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ABSTRACT

Non parametric regression provides computationally intensive estimation.of unknown

finite population quantities. Such estimation is usually more flexible and robust than

inferences tied to design - probabilities (in design-based inference) or to parametric

regression models in (model-based inference). Dorfman [9] used a more general super

population model to find a non-parametric regression based estimator for the population

total T . He, however, assumed homoscedasticity when constructing his proposed

estimator. In his empirical study, he noted that the data showed clear signs of

heteroscedasticity. In this study we consider the improvement in the efficiency of

Dorfman's non-parametric regression based estimator of a finite population. To do this

we incorporate a reasonable assumption of variance structure into the non-parametric

regression methodology and use the weighted least squares method to obtain the

proposed non-parametric regression based estimator. In our empirical work we have used

two kinds of data sets: simulated and secondary data. The simulated data is of two kinds:

homoscedastic and heteroscedastic generated with the help of Genstat 8th edition

statistical application package. The secondary data was obtained from the internet from

the United States Bureau of Labor Statistics. By calculating Dorfman's and our

population estimates based on the given data sets using Dorfman's and our proposed

estimator's respectively, we have established that our proposed estimator is more

efficient than Dorfman's, that is, the efficiency of Dorfman's non-parametric regression

based estimator has been improved when we put into account heteroscedasticity.
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CHAPTER!

1.1 INTRODUCTION

1.1.1 Background information

We consider a finite population that consists of N identifiable units, U = {UI'U2,· .. ,UN}'

Associated with each unit of the population is a certain characteristic or variable Y of

interest whose values are [ = {Yr,1';,...,YN }. In some cases there may be available values
. .

of another variable or variables X for each unit of the population with values of X

assumed to be known for every unit of the population.

In most cases interest is not in obtaining the values of Y for each unit of the population,

rather interest is in obtaining inference about some function T([) = T {r;, Y2 , ••• , YN }of Y

called the population parameter. Examples of population parameters are: the population

. total (T = f.y,), the population mean (r = ~ f.y,) , the population variance
1=1 N 1=1

(
0-

2 = ~ f. [y, - tf J, the population ratio (R = r J and the population distribution
N 1=1 X

function F(y) = N-1 Lp I(Y, :-:;y). Hence F (r) is useful in estimating population

quantiles.

There are two main ways of obtaining information about T([). The first one is to

enumerate all the units of the population and then calculate T(r). This is called the

complete enumeration method or census. This method has a number of drawbacks. The

main one is that if the population size, N , is large then this method can be time

1



consuming and costly. An alternative method is to take part of the population, called the

sample, make observations on the units constituting the sample and then ,use the obtained

samplevalues to make inference about T(r). This alternative method is preferred over

the census method due to the following reasons: the sampling results can be obtained

more rapidly and data analyzed much faster due to less time involved, reduced costs and

greater accuracy of observations. There are two main problems in a sample survey,

namely, the design and inference problems. Hence sample survey is a two-fold problem.

The design problem is mainly concerned with the choice of the sample, that is, the

method of choosing units of the population to constitute the sample. There are two

methods of choosing the sample: subjective sampling and probability sampling. Under

the inference problem, we look at how to use the obtained information to make inferences

about T(r). In this project we focus on the inference problem.

In most sample survey problems, inferences have been done on the population total or

mean. Hence we estimate the population total, T of Y. Work done on the distribution

function may be found in Chambers, Dorfman, and Wehrly [6] and Dorfman and Hall

[10]. In the next section, we look at different approaches of making inference about T.

1.1.2 Approaches to sample survey inference

There are four different approaches to making inference about T : design based, model-

based, model-assisted and randomization assisted model-based approaches.
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1.1.2.1 Design-based approach

This approach has its origin in Neyman's key paper, Neyman [25]. It has:also been

discussed in standard survey texts such as Hansen, Hurwitz and Madow [15], Kish [18]

and Cochran [7]. See also Royal and Cumberland [2'7].

The main characteristic of design-based inference is that it is based on the distribution of

I = (11,12,,,,, IN)' the set of inclusion indicator variable, where I, = 1if unit i is included

in the sample and I, = 0 if it is not included, with the survey variables Y treated as fixed

quantities.

