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ABSTRACT

The study of derivations still remains an area of interest to mathemati-

cians today. Of special attention has been the study of norms of inner

derivations. Most of the work in this area is based on Stampfli's result

of 1970, where he established the equality between the norm of an inner

derivation and twice the distance between an element of an algebra to

the centre of that algebra, specifically for a primitive C*-algebra with an

identity. This result has been extended by other mathematicians to other

algebras, like Von Neumann, Calkin, W*· - algebras among others. In

this study, we've continued to investigate Stampfli's result. In particu-

lar, we've used the approach of tensor product to establish the equality

for the algebra of bounded linear operators on a Hilbert space. Further,

we have explored the norm of inner derivations on norm ideals and es-

tablished the relationships between norms of inner derivations restricted

to algebras, norm ideals and the quotient algebra. On the other hand,

an interesting relationship between the diameter of the numerical range

and the norm of inner derivation has been established. Moreover, their

applications to hyponormal and S - universal operators have been investi-

gated. The methodology has been majorly based on the previous works of

Stampfli, Fialkow, Kyle, Barraa and Boumazgour, among others. We also

revisited related theories from operator algebra and analysis in general.

In the operator - algebraic formulation of quantum theory, these results

are useful to theoretical physicists and applied mathematicians alike. For

pure mathematicians, we hope this will provide a motivation for further

research in the development of the area.
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Chapter 1

MATHEMATICAL

BACKGROUND

1.1 Introduction

Rings of operators, renamed Von Neumann algebras by J. Dixmier, were

first introduced by J. Von Neumann [41]in 1929 with a grand aim of giv-

ing a sound foundation to mathematical sciences of infinite nature. J. Von

Neumann and his collaborator F. J. Murray laid down the foundation for

this field of mathematics, called operator algebras in a series of papers,

[27, 28, 29, 42], during the period of 1930's and early in the 1940's. The

theory of operator algebras is concerned with algebras of bounded linear

operators on a Hilbert space, closed under the weak operator topology.

Since then there has appeared a large volume of literature, and a great

deal of progress has been achieved by many mathematicians. Many im-

portant results and powerful techniques were added to the theory. This

has led to the emergence of various related fields of mathematics, and a

number of topics in this subject have branched out to independent fields,
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for instance, the study of derivations.

Derivations form a topic in operator algebra that was vastlx. studied in

the 1960's. In fact there was excellent expositions of the theory.of inner

derivations by that time. Surprisingly, the study of norms of derivations,

especially norms of inner derivations had not been explored until in 1966

when Sakai [34] used the norm of an inner derivation to prove one of

the richest results on inner derivations, that is; every inner derivation is

bounded. These results attracted the attention of a mathematician by the

name Joseph G. Stampfli [40]who worked on the area of norms of inner

derivations and in 1970 produced a paper of several results with the same

title. Stampfli's paper [40]forms the basis of the study of norms of inner

derivations and even of elementary operators in general and is among the

first serious studies on this topic. Since then, this study has attracted

a lot of attention of pure mathematicians who have written papers with

excellent results on this area of study, [1, 5, 17, 24, 40]. We would like to

point out that the available literature in this area is still scarce. Hence, we

continue to investigate certain aspects of norms of derivations and their

applications.

In chapter one, we establish the background information to this study

which enables us to state the problems with a lot of ease. We also present

terminologies and symbols in addition to some definitions regarding norms

of derivations.

Chapter two is concerned with norms of derivations. We present exhaus-

tively the algebraic properties of derivations, then concentrate on inner

derivations. Lastly, we establish the Stampfli '8 equality for the algebra of

bounded linear operators on a Hilbert space using the approach of tensor
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products.

In chapter three, we investigate norms of inner derivations 6u norm ide-

als. We revisit the concept of S - universality and give several results

with respect to it. Further, we explore the interesting relationships be-

tween inner derivations and the numerical range and give results of their

applications to S - universality. Moreover, applications of norms of inner

derivations to hyponormal operators have been investigated.

Finally, in the last chapter we give a summary of our work and suitable

recommendations.

1.2 Background Information

In this section, we categorize the terms used in the subsequent chapters

into algebras (see subsection 1.2.2), operators ~d functionals (see subsec-

tion 1.2.1). We further provide in a much simplified way, the definitions

of these terms.

1.2.1 Operators and Functionals

Definition 1.2.1. A set V is called a vector space over a field IK if it

forms an abelian group under vector addition and it has a scalar multi-

plication satisfying the following axioms; V a, b E V, a, f3 E 1K,

(i) (a + f3)a .= aa + f3a

(ii) a(a+b)=aa+ab
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(iii) a(f3a) = (af3)a

(iv) l.a = a

Definition 1.2.2. Given a vector space V over a field lK, a subset W of

V is called a vector subspace if W is a vector space over lK and under

the operations already defined on V.

Definition 1.2.3. Functionals are mappings from a vector space to the

space of scalars.

Operators are mappings from one vector space to another vector space.

Definition 1.2.4. Let X and Y be linear spaces over lK. Then a function

T : X -+ Y is called a linear operator if and only if V x, Y E X and

a, f3 E lK, Tto» + f3y) = aT(x) + f3T(y).

Definition 1.2.5. Let X be a linear space, over lK. A functional f
X ---+ lK is linear if it is a linear operator.

Definition 1.2.6. Let X be a vector space and X* the set of all linear

functionals on X, then X* is called the dual space of X.

Definition 1.2.7. Let V be a vector space over lK. A function II, II : V ---+

lRis called a norm if it satisfies the following properties; V a, b E V and

VAElK

1. flail 2: 0,

2. Iiall = 0 iff a = 0,

3. IIAal1 = IAlilall,

4. Iia + bll ~ lIall + IIbll·
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Definition 1.2.8. Let X, Y be normed linear spaces. A linear operator

T: X -+ Y is said to be bounded if and only if there exists.a constant

M > 0 such that IITxl\ ~ Ml\xl\ for x E X.

Definition 1.2.9. A bounded operator A : X --+ Y between normed

linear spaces X and Y is said to be a contraction if its operator norm

I\AII ~ 1.

