!VERSIT~;'
. S. L~aRARY
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(3.21)

since the relation cosbru: - sinh2w = 1 holds.

Furthermore we have
d( = -(3 sinhw
dw cosh3w

(3.22)

The upper limit of the left hand integral in equation (3.19) due to equation

(3.20) is transformed to

f2Z
w = sech-1 V 73 (3.23)

Substituting equations (3.21), (3.22) and (3.23)into equation (3.19) we

get
r 2 rw 1 sinhw 2 . rw cosh2w.coshw sihw" = - "flJ Jo sech2.tanhw·cosh3w = - "flJ Jo sinhw ·cosh3w

:::}( = - Jr, Jaw dw = - Jr,w

with equation(3.20) the transformation back to ( is done and we ob-

tain:

e = - Jr,sech-1 fii
:::}z(e) = ~sech,2( 1)e

Now we finally use equation (3.14) to get

(3.24)

Remark (3.2):

In order to have a real solution the quantity (3 must be positive. As.

it can be seen from equation (3.14) for (3 > 0, the solitary wave moves
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to the right. The second point is that the amplitude is proportional to

the speed which is indicated by the value of 13· Thus larger amplitude
o

solitary waves move with a higher speed than smaller amplitude waves.
/

To perform superpositions we consider the following:

If, instead of equation (3.20), we select the transformation

1 2
S = --f3csch w

2
(3.25)

Then in the same way we obtained equation (3.24) we will obtain anoth~r

solution which is:

(3.26)

The solution of equation (3.26) is an irregular solution to the KdV equa-

tion. It has a singularity for vanishing argument of thecosech-function,

that is, for the line in the x - t plane, with x - 13 = 0 ~ t = ~x



Chapter 4

RESULTS AND

CONCLUSION

The original choice was to design and apply the most basic finite differ-

ence scheme which could possibly be considered. Using the lowest order

approximation to Ux and Uxxx respectively, then implement the explicit

Euler time-stepping. The original scheme was as follows:
n+l n n n n 2 n +2 n ' n

u. -,,- ("-+1-"-) ("-+2- "-+1 ,,- 1-"- 2)] ] + un] ] +] ] ]- ]- = O·
h J' 6x (6x3) ,

When we solve for uj+l in order to set up the explicit time step with

r = b.t/ b.x and b.t = h we get:

We solved equation (1.1) with Scheme (4.1) subject to:

within the domain [-7r : 7r] and replacing b.x = k.

23
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We then used a C++ computer program with sech(x) expressed as -h1( )cos x

to get: G

~include (cmath)

~include (cstdlib)

~include (iostremn)

~include (cstdlib)

inline double P( double alpha, double beta, double xO, double xl

{double u = cos(alpha(xl- xO) + 2)/2 * cosh(alpha(xl- xO) + 2)/2;

double v = betMcosh(beta(xl- xO)/2) *beta*Cosh(beta(xl-xO)/2);

return ((3 * alpha * alpha * l/u) + (3 * beta * beta * l/v));}

inline double KdV( double result, double h, double k)

double z = h/(2 * k * k);

return (((1+hi k * result) * result + (z/ k * result -2 * z * result-

z/k * result))/(l + hlk * result - z/k));}

main( int argc, char» * argu, char» * argv, char» * argz )

{double h, result, alpha, beta, k, xO,xl, pegO, pegl;

std::cout« "Enter the values:"« std::encll;

std::cout« "parameter alpha :"; std::cin» alpha;

std: :cout < < "parameter beta :"; stcl: :cin > > beio:

stcl::cout« "parameter k :"; stcl::cin» k;

std::cout < < "step size, h :"; stcl::cin > > h;

stcl::cout« "Enter xO :"; stcl::cin» xO;

stcl::cout < < "Enter z l. :"; stcl::cin > > xl;

for (short ti = 0; ti < 30; n++)
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{pegO = xl;

result = KdV(P(alpha, beta, xO, x1)h, k); G

std::cout« "With P" « n « " = " « result «std::end1;

system("pause") ;}

The following conditions were taken into account when compiling the

results:

1. The best results were obtained when alpha = 2, and beta = 0.015 so

the choice of parameters use was influenced by the given parameters.