The key concept in this approach is that of design unbiasedness, Chambers [5]. Thus, for

any choice of sampling process, S, the weighting process, W, must be such that the

frequency weighted average value of T over all possible samples generated under S is

the actual value of T. In other words, this approach restricts consideration to those

weights W which ensure that, irrespective of the particular sample selection method (that

is S) used,

E(f-T/X,Y)=O, V values of X and Y. (1)

1.1.2.2Model-based approach

This approach has been linked with the work of Richard Royall and others. A summary

of the philosophy behind this approach is set out in Royall [26]. The model-based

approach is based on the assumption that the values of Y can be assumed to be

realizations-of random variables whose distribution conditional on the known values of
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X may be specified through a convenient probability model. For instance.for a simple

linear regression model, Y; is taken to be

Y; = a + flx; + O"{xJe;, (i = 1,2,..., N) (2)

with a and f3 unknown, 0" {x;) known and e, is normal with mean zero and unknown

but constant variance. An appropriate model based estimator is then given by:

1;;n = L Y; +L (a + jJx j) -
s

(3)

~
where a and f3 are the appropriate weighted least squares estimators of a and

,8respectively, 1;;n denotes the model based estimator for the linear regression, and,

Land L denote summations over sample and non-sample values respectively.
s

A commonly used model for Y expresses the mean and variance of Y as proportional to

X. That is

(4)

where f3 and 0"2 are unknown positive constants.
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Differentiating the above equation with respect to f3 and equating to zerowe have

ds = -2I x;[r:; fix;] = 0
df3 ;=1 a X;

The best linear unbiased estimator of f3 is

. (5)

The best linear unbiased predictor ofT is the ratio estimator

(6)

where Ys and Xs are means of the sample values of Yand X respectively and X is the

. population mean of X . Therefore the ratio estimator is the optimal estimator under the

model in equation (4).

Now suppose that there are errors in the assumed model (4). Will the ratio estimator still

beunbiased? For example, suppose E(r: / x;}:;t: fix; but E(r: / x;) = a + fixp or

var(Y;/ x;):;t: a2 x; , or still, suppose the random variables y;, ~ are dependent, that is,

cov(r:, Yj / x., x j ):;t: 0, i :;t: j , will the ratio estimator still be unbiased and optimal?

Intuitively, we would want to use an estimator that is optimal (or approximately so) under

the given model but remains optimal (or approximately so) when there are errors in the
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model. In other words, we need a robust estimator. This is the major problem that needs

to be addressed by researchers using the model-based approach. We look at this approach
l

in chapter 2.

As discussed earlier, the concept of design-unbiasedness is crucial to both the design-

based as well as the model-assisted approaches to defining a sampling strategy. However,

under the model-based approach this basic requirement is abandoned, Chambers [5]. .

Since design-unbiasedness is no longer a requirement, the obvious alternative property

we require of i under this approach is that it be model-unbiased, that is,

(7)

where EM indicate expectation under a given model M.

In other words, the values of the estimation errors i -T obtained for all population

realizations Y consistent with the actual values of X observed, and the sample S

actually obtained, should average out to zero. From now on, we consider the model-based

approach to sample survey inference theory, and in the next section we review work that

has been done to deal with the robustness problem in model-based surveys.

1.1.2.3 Model-assisted approach

In this approach, practitioners have been willing to use models in order to identify

optimal strategies for estimating T. There are two versions of this approach.
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• Model-assisted strategies that are also design-unbiased

This approach is comprehensively discussed in the text by Sa mdal, Swensson and

Wretman [30]. Typically, the approach still assumes that the weighting variable, W at

least approximately satisfies (1), that is, the resulting estimator i is design-unbiased, or

approximately so. More information on this approach can be seen in Chambers [5].

Breidt and Opsomer [1] used the local polynomial kernel as the smoothing tool to

develop a design consistent model-assisted estimator of the total. Kim, Breidt and

Opsomer [17] have extended this work to two-stage sampling. Other model-assisted

estimators have been proposed in Sa mdal, Swensson and Wretman [29,30], Little [22],

and Firth and Bennett [13].

• Model-assisted strategies that are design-unbiased on average

The requirement that f be design-unbiased (or approximately so) is rather strong. An

appealing extension ofthe model-assisted approach, whose motivation follows along the

same lines as those leading to the use of the average mean square error, is discussed in

Brewer [2]. This replaces the design-unbiasedness requirement by the weaker

requirement that the design bias of T averages out to zero over possible values of Y.

Thus, rather than exact (or approximately exact) design-unbiasedness, one requires

average design-unbiasedness, or

(8)

where EM and ED indicate expectations under a given model, M and design, D

respectively.
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1.1.2.4 Randomization-assisted model-based approach

In this approach one treats model-based inference as the goal of survey sampling, but
\

employs randomization methods to protect against inevitable model failure. For further

elaboration on this type of approach, see Sa rndal, Swensson and Wretman [29, 30] and

Kott [19, 20].