Definition 1.2.10. A basis S for a vector space V is a nonempty set of

linearly independent vectors that span V

Definition 1.2.11. Let V be a vector space over K. A mapping

(.,.) : V x V -+ K is called an inner product if V x, x', Y E V and

Q E K, the following conditions are satisfied:

(i) (x, x) 2 0 and (x, x) = 0 if and only if x = 0,

(ii) (x + x', y) = (x, y) + (x', y),

(iv) (x, y) = tu, x), where (x, y) is the conjugate of the complex number

(y,x).

The pair (V, (.,.») is called an inner product space.

The function II, II: V --+ lRdefined by IIxll = V(x,x) Vx E V is a norm

called the norm generated by the inner product (,). A norm in an inner

product space will be understood to be this norm.

Definition 1.2.12. Let (V, (.,.») be an inner product space. Then Vx, y E

V, x and yare said to be orthonormal if (x, y) = 0 and Ilxll = I\yll = 1.

Definition 1.2.13. A Hilbert space is an inner product space which is

a Banach space with respect to the norm generated by its inner product

function.
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Definition 1.2.14. An algebra is a vector space V over a field ]I{to-

gether with a mapping (a, b) t----t ab of V x V --+ V that~ .satisfies the

following axioms; for all a, b, e E V, 0:' E ]I{,

(i) a(be) = (ab)e,

(ii) a(b+e)=ab+ae, (a+b)e=ae+be,

(Hi) (O:'a)b= O:'(ab)= a(O:'b).

Example 1. Let H be a Hilbert space and B(H) the set of all bounded

linear operators on H. Then B(H) is an "algebrawhen multiplication is

defined pointwise.

Definition 1.2.15. If T E B(H, K), where H and K are Hilbert spaces,

then the linear operator T* E B(K, H) satisfying (Tx, y) = (x, T*y)

Vx E H and Vy E K is called the (Hilbert 'space) Adjoint of T.

Definition 1.2.16. An operator T E B(H) is said to be;

• Self - adjoint if T* = T.

• Positive if (Tx, x) 2: 0 for all nonzero x E H.

• Normal if T*T = TT*.

• Unitary if T*T = TT* = I.

• Subnormal if there exists a Hilbert space K such that H is a closed

linear subspace of K and a normal operator N E B(K) such that

Nx = Tx for all x E H.

• Hyponormal if T*T 2: TT*.
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Definition 1.2.17. If H is a Hilbert space, then an operator T E B(H)

is a finite rank operator if the dimension of the range ciLT is finite,

and a compact operator if for every bounded sequence {xn} in H, the

sequence {Txn} contains a convergent subsequence.

Definition 1.2.18. The singular values of a compact operator A E

B(H) are defined as the eigenvalues of the operator v'A* A (where A*

denotes the adjoint of A and the square root .is taken in the operator

sense). The sequence of singular values are nonnegative reat numbers,

usually listed in decreasing order SI(A), S2(A), .... The largest singular

value SICA) is equal to the operator norm of A.

Definition 1.2.19. Let D = P'jk) (j, k = 1,...,n) be an n-rowed square

matrix. Then the sum of its eigenvalues equals to the trace of D, that is,

the sum of the elements of the principal diagonal: tr (D) = Au+...+Ann-

Definition 1.2.20. Let M be a closed linear subspace of a Hilbert space

H. Then Mi. = {y E H : (x,y) = 0 't/x E M} and H = MEeMi.;

that is, any h E H has a unique decomposition as h = x + y with x EM,

Y E M>, The orthogonal projection Ponto M is defined by Ph = x

where h = x + y is the decomposition above.

Definition 1.2.21. The Hilbert - Schmidt class operators C2(H) is a

Hilbert space when equipped with the inner product (X, Y) = tr(XY*),

(X, Y E C2(H)) where tr stands for the usual trace functional and Y"

denotes the adjoint of Y.

Definition 1.2.22. Let K be a non - empty bounded subset of the plane.

The diameter of K is defined by diam(K) = sup {Ia - ,81 : a,,8 E K} .
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Definition 1.2.23. The numerical range of an operator A E B(H',
is defined by W(A) = {(Ax, x) : x E H, IIxll = I} and the-numerical

radius of A by w(A) = SUp{IAI : A E WeAn. The spectrum of an

operator A, a-(A), consists of those complex numbers A such that A - AI

is not invertible while the spectral radius of A denoted by reA) is defined

by reA) = sup {IAI : A E a-(An. Approximate point spectrum of A,

a-ap(A), consists of those complex numbers A for which there exists a unit

sequence {xn}n ~ H such that limn II(A - A)xnll = o.

Definition 1.2.24. Let 2( be an algebra and A E 2(. Then the mappings

RA and LA of2( into 2( defined by LA(X) = AX, and RA(X) = XA, X E

2( are called left multiplication and right multiplication respectively.

1.2.2 Algebras

Definition 1.2.25. A subalgebra of an algebra 2( is a vector subspace

W such that V b, b' E W, we have bb' E W.

Definition 1.2.26. A left (respectively, right) ideal in an algebra 2( is

a vector subspace 3 of 2( such that, V a E 2( and b E 3, we have ab E 3

(respectively, ba E 3).

An ideal in 2( is a vector subspace that is simultaneously a left and a right

ideal in 2(

An ideal J is modular if there is an element u in S.2( such that a - au and

a - ua are in 3 for all a E 2(.

If 3 is an ideal of 2(, then 2(/3 is an algebra with the multiplication given

by (a + 3)(b + 3) = ab + 3. This is called a quotient algebra.

A maximal ideal in 2( is a proper ideal that is not contained in any other
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proper ideal in ~.

If L is a modular maximal left ideal in an algebra 21, we 6al.l the ideal

J = {a E ~ : a21 ~ L} primitive ideal of 21associated to L.

Definition 1.2.27. If 8 is a subset of an algebra 21, the centre of 8 is

the set

Z(8) = {x E 21: xs = sx V S E 8} .

Definition 1.2.28. A norm 11.11 on an algebra 21is said to be submul-

tiplicative if it satisfies lIabll ~ Ilalillbll Va, b E V.