2. The stability of the numerical scheme is governed by small step size,

h, satisfying Courant-Friedrichs-Lewy (CFL) condition.

This lead to the following tabulated result -in table (4.1)
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t u when k = 0.005 u when k = 0.005 u when k = 0.005

and h = 0.0000095 and h = 0.00001 and h = 0.00001'5'

0 -0.000252205 -0.000231554 -0.000102047

0.5 0.10087 0.0924541 0.0396788

1 0.724841 0.749816 -3.2983

1.5 0.114197 0.108879 0.0397296

2 -0.178916 -0.17013 -0.016842

2.5 -0.354364 -0.373543 -1.16842

3 -0.594836 -0.515886 -0.0957764

3.5 -0.432019 -0.75429 0.0677262

4 0.476013 -0.439421 0.216592

4.5 0.0708176 0.247162 0.203257

5 -0.25966 0.103769 -60.0058

5.5 -0.315641 -0.744896 -0.0106603

6 -2.13824 -0.134092 -0.0124892

6.5 -0.076382 0.119589 -4328.41

7 0.0158029 0.306169 5.52929e-009

7.5 0.782475 0.411152 -5.5292ge-009

8 0.088365 0.679249 1.20045e+009

8.5 -0.160087 0.28869 0

9 -0.417041 -0.268213. 0

9.5 -0.403965 -0.193429 -LIND

10 -1.73107 0.875247 -LIND

10.5 -0.73107 0.0581244 -LIND

11 0.0273974 -0.137828 -LIND

11.5 0.611981 -0.535434 -LIND

12 0.123562 -0.265082 -LIND

12.5 -0.218477 0.288119 -LIND

13 -0.305327 0.133656 -LIND

13.5 -'021915 -0.687314 -LIND

14 -0.121915 -0.135145 -LIND,
14.5 0.05035 0.135145 -LIND

15 0.450104 0.284531 -l.IND

Table 4.l:Results of the explicit scheme with h = 0.0000095,

h = 0.00001 h = 0.000015
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Figure 4.1: Plot for KdV Explicit scheme with Q = 2,{3= 0.015,k = 0.005

and h = 0.0000095

The finite difference scheme is therefore conditionally stable and as

such, maximum stability will be achieved when h = 0.00001. As we move

from the maximum stability parameter, the scheme becomes unstable.

4.1 Stability of The Numerical Scheme Em-

ployed

From the results of the scheme tabulated above and the corresponding

graphical representation:

• The numerical scheme when h = 0.0000095, was stable up to the

293rd step and could be said to be weakly stable.
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Figure 4.2: Plot for KdV Explicit scheme with a = 2,/3 = 0.015,k = 0.005

and h = 0.00001
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Figure 4.3: Plot for KdV Explicit scheme with a = 2,{3= 0.015,k = 0.005

and h = 0.000015
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• The numerical scheme, when h is increased to h = 0.000015 was

stable up to the 12th step and could be said to be unstable.

The numerical scheme is therefore conditionally stable and as such,

maximum stability will be achieved when h = 0.00001. As we move from

the maximum stability parameter, the scheme becomes unstable.

4.2 Conclusion

In this thesis, we have developed an explicit finite difference numerical

scheme, equation (4.1), that can be us.ed to solve the nonlinear Korteweg-

de Vries equation.

In the finite difference method, we applied the scheme using C++ com-

puter programming which is fast and accurate in producing results. The

equation has been solved using Newton-Raphson iteration method which

converges fast to a meaningful solution. The results are tabulated and

the graphical plots are given using GNUplot package.

The explicit finite difference scheme developed is stable when h = 0.00001.

In the three graphical outputs, (figure 4.1, figure 4.2 and figure 4.3), it is

clear that figure 4.2 is smooth and uniform as compared with the other

graphs and we can say it is therefore an accurate result .

•••••••••••••••••••••• ~ ••~~·~~~'¥l~:l~ ••••
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