1.2 STATEMENT OF THE PROBLEM

The main interest in model-based approach to statistical survey inference is to overcome

the problem of robustness under model misspecifications.

Dorfman [9] used a more general super population model to find a non-parametric

regression based estimator for the population total T . He, however, assumed

homoscedasticity when constructing his proposed estimator. In his empirical study, he

.noted that the data showed clear signs ofheteroscedasticity. Hence the problem was: To

estimate the population total T when there is heteroscedasticity in the data.

1.3 OBJECTIVES OF THE STUDY

Main objective

The main objective of this study was to find a non-parametric regression based estimator

of the population total that takes into account heteroscedasticity.

Specific objectives

• To determine the properties of the attained estimator.
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• To assess the performance of the estimator as compared to other existing estimators in an

empirical study using both secondary and simulated data.

1.4 SIGNIFICANCE OF THE STUDY

The use of a general super population model gave rise to a robust estimator of the

population total. This thesis has made use of known heteroscedasticity to innovatively

construct a new estimator which can give sound inference in model based surveys. While

assessing its performance as compared to Dorfman's in an empirical study, the estimator

was found to be better. This study will enable sample survey practitioners who have

adopted the model-based approach in survey sampling, to analyze data that is

heteroscedastic in nature.
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CHAPTER 2

2.1 LITERATURE REVIEW

Model based approach as a sample survey strategy has been discussed in Chambers [5].

This approach has been most strongly linked with the work of Richard Royall and others.

An elegant summary of the philosophy behind this approach is set out in Royall [26].

The basic idea in the model-based approach is that it is.based on the assumption that the

values of Y can be assumed to be realizations of random variables whose distribution

conditional on the known values of X may be specified through a convenient probability

model. The advantages and disadvantages of this approach have been hotly debated in the

sampling theory literature as can be seen in the sequence of papers of Smith [31, 32, and

33].

The model-based approach is used in making inference from sample to population. Given

the population total, T, we have

(9)

In this approach a regression model of Y on X is used to predict the non-sample Y's

and, by consequence, their total.

In the parametric approach in survey sampling it is assumed that the mean curve has

some prespecified functional form, like a line with unknown slope and intercept. The

functional form is fully described by a finite set of parameters, see HardIe [14]. The
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parametric approach, however, has problems, for instance, from equation (4), let us
\

consider the simple case that the regression of Y on X is a straight line with an

intercept.That is, the model is:

E(~/Xi) = a + flxi

Var(~ / Xi) = (J2 (Xi)

(10)

Then under the new model,

(-) X -.E Y R = -=-a + j3X
X

(11),

while (12).

Clearly the ratio estimator is biased. The problem we are considering above is the

robustness problem. Under a given model, we can obtain the optimal estimator. The

. question we have been considering is this: what happens to this estimator when there are

misspecifications in the model? Does it remain unbiased? Does its efficiency remain

high? We have shown under the model in equation (4) that in the case of simple linear

regression model, the ratio estimator is the optimal estimator. However, if the expected

value part of the model is wrong, then the ratio estimator becomes biased. Hence a

preselected parametric model might be too restricted or too low-dimensional to fit

unexpected features.

The idea of non-parametric regression was first looked at by Nadaraya [24] and Watson

[35]. A further reference is Hardie [14]. Other books on non-parametric regression are

Wand and Jones [34] and Fan and Gibjels [12].
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Thenon-parametric smoothing approach offers a flexible tool in analyzing unknown

regressionrelationships. The term non-parametric thus refers to the flexible functional

formof the regression curve. The non-parametric approach to estimating a regression

curvehas four main purposes: it provides a versatile method of exploring a general

relationship between two variables, it gives predictions of observations yet to be made.

without reference to a fixed parametric model, it provides a tool for finding spurious

observations by studying the influence of isolated points and lastly it contributes a

flexible method of substituting for missing values or interpolation between adjacent X

values.

Given the concern with robustness, it is natural to consider a non-parametric class of

. models for ~ , because they allow the models to be correctly specified for much larger

classes of functions. Kuo [21], Dorfman [9], Dorfman and Hall [10], Chambers [4] and

Chambers, Dorfman and Wehrly [6] have adopted the Superpopulation approach in

constructing model-based estimators. Other work on non-parametric regression can be

seen in Fan [II] and Kim [16].