Definition 1.2.29. An algebra 21with a norm which is submultiplicative

is a normed algebra.

Definition 1.2.30. A normed algebra ~ which admits a unit e such that

ae = ea = a and [e] = 1 is called a unital normed algebra.

Definition 1.2.31. A complete normed algebra is called a Banach al-

gebra.

Example 2. If 8 is a set, loo(8) (the set of all bounded complex valued

functions on the set 8) is a unital Banach algebra if V x E 8, a E K and

l, g E loo(8), the operations are defined as follows:

(f + g)(x)

(fg)(x)

(af)(x)

f(x) + g(x)

f(x)g(x)

af(x).

And the norm defined as

Ilflloo = sup If(x)l·
xES
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Definition 1.2.32. An algebra 2{ is called commutative (abelian) if
\.

ab = ba, V a, b E 21. It is non-abelian if the product is non-commutative.

Definition 1.2.33. Let 2{be an algebra. A mapping from 2{to 2{defined

by a I---t a* is called an involution on 2{if it satisfies the following four

properties: V a, b E 2(, A E K;

1. (a+b)*=a*+b*

2. ('xa)* = Xa*

3. (ab)* = b'o:

4. a** = a.

Definition 1.2.34. An algebra with an involution is called an involutive

algebra or * - algebra.

Definition 1.2.35. A Banach algebra 2(with an involution a I---t a* that

satisfies

lIall = Ila*11

Va E 2( is known as Banach * - algebra.

Definition 1.2.36. A Banach * - algebra 2{such that

Ilaa*1I = Ilall:l

Va E 2( is called a C* - algebra.

Example 3. We consider B(H), the set of all bounded linear operators

on a Hilbert space H as a C*-algebra.
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Definition 1.2.37. A Von Neumann algebra 2( is a strongly closed *-

subalgebra of the algebra B(H) of bounded operators on a HUbert space,

H.

Definition 1.2.38. A W*- algebra is a C*- algebra 2(for which there is

a Banach space 21* such that its dual is 21. Then the space 21* is uniquely

defined and is called the pre-dual of 2L

Definition 1.2.39. Let H be a Hilbert space and B(H) be a space of

bounded linear operators on H. We further define K(H) ( a modular

bi-ideal of B(H) ) to be a set of compact linear operators on H. Then the

quotient space B(H)/K(H), which is an algebra, is known as Calkin

algebra.

Definition 1.2.40. A derivation on an algebra 21 is a linear map from

2( to 21 satisfying ~(AB) = ~(A)B + A~(B}, \j A, B E 21.

Fix A E 2( and define a mapping from 2( to 2( defined by ~A(B)

AB - BA. Then ~A is called inner derivation.

The norm of an inner derivation in this case is defined as:

A simple application of the triangle inequality shows that

where d(A, Z(21)) denotes the distance from A to Z(21), the centre of 2(.
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1.3 Elementary theory of tensor products

In this section, we revisit some elementary theory of tensor products. A

good account of the theory of tensor products can be found in [25] , [26].

1.3.1 Tensor products of vector spaces

Definition 1.3.1. Let X be a non-empty set and K be the field of real

or complex numbers. Let][(x be the set of all finite linear combinations

of elements of X such that Kx = {E~=laiXi: Xi E X, ai E K} where

the operations are as aXi + (3Xi= (a + (3)Xi and a((3xi) = (a(3)xi. Then

the vector space Kx over K is called the free vector space.

The term free is used to connote the fact that there is no relationship

between the elements of X.

Definition 1.3.2. Let X and Y be two vector spaces over K, and let T be

the subspace of the free vector space KxxY generated by all the vectors of

the form a(x, y)+(3(x', y)-(ax+(3x', y) and a(x, y)+(3(x, y')-(x, ay+(3y')

't/ a, (3 E K and X, x' E X, y, y' E Y. Then the quotient space ][(xxY IT
is called the tensor product of X and Y and is denoted by X ® y.

An element of X ® Y has the form Eai(xi, Yi) +T. The coset (x, y) +T

is denoted by x ® y and therefore any element J-l of X ® Y has the form

J-l = EiXi ® Yi·

Let X and Y be vector spaces over K. A function f : X x Y -t K is
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bilinear if it is linear in both variables separately, that is,

and

for all X, Xl, X2 E X and y, YI, Y2 E Y.

We write B(X, Y; lK) to denote the set of all bilinear functions from X x Y

to lK. A bilinear function f :X x Y -+ lK with values in the base field is

called a bilinear form on X x Y. One important use of tensor products

is that they turn bilinear maps into linear maps as we can see in Lemma

1.3.3.

Example 4. Let f be a mapping from a cartesian product space to the

tensor product space i. e f :X x Y -+ X ® Y. ' Then f is a bilinear map.

Proof. Let X, Xl, X2 E X and y, ui, Y2 E Y. Also let a, f3 E lK. To show

that I is bilinear, it suffices to show that it is linear in each vector space

X and Y separately. To show linearity in X, let I(z, y) = X ® y. Then,

(aXl + f3X2) ® y

(axl ® y) + (f3x2 ®y)

a(xl ® y) + f3(X2 ® y)

a/(xI, y) + f31(X2, y).

Hence f is linear in X.
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To show linearity in Y,

x 0 (aYl + PY2)

(x 0 aYl) + (x 0 PY2)

a(x 0 Yl) + P(x 0 Y2)

af(x, Yl) + Pf(x, Y2).

Hence f is linear in Y and therefore, I is a bilinear map. o

The tensor product, X 0 Y, of the vector .spaces X and Y can be con-

structed as a space of linear functionals on B(X x Y) in the following way;

for x E X, Y E Y we denote by x 0 Y the functional given by evaluation

at the point (x, y). In other words,

(x @ y)(f) = (j, x 0 y) ='/(x, y)

for the bilinear form I on X x Y.The tensor product X 0 Y is the subspace

of the dual B(X x Y)* spanned by these elements. Thus, a typical tensor

in X 0 Y has the form u = E:~laiXi 0 Yi where n is a natural number,

ai E K, Xi E X and Yi E Y.