Heteroscedastic regression has been studied. by a number of researchers. Non-parametric

work on heteroscedastic models has mostly been univariate and its aim was to obtain a

weighted regression to estimate the mean function more efficiently. This can be seen

from Carroll [3], Mii ller and Stadtm ii ller[23], Ruppert et al [28] and Dette, Munk and

Wagner [8]:
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Dorfman [9] considered the following general non-parametric regression model for
(

estimating population totals in finite populations:

(13)

where m (.) is a smooth function, ei is a sequence of independent random variables with

mean zero and variance one.

If o-(xi) = 0-
2

, a constant, then the model is said to be homoscedastic, that is, the mode!'

is said to have constant variance. In situations where o-(xi) is a function of Xi' then the

model is said to be heteroscedastic, that is, the variance varies depending on the Xi'S.

Dorfman's non-parametric population total estimator is given by

(14)

() kb (Xi - X) . h . h . d . h h·th .
Wi Xj =" ( ),IS t e weig t associate WIt t e 1 unit

L.Jkb Xi - X
s

of the sample.

.Further k(u) is a kernel function, b a scalingfactor such that

The error variance of the population total estimator due to Dorfman [9] is given by

13



var(fD -T jxp) = L W;2(T2(X;)+ L(T2 (Xj)
. j

(15)

where

andX p is the population vector of x values.

In his empirical study he compared his proposed estimator with two design-based

estimators of the total, namely, the expansion estimator and, a post stratified estimator

and as can be noted from his empirical results, he illustrated that his proposed estimator

performed well compared to the other estimators of the total.

Though Dorfman [9] began with a very general model, he did not take into account the

heteroscedasticity in the data when constructing his proposed estimator. He clearly

indicates to us that he noted that the data showed clear signs ofheteroscedasticity, which

he ignored when constructing his estimator. As a result, in our study we incorporated

heteroscedasticity in obtaining a non-parametric regression based estimator using the

model in equation (13) as our working model.
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CHAPTER 3

THE PROPOSED ESTIMATOR '--'

3.1 INTRODUCTION

In this chapter, the weighted least squares method was used to come up with our

proposedestimator. The properties of the estimator, that is, mean and variance were then

established.

3.2 METHODOLOGY

We assumed the model in equation (13) as our working model and estimated the

population total, T , given in equation (9).

Since ~)~ is known we needed to estimate ~)~ as this contains observations outside
s s

N

the sample. Hence the problem of estimating T = I~is essentially the problem of
i=1

predicting the sum of unobserved random variables I~.
s

In order to predict I~,we obtained a-(xi), which is an estimate of a reasonable
s

assumption of variance structure of the observed random variables. We then estimated

m(xj), the estimated mean of the unobserved random variables using the weighted least

squares method, and finally realized our proposed estimator. To do this, we proceeded as

follows:
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We rewrite our model in equation (13) as

(16)

The objective was to find the optimal estimator of m{x;). Since this is a heteroscedastic

model, we require to apply the weighted least squares method. In this method, we first of

all transform the heteroscadastic model into a homoscedastic model then apply the

ordinary least squares method to the obtained homoscedastic model to obtain the

estimates.

Applying this to the model in equation (16), we get

Y m{x) e
-==,'== ' + 'foW foW foW (17)

Equation (17) can be written as

* * () *1; = m X; +e; (18)

Clearly, E(e;) = 0 and

Hence the model in equation (18) is homoscedastic. From equation (18) we have

(19)
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By replacing ~. and m' (Xi) in equation (19), we get

[ ]

2

S = t ~-m(xJ
i=l foW foW (20)

which implies

(21)

Clearly, the minimization of this function with respect to mO is complicated by the fact

that o-{xJ is unknown. Dorfman assumed that o-{xJ is some constant. We, however,

consider the fact that in most cases o-(xi) is not a constant.

One approach is to estimate o-{xi). Intuitively, one would want to use the best estimator

of o-{xJ Suppose we consider the simpler model

(22)

(23)

Note that the e 's are heteroscedastic.

Differentiating equation (23) with respect to f3 and equating to zero we have

(24)

The estimator of f3 is given by
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, Y/J=-
x

Now, let

Then,

Also

, LY;
f3 = _s_ ,or equivalentlyLX;

var{lj) = E~2 )- [E{lj)f

.~ var{lj) = E~2 ), since [E{lj)]2 = 0, from equation (26).