Lemma 1.3.3. ([26J, p. 184) II I : U x V -+ W is a bilinear map,

where U, V and Ware vector spaces, then there is a unique linear map

J':U0V-+W
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1.3.2 Tensor products of Hilbert spaces and opera-

tors

Let HI and H2 be two Hilbert spaces. Let Ho denote the algebraic tensor

product of HI and H2. A general element ~ of Ho is of the form;

(= E~=l 6,i ® 6,i, 6,i E HI, 6,i E H2, 1 ::::;i ::::;n. In ti; we define an

inner product (., .) by

(f" 'r/) =L2:(6,i, 'r/l,j) (6,i, 'r/2,j)
i=l j=l

for f. = E~=l 6,i ® 6,i E Ho and 'f/= E;:l 'f/l,j ® 'r/2,jE u;

Definition 1.3.4. The completion H of Ho is called the tensor product

of HI and H2, and denoted by HI ® H2.

Take arbitrary Xl E B(HI) and X2 E B(H2). We then get an operator

Xo on Ho defined by

which is denoted by Xl ® X2' SO that Xl ® X2 is extended to a bounded

operator on HI ® H2, which is also denoted by Xl ® X2 and called the

tensor product of Xl and X2.

The following five properties hold [25];
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1.3.3 Tensor product of Banach spaces

This is a review of some general properties of tensor products of Banach

spaces.

Suppose El and E2 are two complex Banach spaces. Let El 18} E2 be the

algebraic tensor product of E, and E2 over the complex number field. If

a norm 11.11 on e, 18} E2 satisfies the condition

then it is called a cross - norm of El 18} E2• ,

In general, a cross - norm of El 18} E2 is not a priori determined. We have

to specify which cross - norm is considered on El 18} E2.

The completion of El 18} E2 under a cross - norm fJ is denoted El 18}f3 E2.

We now define two important cross - norms of E, 18} E2• For each x E

ElI8}E2,

n

Ilxll-x= sup {I Lf(xl,i)g(x2,i)1 : fEE;, IIfll ~ l;g E E;, IIgll :s; I},
i=l

where x = L~=l Xl,i 18} X2,i, and

n n

IIxll" = inf {L Ilxl,dlllx2,ill: x = L Xl,i 18} X2,i}.
i=l i=l

16



Being greatest, it is known that I majorizes all other cross - norms: SO i,

is called the greatest (or projective) cross - norm. '-'

The completion EI ®')' E2 is called the projective tensor product of

EI and E2·

On the other hand, A is called the injective cross - norm, and EI ®,\ E2

is called the injective tensor product.

1.3.4 Tensor product of C* - algebra

Let 2{1 and Sl.2 be C* - algebras. The algebraic tensor product Sl.l ® Sl.2 of

Sl.l and Sl.2 turns out to be an involutive algebra over the complex number

field C in the natural fashion;

(Xl ® X2)(YI ® Y2) - XIYI ® X2Y2

(Xl ® X2)* xi ® x;, Xl ,YI E Sl.I, X2, Y2 E Sl.2·

If a norm fJ on Sl.l ® Sl.2 satisfies the C* - condition;

iixyll.B < IIxli.Bliyll.B

IIx*xllf3 IIX 11'\ x, Y E a, ® Sl.2,

then it is called a C* - norm of Sl.l ® Sl.2.

The completion Sl.l ®{3 Sl.2 of Sl.l ® Sl.2 under any C* - norm fJ is a C* -

algebra. However, it is not a priori clear that a C* - norm is a cross -

norm.
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The projective C* - cross - norm 11.llmax on 2(1 0 2(2 is given by

'-'
Ilxllmax = sup {1I1I"(x)11 : 11"runs through all representations of 211 0212 }.

The completion 2(1 0max 2(2 of 2(102(2 under 11.llmax is called the projec-

tive C* - tensor product of 2h and 2(2.

Given C* - algebras Qt.1 and Qt.2, the injective C* - cross - norm Ilxllmin of

2(1 and 2(2 is defined by

where 11"1and 11"2run over all representations of 2h and Qt.2 respectively.

The completion 211 Q9min2(2 is called the injective C* - tensor product

of 2(1 and Qt.2' In general, the projective 'C* - cross - norm and the injective

C* - cross - norm are different.

1.4 Literature review

A derivation on an algebra Qt. is a linear map from 2( to 2( satisfying

~(AB) = ~(A)B + A~(B), V A, BE 2(. Fixing A E 2(, then a mapping

from Qt. to 2( defined by ~A(B) = AB - BA is called inner derivation.

The norm of an inner derivation in this case is defined as:

When 2( is a Banach algebra, it is clear that each inner derivation ~A is a

bounded map on 2(. In fact, a simple application of the triangle inequality

18



and submultiplicity of the norm shows that

, (1.4.1)

where d(A, Z(21)) denotes the distance from A to Z(21), the centre of 2L

In a case where 2l is a C*-algebra, Sakai [34],showed that every derivation

on 2l is bounded.

The inequality (1.4.1) has received considerable attention, mainly devoted

to showing that equality holds for various algebras.

One of the first studies on the norm of an inner derivation is Stampfli's

paper of 1970 [40], in which case B(H) is treated and the maximal nu-

merical range of an operator A E B(H) is introduced.

It was preceded by Kadison, Lance and Ringrose [22]who established the

expected formula, i.e that the equality holds for all elements of a Von

Neumann algebra, and at the same time, gave a first example that strict

inequality is possible in the Stampfli's result.

Apostol and Zsido (2]showed that equality holds for all elements of a Von

Neumann algebra not necessarily when they are self - adjoint while Kyle

[24]established the result for a uniformly convex Banach space.

Stampfli [40] showed that the equality holds when 2l is a primitive C*-

algebra with identity and in particular when 2l is the algebra of the

bounded operators on a Banach space.

Stampfli's approach was followed up by Fong [33] who used the essen-

tial numerical range to obtain an analogue of Stampfli's formula for the

Calkin algebra C(H). The description of the norm of an inner derivation

on the Calkin algebra can also be derived from Stampfli's paper since he

had observed the result for a primitive C*-algebra as welL
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Gajendragadkar [17], and independently Hall [19]proved that the equal-

ity hold for Von Neumann algebra 2l on a separable Hilbert space. On the

other hand, Zsido [43Jremoved the separability assumption in her result

where she established the equality.

The quest for a description in the setting of a general C*-algebra, how-

ever, continued. In [33], the case of a quotient of C*-algebra by a closed

ideal is treated and Halpern [33Jobtained the result for 2lW* - algebra.

For the quotients of 2lW* - algebra, the problem remained open until re-

cently, when it was shown that equality holds here also by Somerset [38].

On the other hand, in order to examine the possible behaviour of the

norms of derivations, Archbold [5J introduced two constants K(21) and

Ks(2l) which he defined to be the smallest numbers in [0,00] such that;

d(A, Z(2l)) ::; K(2l)IIL\AI2111

VA E 2l and

VA E 2l,A = A*.

Clearly K(2l) = Ks(2l) = 0 when 2l is commutative. When 2l is non

commutative, it follows that

1
K(21) ~ 2

and
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Starting with his thesis, Somerset [38)took up techniques iritroduced by

Archbold and, developing them much further, on the other hand showed

that the equality hold for a unital C*-algebra 21if 21is quasi- standard or

a quotient of an 2lW*- algebra.

As boundedly centrally closed C*-algebra are quasi standard, Pere Ara

[33],however, used a far more direct approach to show that equality holds

here also.

Practically, all the above mentioned investigations rest on Stampfli's work

[40]. There is therefore need to investigate -other algebras where equality

holds.

On the other hand, Barraa and Boumazgour [7),established that if (J, 1I.lIa)
is a norm ideal on B(H), then the restriction of an inner derivation im-

plemented by A E B(H) on a norm ideal is a bounded linear operator

on (J, 1I·lla)and that II~AIJII :::; 2d(A) where d(A) = inf>'EcIIA - AlII.
This called for a need in this study to investigate this inequality on the

quotient algebra.

In order to examine the extent to which Stampfli's equality applies, L.

Fialkow [15) introduced the notion of S - universal operators. An oper-

ator A E B(H) is S - universal if II~AIJII = 2d(A) for each norm ideal

J in B(H). He then went ahead to study the criteria of S - universality

for subnormal operators where he established that a subnormal operator

is S - universal if and only if the diameter of the spectrum is equal to

twice the radius of the smallest disk containing it. He then left open

the case of an arbitrary hyponormal operator and in 2001, Barraa and

Boumazgour [7] established that the same conclusion holds true for an
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arbitrary hyponormal operator. This was preceded by the work of the

same authors in [8] where they extended the same result a'tw provided

a necessary and sufficient condition of S - universality for any non-zero

operator A E B(H).

Thus, the need for further investigation of the condition of S - universality

is undoubted in this study.
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1.5 Statement of the problem

Let 2t be an algebra. A derivation on an algebra 2t is a linear mapping

~ : 2t ---+ 2t such that ~(AB) = ~(A)B + A~(B), V A, B E 2(. Fixing

A E 2t, a mapping from 2( to 2( defined by ~A(B) = AB - BA, VB E 2l.

is called an inner derivation. The norm of an inner derivation is defined

as

By a simple application of triangle inequality and submultiplicity of the

norm, it follows that

(1.5.1)

where dCA, Z(2t)) denotes the distance from 4 to Z(2t), the centre of 2l..

Stampfli established that equality hold in (1.5.1) when 2( is primitive

C* - algebra and wondered whether the same result would hold in other

algebras. We therefore continue to investigate this equality to investigate

this equality for the algebra of bounded linear operators on a Hilbert

space H.

Let (3, 11.lb) be a norm ideal in B(H), the algebra of all bounded linear

operators on a Hilbert space. It is clear that the restriction of an inner

derivation on a norm ideal 3 is a bounded linear operator on the ideal 3
and that

(1.5.2)

for any A E B(H). We thus investigate inequality (1.5.2) on the quo-

tient algebra B(H)/3, and explore the relationships between II~AIB(H)II,
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II~AIJII and II~AIB(H)/JII· Further, we include hyponormal operators

where we partially answer the question by Barraa and Boumazgour as

to whether equality II~NIC211= II~AIC211holds true, where N, A are

arbitrary normal and hyponormal operators respectively, and C2 being

Hilbert Schmidt class operators.

Finally, we investigate the relationship between the diameter of the nu-

merical range and the norm of inner derivation implemented by an oper-

ator A E B(H).

1.6 Objectives of the study

The main purpose of this study is to:

1. Establish Stampfli's equality for the algebra of bounded linear op-

erators on a Hilbert space.

2. Investigate the relationship between norms of derivations of alge-

bras, ideals and quotient algebras.

3. Investigate norms of inner derivations implemented by hyponormal

and S - universal operators.

1.7 Significance of the study

We hope that the results obtained in this study, which to the best of

our knowledge have never been investigated, are a contribution to the

field of derivations and will provide motivation for further research to
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pure mathematicians in this area of study. In the operator - algebraic

formulation of quantum theory, we hope that these results sh~ll be useful

to the theoretical physicist and applied mathematicians alike.

1.8 Research methodology

The major approaches used in this study are majorly borrowed from the

previous works of mathematicians Stampfli, Fialkow, Kyle, Agure, Barraa

and Boumazgour in the same area. We've also revisited existing theories

in literature especially from operator algebra, topology and analysis in

general. Various research journals by mathematicians in this area of study

provided us with insights wherever it was necessary.
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Chapter 2

NORMS OF DERIVATIONS

2.1 Introduction

In this chapter we study derivations, then concentrate on norms of in-

ner derivations. We give exhaustively elementary algebraic properties of

derivations and explore basic results on inner derivations. We mention

here that most literature on properties of derivations can be found in [12].

Finally, we embark on Stampfli's equality problem where we establish the

equality for B(H), the algebra of bounded linear operators on a Hilbert

space H, which actually forms the major result in this chapter.

2.2 Basic results on inner derivations

In this section, we present simple results on derivations.