[ ]

2LY; -,
,,' = y, - x,t

x
, ' since j3 = ~ , from equation (25)

(25)

(26)

18



From equation (27) we have

(28)

X2" U{x)2xu{x) I L.. I

From equation (28), as n ~ 00 , I _ I ~ 0 and s 2-2 ~ 0, averages of sample
nx n x

values being finite.
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hence var (Ii J ;::! a (Xi J (29)

This implies that we can therefore use this simple estimator of a{xi) in the model in
"--'

equation (21), so that, a-{xJ = (r: - jkJ

Hence we replace a{xJ in the model given in equation (21) by (r: - jkJ and derive the

estimator of m(xj).

We are, however, averaging the nearby values of r:, where "nearby" is measured in terms

of the distances IXi - Xjl. Let k{u) be a symmetric density function, for example, the

standard normal density function. For a chosen scaling factor (bandwidth) b, define

From equation (21) we have

(30)

We expand equation (30) by use of Taylor series expansion at a point Xj as follows

(31)

Equation (31) is approximately given by

20



(32)

Differentiating equation (32) with respect to m{xj) we have

(33)

Equating equation (33) to zero and simplifying we get

(34)

From equation (34), the estimation of m{x j) is found to be

(35)

Our proposed estimator is given by

(36)

where m{x j) is defined in equation (35).
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3.3 PROPERTIES OF THE PROPOSED ESTIMATOR

3.3.1 Conditional Bias

The conditional bias of the estimator given in equation (36) is given as follows

(37)

Replacing m(x j) we have,

(38)

Equation (38) can be rewritten as

(39)

From equation (39), to a first approximation, we get

In terms of moments,

(40)

and
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(41)

From equation (42) we note that,

Im, (Xj ) = Lm, (Xj ) - m1 (Xj )

j;ti

(43)

(44)

Hence equation (42) becomes:
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Hence simplifying weget

(45)

Using equations (40) and (45) it implies that,

[
1'; 1- (~:x.J m, (xJ

E (46)

(r, - px,), - (~>,J m, (x,)- 2x, (~>)m, (x,) ~~ (x,)+x: [~m, (x,)J
Inthe same spirit we have

(~x,)'
=----~--------~~--~----------~

(~x,J ». (X,)-2X,( ~x). (x,)~m, (x,)+x;[ ~m, (x,)J
(47)

Hence equation (39) is given as
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From equation (48), let cs (x j )

, ,,',1. \\/CRSI,.'{ 25



m1 (Xi )-(nb)[ Cs (Xj) Jm1 (Xj)}

(~>.)'m, (X,) . ,

(49)
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3.3.2 Conditional variance

The conditional variance of the estimator given in equation (36) is given b1

(50)

Now, by equation (50)

(51)

In terms of moments equation (51) becomes

(52)

Also

r j2 { r j}2y Y y
var I = E I _ E Ir(y, - px, )' j (y, - px,), (y, - px, )'

(53)

Now

and
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Fromequation (54), note that

(55)

= LY;LY~ +LY;LLYjYk
s S s i= k

=Ll +LLYIY~ +LLY~Yk +LLYjY; +LLLY;YjYk;" j t= k j" k ,* t= k
=LY; +3LLY;Y~ +LLLY;YjYk

;* j ;" i= k

(56)

= LiLY; +LiLLYkY' +LY;LLY;Yj +LLY;YjLLYkY'; k ; k*' k;" j ;" j k*'

= ~>;4+LLiy; +LLY;Y, +LLYkY; +LLLiYkY' +LLY;Yj +LLY;Y~
; ;* k k* , k" , ;;t k" , ;;t j ;;t j

+LL2>iYiYj+ LL:~>jY;Y'+ LL2>jYkY}+ LLLYiY;Y'+ LLLY,YkY}+ LLLLYiYjhY,
k7; i;t: j l= k» / j;t: k~ I ;;t: k;t: I j"" k;t: I j;t: i= k;t: f

(57)

. Equation (57) can be re-written as

Hence equation (54) will be given as
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(58)

Next from equation (58) we note that

(59)

= Ll + Yi2LY~ + LLY>k + LLYjY! + lLLYjYk
i j"'i t= k i= k j'" k

=Ll+lLy~+2LLY>k+lLLYjYk (60)
j"'i i= k j'" k

=YiLY~ +3YiLLYiY~ + YiLLLYiYjYk
j i'" j i'" J'" k

= LY; + Y;LY~ +3IIY~Y; +3LLYjY! +3Y;LLYjY;
j ;'"j j'" k t= k t= k

+LLLY~YkYI + LLLYjY;YI + LLLYjYkY} + Y;LL:~.:>jYkYI
J'" k'" I t= k'" I i= k'" I t= k'" I
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=L:l +YiLY~ +3LLY>; +3LLYjY; +3YiLLYjY;
i I"i t= k i= k: t= k (61)

t3IILlhYI +YiLLLYjYkYI
t= k'" I t= h I

This implies that equation (58) becomes;

+3LLLY}YkYI +YiLLLYjYkYI
j'" k'" I i= k'" I

(62)

In terms of moments, equation (62) will be re-written as .