Definition 2.2.1. A derivation 'on an algebra 2l is a linear mapping .6.

of 2l into 2l such that; .6.(AB) = .6.(A)B + A.6.(B), VA, B E 2l.
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Definition 2.2.2. Given A E 2(.,a mapping ~A of 2( into 2( defined by

~A(B) = AB - BA, for all BE 2( is called an inner derivation.

The following proposition then follows immediately from the defini-

tions above,

Proposition 2.2.3. Inner derivation is a derivation.

Proof. We first prove that ~A : 2( --+ 2( is a linear mapping. Let

A, B, C E 2(, a, fl E lK. Since aB + flC E 2(.,then it follows that,

A(aB + flC) - (aB + flC)A

AaB + AflC - aBA - flCA

aAB +flAC - aBA - flCA

aAB - aBA + flAC - flCA

a(AB - BA) + fl(AC - CA)

a~A(B) + fl~A(C).

Thus, ~A : 2(.--+ 2( is linear.

To complete this proof, it suffices to show that ~A further satisfies

the condition
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Let A. B, G E 2l, then,

<...-

LJ.A(BG) - A(BG) - (BG)A

- ABG-BGA

- ABG - BGA + BAG - BAG

- ABG - BAG + BAG - BGA

- tAB - BA)G + B(AG - GA)

- (D.A(B»G + B(D.A(G».

Thus

Hence, D.A : 2( ~ 2l is a derivation. o

Lemma 2.2.4. If 2l is a normed algebra, then each inner derivation D.A

is bounded and IID.AII ~ 211AII.

Proof. For a fixed A E 2l.,

D.A(G) = AG - GA forallG E 2L

Implying that,

IID.A(G) II = IIAG - GAil

s IIAGII + IIGAII

< IIAIIIIGII + IIGIIIIAIl

- 2I1AUIIGII·
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Hence by the definition of II~AIL it immediately follows tha;

This completes our proof. o

Lemma 2.2.5. 2(. is commutative if and only if 0 is the only inner deriva-

tion.

Proof. First, assume that 2(.is commutative, then VA, BE 2(., AB = BA.

V~A inner derivation, We have

.6..4{B) AB - BA

- A,B-AB

O.

Conversely, assume that 0 is the only inner derivation, then for all B E 2(.,

~.4(B) = 0 ==> AB - BA = 0

==:;. AB = BA

==:;. 21 is commutative.

o

Example 5. Let 21 be an algebra with unit and let a be an element of21

that is not algebraic, that is, such that the elements 1, a, a2
, ••• are linearly

independent. Let B be the subalgebra of 2(. generated by 1, a and define a
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mapping ~ of B into B by

and ~ i O.

Then ~ is a derivation on B which is not inner since B is commutative

We next show that a simple application of triangle inequality in II~A 12111
where 21 is non - commutative and submultiplicity of the norm gives

Lemma 2.2.6. If2t. is non - commutative, then II~A12t.1I ~ 2d(A, Z(2t.)).

Proof. By definition,

II~A12t.1I -

-
-
-
-
<

<

-

That is

sup{II~A(B)1I : B E 21, IIBII = I}

sup{IIAB - BAli: B E 21, IIBII = I}

sup{IIAB - 8B + 8B - BAli: B E 21, IIBII = 1, 8 E Z(2t.)}

sup{IIAB - 8B + B8 - BAli: B E 21, IIBII = 1, 8 E Z(2t.)}

sup{II(A - 8)B + B(8 - A) II : B E 21, IIBII = 1, 8 E Z(2t.)}

sup{IIA - 81111BII+ IIBII1I8 - All : B E 21, IIBII = 1, 8 E Z(2t.)}

2inf{IIA - 811: 8 E Z(2t.)}

2d(A, Z(2t.)).

lI~AI2t1l < 2d(A, Z(2t.)).
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o
<..-

Note 2.2.7. We note that when 2t is B(H), then dCA, Z(2t)) simply be-

comes d(A) since on a Hilbert space, the centre consists only of complex

scalars.

2.3 Algebraic properties of derivations

In this section we present the elementary algebraic properties of deriva-

tions in propositions 2.3.1 and 2.3.2. This enables us to give Lemma 2.3.3

for arbitrary inner derivations. We realize from Propositions 2.3.1 and

2.3.2 that the concept of derivation is just a generalization of the con-

cept of differentiation of polynomials while Lemma 2.3.3 generalizes the

formula for calculating inner derivations.

Proposition 2.3.1. Let ~ be a derivation on an algebra 2t. Then the

following statements hold:

1. Leibnitz rule

2. ~(An) = nAn-l~(A) (n - 1 E N) if asul only if A~(A) = ~(A)A.

Proof. We shall use mathematical induction! to prove this Proposition as

organized in three parts below,

lWe note that 6,D(A) = A, which implies that the operator 6, does not act on A
at all.
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Part 1. We prove that

n

- L)~)(Lln-r(A))(Llr(B)) (n E N; A, BE 2t).
r=O

When n = 1,

Ll(AB) - (6)(Ll(A))(LlO(B)) + (i)(LlO(A))(Ll(B))

l' l'
- (1 - ~)!O!Ll(A)B + (1 _ ~)!l!ALl(B)

= Ll(A)B + ALl(B).

Hence it is true for n = 1.

Now, assume that it is true for n = k, that is,

k

Llk(AB) = I):) (Llk-r(A))(Llr(B)).
r=O

We prove that it is true for n = k + 1,

Llk+l(AB) Ll(Llk(AB))
k

~ (2)~)~k-r(A)~r(B))
r=O

k

- L):)Ll(Llk-r(A)Llr(B))
r=O .

k- I):) (Llk-r+l(A)Llr(B) + Llk-r(A)Llr+l(B))
r=O

_ ~ (k + 1)! (~k-r+l(A)~r(B))L....J (k + 1 +: r)!r!
r=O
k+l

_ L(:+l) (Llk-r+l(A)Llr(B)).
r=O
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Hence it is true for all n.

Part 2. We now show that

~(An) = nAn-1 ~(A) (n - 1 EN) if and only if A~(A) = ~(A)A.

We first assume that ~(AfI) = nAn-l ~(A) and prove that A~(A) =

~(A)A.