= m4 (Xi)- ;Xi [m4 (Xi)+», (Xi)L m, (Xj)]
~~ J~
i
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Im2 (Xi) = m2 (Xi)+ Im2 (Xj)
i j=#

(64)

4Xi3
3 [Im4 (xi)+m, (Xi) Im3 (Xj )+3IIm2 (xj)m2 (Xk )+3IIm, (Xj )m3 (Xk)]

( ~ X, ) i i=! i= k t= k : G

+3m, (Xi) IIm, (Xj)m2 (xk)+3IIIm2 (Xj)m, (Xk)m, (XI )+m, (Xi) IIIm, (Xj)ml (Xk )ml(XI)
t= k t= h I t= h I

+ X: 4 [Im4 (Xi)+ IIm2 (Xi)m2 (xk)+4IIm3 (Xk )ml(XI )+6IIIm2 (Xi)m1 (Xk)ml (XI)]
( ~ Xi) i i* k k* I i* k* I

+IIIIml (Xi)m\ (xJm1 (Xk)m\ (XI) (63)
i* j* k* I

From equation (63),we note the following

j~i

¢::> I m2 (XJ = I m2 (Xi) - m2 ( Xi)
j*i i

IIm3 (xJmj (Xk)
t= k

(65)

IImj (Xj )mj(Xk)
I= k

[Im\ (Xj )]2 = [Im\ (Xj )][Im\ (Xj)] = Im~ (Xj)+ IIm\ (Xj )m\ (Xk)
j J J .J . J* k (66)

¢::> IIm\(xj)m\ (xk)=[Im\ (Xj)]2 - Im~(xJ
J~ k . J J
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33

+LLmj (Xk )ml (XI)m2 (XI)+ LLLm2 (xj )ml (Xk )m[ (XI)
k'" I t= k'" I

This implies that

~f.:~m, (Xj)m, (x, )m, (X,) ~ ~m, (Xj l[f.:~m, (x, )m, (X,) l-2~~m,(x,)m, (x,}m, (x,)

(70)

From equation (70) we have;

= LmI2(Xk)+ LLml(xk)m(X,)
k k'" I

(71)

= L m~ ( Xk )m2 (X k ) + L L ml (x k ) m2 ( Xk ) ml ( XI)
k k'" I

<=> LL ml (Xk)m2 (Xk )ml (XI) = Lml (Xk )m2 (Xk) Lml (X,)- Lm~ (Xk )m2 (Xk)

k'" I k· I k

(72)

Hence equation (70) becomes



+2Lm~ (Xk)m2 (Xk)
k

\

=~m, (Xi l[~m, (X.)J - ~m, (Xi l~m~(xk)-2~m, (X,)m, (Xk) ~m, (~)+2~m~ (xk)m, (Xk)

+ LLLmJ (xj)mJ (Xk)mJ (XI)
t= k'" I

~ Lm;(xj)+3LLmJ (XI )m~(Xj)+ LLLm, (Xj )mJ (Xk)mJ (XI)
j I", j t= b I

Fromequation (73)

Lm~(Xj )'L mJ (XI) = L m; (Xj ) +L L m~ (Xj )m, (XI)
j I j t= I

.. L L m~(Xj ) ml (XI) = L mil ( Xj ) L m, (XI) - L m; ( Xj )
t= I j I j

(74)

This implies that equation (73) becomes;
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LIIIm\ (x;)m\ (xj )m\ (Xk)mJ (XI)
;'" j'" k'" I

+IIm\ (x;)m\ (Xj )IImJ (Xk)m\ (XI)
;'" j b I

= Im~ (X;)+ IIm~(x;)m~(xk)+4IIm~ (Xk)m\ (x,)+6IIIm~ (x;)m\ (Xk)mJ (XI)
i ;'" k k'" I ;'" k'" I

+IIIIm\ (x;)m\ (Xj )m\ (Xk)m\ (XI)
;'" i= k'" I

. ~ ~~f.:~m, (x,)m, (XI )m, (x,)m, (X,) = [ ~m, (X,) J -~m: (X,)- ~~m; (x,)m; (X,)

-4IIm~(Xk)mJ(XI) -6IIIm~(xi)m\(xk)m\(xl) (75)
k'" I i'" k'" I

From equation (75)