For n = 2,

6.(A~) = 2A~(A). (2.3.1)

But

~(A~) - ~(AA)

- ~(A)A +A~(A).

That is

6.(A~) = ~(A)A + A6.(A). (2.3.2)

Equating (2.3.1) and (2.3.2), we obtain

2A~(A) = ~(A)A + A6.(A).

===} A6.(A) = ~(A)A. Hence true for n ~ 2.

Assume it is true for n = k, that is

~(Ak) = kAk-1 ~(A) ===} A~(A) = ~(A)A. Then for n = k + 1, we

have

~(AA:+l) = (k + I)AA:~(A).
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But

~(Ak+l) _ ~(Ak A)

_ ~(Ak)A + Ak~(A)

_ kAk-1 ~(A)A + Ak~(A).

This implies that;

kAk-1 ~(A)A + Ak~(A) (k + l)Ak ~(A).

kAk-1 ~(A)A + Ak~(A) _ kAk~(A) + Ak~(A).

===> ~(A)A - A~(A).

Thus, it is true for all n.

Conversely, we assume that A~(A) = ~(A)A and prove that ~(An) =

nAn-l~(A).

For n = 2,

~(A2) _ ~(AA)

- ~(A)A+A~(A)

A~(A) + A~(A)

- 2A~ (A). Hence true.
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Assume that it is true for n = k, that is A~(A) = ~(A)A ===} ~(Ak) =

kAk-l~(A). <:..-

We prove that it is true for n = k + 1,

~(Ak+l) _ ~(AkA)

~(Ak)A + Ak ~(A)

kAk-1 ~(A)A + Ak ~(A)

kAk-1 A~(A) + Ak ~(A)

kAk~(A) + Ak~(A)

(k + 1)Ak ~(A).

Hence it is true for all n.

Part 3. Finally, we prove that

If ~2(A) = 0, then ~n(An) = n!(~(A))n, n E N.

Let ~2(A) = O. Then by induction

~(~(A))k = 0 kEN.

Assume that;

Then by (2.3.3),
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Therefore, by Leibnitz rule,

n

L(~)(~r(A) )(~ n-r (An-I))
r=O

G)~(A)~n-l(An-l), other terms vanish.

n! (~(A))(~n-l(An-l))
(n - 1)!1!

n(n - 1)! (~(A)~n-l(An-l))
(n - 1)!1!
n~(A)~n-l(An-l)

n(~(A))(n - l)!(~(A))n-l

n(n - l)!(~(A))(~(A)t-l

n!(~(A)t·

o

Proposition 2.3.2. Let ~ be a derivation on an algebra 2t, and lei E be

an idempotent in 2t. Then the following statements hold;

(i) .e~( .e).e= o.

(ii) If .e~(.e) = ~(.e).e, then ~(.e) = o.

(iii) If2t has a unit element e, then ~(e) = o.

Proof. We give a detailed proof in three cases.
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Case 1. We prove that £~(£)£ = o.
We have 0

~(£) - ~(£2)

~(ff)

- ~(£)£ + £~(£).

That is

~(£) - ~(£)£ + £~(£),

===:;. £~(£) - £~(£)£ + £2~(£)

- £~(£)£ + £~(£),

===:;. £~(£)£ - £~(£) - £~(£)

= o.

Thus

£~(£)£ = 0.·

Case 2. We prove that if £~(£) = ~(£)£, then ~(£) = o.
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We have

Ll(t) - ~((l)

- ~(f£)

- 6.(£)£ +£~(£)

- 6.(£)£2 +£2~(£).

Since £~(£) = ~(£)£

.. e2~(£) - £~(f)£

- 0 by(i)

and

t~(t)£ ~(£)£2

- 0 by(i).

Thus;

6(£) - £2~(f) + ~(£)£2

- £~(£)f +£~(f)£

- 2f~(£)£

= O.

Hence,

6.(£) = o.
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·Case 3. We prove that if ~ has a unit element e, then ~(e) = o.
If e is a unit element of ~, then; <...-

~(e) ~(e2)

~(ee)

~(e)e + e~(e)

~(e)e2 + e2~(e)

2e~(e)e

o (lYy (i).)

==} ~(e) O.

o

We end this section by giving the following Lemma which generalizes

the formula for calculating inner derivations.

Lemma 2.3.3. Let ~ be an algebra with inner derivation ~A' then

n2:( -lr(~)An-r XAr.
r=O

Proof. We shall prove this lemma by induction.
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For n = 1

1

L( -lr(~)Al-r XAr
r=O

- (6)AX - (i)XA

AX-XA.

=* ~A(X) AX - X A. Hence true.

Let it be true for n = k, that is

k

(~A)k(X) = L(-lr(~)Ak-rXAr.
r=O

We prove that it is true for n = k + 1,

(~A)k+l(X) - ~A(~~(X))
k

~A (L( -lr(~)Ak-r XAr)
r=O

k

L(-lr(~)(~A(Ak-rXAr))
r=O

k

L( -lr(~)(A(Ak-r XAr) - (Ak-r XAr)A)
r=O .

kL( -lr(~)(Ak-r+1 XAr - Ak-r XAr+1)
r=O
k+l

- L(-lr(~+1)Ak-r+lXAr.
r=O

Thus it is true for all n.
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2.4 Norms of inner derivation

We shall be interested in the algebra of bounded linear operators on a

Hilbert space, B(H). The norm of an inner derivation implemented by

an element A E B(H) is defined as,

The aim of this section is to present Stampfli's equality of Theorem 2.4.4

which states that lI~AIB(H)1I = 2inhEc IIA - AlII. The first inequality

U~AIB(H)II ::; 2 inf>'EcIIA - AlII followseasily from the following remark,

Remark 1. For any A E B(H), II~AIB(H)II = II~A-)JIB(H)II ::; 2inf>'EcIIA-

Mil for all A E C.

Proof.

~A(X) for X E B(H)

AX-XA

(A - AI)X - X(A - AI)

- ~A->'J(X)

- ~A-)JIB(H}.