Im~ (Xi) Im~ (Xk) = Im~ (Xi)+ IIm~(Xi)m~(Xk)
i k i i'" k

~ IIm~(Xi)m~(Xk)= Im~(Xi)Im~(Xk)- Im~(xi) (76)
~ k k
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~ I I m1(Xk) m1(XI) = I m~ (Xk )I m1(XI) - I m~ (Xk) . (77)
k", I k I k

ILIm~ (x;)m, (xk)m, (XI)
i", k", I

~m~ (X;)[ f;~m, (xk)m, (XI)] = f;~m~ (xk)m, (xl)+ f;~m, (xk)m~ (XI)

+LLIm~ (x;)ml (Xk)m, (Xl)
;'" k", I

~ ~f;~m~ (x;)m, (Xk)~ (XI) = ~m,2 (x;)[ f;~m, (Xk)m, (XI) ]-2f;~m~ (Xk)m, (XI)

= Lm,2 (X;){[Im1 (xk)]2 - Im~ (Xk)}-2[Im~ (Xk) Iml (XI)- Im~ (Xk)]; k k k I k

(78)

Andtherefore equation (75) becomes:

+6Lm~ (x;)Im~ (Xk)+ 12Im~(xk)Im, (XJ)+ 12Im~(Xk)
; k k I k

36



:. E[ 1'; - .oX;J = », (X;)- ;X; [m4 (X;) +m, (X;) Im[ (X; )-m3 (X; )m[ (X;) - 2Im3 (Xk )m[ (Xk)]
~~ I k

i

+( 6x,J rIm, (x,)+m, (x,) Im, (x,J-m; (x,)+ 2Im3 (Xl) I ». (x,)+m, (x,)[ fm, (Xl)J
'" I I J kL..,.X;
;

-m,(x,)~m;(xJ] .

(~: J [~m, (x,)+m, (x,) ~m, (x,)-m, (x,)m, (X,)+3[ r- (xJ J -3~mi (xl)

+m,(x,J[ ~m, (XI)J +2m, (X,) ~m~( =)-3m, (x,) ~m; (Xl) ~m, (x,)]

,+ X;2 4 [Im4 (x;)+[Im2 (x;)]2 - Im;(x;)+4Im3 (Xk )Im[ (XI )-4Im3 (xl)m[ (XI)
( ~ X; ); ; i k I I
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f{i~m, (xJ[ ~m. (x,) J -6~m, (XJ~m,' (x, )-12~m. (x,)m. (x,) ~m. (x,)+ 12~m~ (x,)m, (x,)

+[~m. (X')J -6~m~ (X,)[ ~m. (X,)J +5~m~ (x,)~m~ (X,)+8~m:(X,)~m. (x,)+ 16~m: (x,)]

38



since the terms of order n go to zero.

And
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,
i

In terms of moments, equation (80) will be

This implies that equation (53) will be

-(~>.)'m, (X,J-4X{ ~X,J m3(X,)~m, (X,)+6X,'( ~XJ {m, (x,)[ ~m, (XJJ
+2~m3 (Xj )~:m,(x,) }-4X; (~X,){ m, (X,)[ ~m, (xj) J +3~m, (XJ[ ~m, (x,) J}
+x:[ ~m,(x,)J

(~x.)'m; (X,J-4X{ ~X,J m. (x,)m, (x,) ~m, (x,)+2x,' ( ~X,J {m, (X,)[ ~m, (x,) r
+2m;(X,J[~m, (x,)n- 4x,' ( ~X}. (X,J[~m, (x,) J +x: [~m, (x,) J

(82)
a p
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by letting

a to be equal to

(~x,)' m, (x,)-4x, (~>.)'m, (x,) ~m, (x,) +6x; (~XJ {m, (X,)[ ~m, (xj) J
+2~m, (xj )~m, (Xi) }-4X:( ~x,){ m, (x,)[ ~m.( xJJ +3~m, (xj)[ ~m, (xi)J}

+x:[~m, (x,) J
And p to be equal to

(~x.)' m; (X,}-4X{ ~x, J m,(x,)m, (x,) ~m, (x,}+2x,' ( ~xJ {m, (x,)[ ~m, (x,)J
+2m;(x,) [~m, (X,}J'}-4X: (~x} (x,) [~m, (x')J +x:[~m, (x,)J

Equation (53) becomes;

(83)

Similarly,

(84)
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And

We let (83), (84) and (85) be denoted by vi' Wi and ~ respectively.

Equation (50), can be written as

var[T:p(h) -T I KpJ = I
s

(85)

(86)
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CHAPTER 4

EMPIRICAL WORK

4.1 INTRODUCTION

Inthis section, three simulation studies were performed. Two on artificially constructed

populations consisting of homoscedastic and heteroscedastic data. The other on a more

realistic population derived at the United States Bureau of Labour Statistics.

4.2 PROCEDURE

In the first population that consisted of homoscedastic data, 400 data points were

generated according to the model

(87)

with the e, ~ N(0,0-2}Xj ~ U[O,l] mutually independent and independent across i . We

usedvalues a = 1,b = -1.5, c = %, anda = 0.02 . Similarly, for the second population that

consistedof heteroscedastic data, 400 data points were generated according to the model

inequation (87) but this time with e, ~ N[ 0,0-2
], and x.,«, b,c, and 0- defined as above.

Weused Genstat 8th edition statistical application package for generating the data points.

Dorfmanchose to use 150 samples of size 60 each drawn by simple random sampling,

andso, we choose to do the same for each of these populations. He too showed that a

bandwidthof 0.09 gave a curve which seemed to reflect the underlying structure of the

givenpopulation. As a result, we put in use the suggested bandwidth. For each sample,

wecalculated our proposed nonparametric regression based estimator and Dorfman's

estimator.The estimates were calculated using a standard normal kernel.
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Wealso considered a population consisting of N = 400 occupations. The data was taken

fromthe United States Bureau of Labor Statistics' May 2005 National Occupational
\

Employment and Wage estimates. The variable of interest Y is the total number of

workers in each occupation; x is the total wages paid to workers in the selected group of

occupations. From this population, 150 samples of size 60 each were taken using simple

randomsampling and our proposed and Dorfman's estimators calculated for each sample,

usinga standard normal kernel.

Inaddition, we calculated the variance of the two estimators: error variance due to

Dorfmangiven in equation (15), and, the error variance due to the proposed estimator

givenin equation (86), using the three data sets to find out which one has minimum

vanance.
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CHAPTERS

RESUL TS AND DISCUSSION

5.1 RESULTS

Table 1 and 2 below give summary results in the form of the average relative error (ARE)

150 I/'{ 150 /, }If2~T-I(ir -T);t50 and the root average squared error (RASE), ~(ir -TY /150

respectively where i; is one of the estimators of T computed for sample r.

Table 1 (ARE)

ESTIMATOR HOMOSCEDASTIC HETEROSCEDASTIC WAGE DATA

DATA DATA

Our proposed -0.11768 0.101641 6.37527E-

estimator 07

Dorfman's -0.24842 0.267556 1.27524E-

estimator 06

Table 2 (RASE)

ESTIMATOR HOMOSCEDASTIC HETEROSCEDASTIC WAGE

DATA DATA DATA

Our proposed 0.39568 0.30508 5

estimator

Dorfman's 0.83526 0.80308 10

estimator

MASENO UNf\/ERSJTY
S.G. S. LIBRARY ,
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Table 3 below give results of the error variances

Table 3 (ERROR VARIANCE)

ESTIMATOR HOMOSCEDASTIC HETEROSCEDASTIC WAGE DATA

DATA DATA

Our proposed 0.00487 0.00204 91888646416

estimator

Dorfman's 0.00532 0.00312 92456822341

estimator

5.2 DISCUSSION

As can be noted from tables 1 and 2 above, our proposed non-parametric regression

basedestimator is much more efficient, since it has lower ARE and RASE as compared

toDorfman's estimator in each of the given data sets.

Fromtable 3, the proposed estimator has a lower error variance compared to Dorfman's

estimator.This too illustrates that the former is better than the latter.
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CONLUSION AND RECOMMENDATIONS

The objectives of this research were; to find a non-parametric regression based estimator

of the population total that takes into account heteroscedasticity, to determine the

properties of the attained estimator and to assess the performance of the estimator as

compared to other existing estimators in an empirical study using both secondary and

simulated data. We have derived a new estimator of a finite population total when we

take into consideration the fact that variance varies in a given set of population and

determined the properties of the attained estimator. Furthermore an empirical study was

carried out and the results suggest that the nonparametric regression based estimator of a

finite population total taking into account heteroscedasticity is a better improvement on

Dorfman's estimator. It is likely to reflect better the actual structure of the data, yielding

greater efficiency.

In this study we did not establish the Mean Square Error for the proposed estimator. We

therefore suggest further research on this. Further research can also be done on the

comparison of these research results with the ones under a restrictive model.
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