Hence it follows immediately that;

II~A-)JIB(H)II

< 211A- AlII since B(H) is a normed algebra.
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This implies that

(2.4.1)

o

Definition 2.4.1. A Banach space X is said to be uniformly convex

if, for any Xn and Yn in the unit ball of X, the statement that

Ilxn + Ynll ---+ 2 as n ---+ 00

implies that

Ilxn - Ynll ---+ 0 as n ---+ 00

Example 6. All inner product spaces are uniformly convex, [31].

J. G. Stampfli [40] established when equality holds in equation (2.4.1)

above. He then wondered whether the same result would hold in other

algebras. It has been shown satisfactorily that equality sometimes hold

and that strict inequality is also possible as we can see in the following

examples by B. E. Johnson [21].

Example 7. Let 1 < p < 00 and p =1= 2. Then there is a rank - one

operator A E B(fP) such that

II.6.AII < 2 inf IIA - '\111.
AEC

Johnson [21] also provided examples of spaces where equality does

hold as is the case in the following example,
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Example 8. Let f; = (JRn, 11.liI) which is a real Banach space with norm

for any A E B(f;(JR».

Subsequently, Kyle [24]established the equality for the uniformly con-

vex Banach space. In particular, he propagated the following theorem;

Theorem 2.4.2. ([24}) Let oXbe a uniformly convex Banach space. Then

the following conditions are equivalent:

(i) oX is isometric to a Hilbert space

(ii) II~AII = 2 inf.~EICIIA - Alii holds for any-A E B(H)

(iii) II~AII = 2 inf-\EICIIA - AlII holds for any rank - one operator A E

B(H).

In this study, we shall use the concept of tensor products to create

rank two operators that will enable us establish Stampfli's [40] equality

for the algebra of bounded linear operators on a Hilbert space, B(H),

which forms our major result in this chapter. We first give the following

definition;

Definition 2.4.3. The maximal numerical range of A E B(H) is

Wo(A) = {>' E C: >. = lim(Axn,xn), where {xn} E Hand IIAxnll ---7IIAII}
n
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The set Wo(A) is known to be non - empty, closed, and convex, [40].
\

Theorem 2.4.4. Let H be a Hilbert space and B(H) the =alqebra of

bounded linear operators on H. Then for A E B(H),

II~AIB(H)II = 2d(A).

Proof. Let J-L E Wo(A). Then it follows that there is a sequence {xn} E H

of unit vectors such that

and

IIAll = lim IIAxnll·
n

Set AXn = anXn + f3nYn for n E N, where Yn ..1Xn and IIYnll = 1 so that

and

Define the rank - 2 operators Vn E B(H) by

where Pn is the orthogonal projection onto [xn, Yn].

Here

(u ® v)x = (x, u}v
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for u. v. x E H. Thus:

VnXn {Xn ® Xn - Yn ® Yn)OPnXn

- (Xn ® Xn - Yn ® Yn)Xn

- (Xn ® Xn)Xn - tu« ® Yn)Xn

- (Xn, Xn)Xn - (Xn, Yn)Yn

IIxnlliXn - O·Yn

- x ••..

We also find that,

VnYn - (Xn ® Xn - Yn ® Yn)OPnYn

(Xn ® Xn .: Yn ® Yn)Yn

(Xn ® Xn)Yn - (y~ ® Yn)Yn

- (Yn, Xn}Xn - (Yn, Yn)Yn

- O.Xn -IIYnll:t·Yn

Moreover IIVnll = 1 't n as we can see here below,

IIVnl! - sup{IIVnxnll: Xn E H, IIxn/l = 1}

sup{lIxnlJ : Xn E H, IJxnlJ= 1}

1.
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Hence. we obtain that

rim jjAVnxn - VnAxnll - lim IIAxn - VnAxnll
~ n

- lim II(anXn + fJnYn) - Vn(nnxn + fJnYn)II
n

- lim 112fJnYnII
n

- lim21fJnlllYnll
n

IIAxnll2' -lanl2

_ (IIAxn1l2 _la~12)~

- lim(IIAxnll:l -Ianlt)j
n

(IIAII2 - IJLI2)~.

So that we have

lim IIAVnxn - VnAxnll - lim21fJnl
n tl

_ 2(IIA1I2-IJLI2)!,

lim IIAVnxn - VnAxnll = 2(IIAlii -IJLli)~. (2.4.2)
n
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But by definition,

IIb.AIB(H)11 sup {1Ib.A(Vn) II : Vn E B(H), IIvnll = I}

- sup {IIAVn - vnAIl : Vn E B(H), IIvnll = I}

> IIAVn - VnAII, Vn E B(H), IIVnll = 1.

Since

it follows that

IIb.AIB(H)1I ~ limsup IIAVnxn - VnAxnll. (2.4.3)
n

Considering equations (2.4.2) and (2.4.3), it follows that

(2.4.4)

Next, we note that

for some scalar >'0 E C.

We can then observe that if 0 E Wo(A - >'o/), then equation (2.4.4) would

read,

IIb.AIB(H)II > 2(IIA - >'01112 - O)~
- 211A- >'0111.
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Thus

II~AIB(H)II~ 2 inf IIA - Alii.
AEC

From equations (2.4.1) and (2.4.5), we obtain our result.

(2.4.5)

o

Note 2.4.5. The above Theorem 2.4.4 was first established by Stampfli

(40) who included two approaches in proving this result. Also, the non -

trivial part of the argument developed in our proof above, which is to find

Ao E C so that 0 E Wo(A - A01), is well documented in [40). .
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Chapter 3

NORM IDEALS AND S -

UNIVERSALITY

3.1 Introduction

In this chapter, we concentrate on norms of inner derivations on norm

ideals and give several results with respect to it. We define a symmetric

norm ideal of the algebra of bounded linear operators on a Hilbert space,

B(H). Further, we explore the relationships between the norm of inner

derivations restricted to the algebra B(H), norm ideal J and the quotient

of B(H) by a closed norm ideal, J. Major tools and the approach used in

this chapter are majorly borrowed from the previous works of Agure [1],

Barraa and Boumazgour [7, 8], Fialkow [15],Halmos [20],other references

were also useful.

In section 3.2 of this chapter, we extend the inequality IID.AIJII ~ 2d(A)

from a norm ideal, J to the quotient algebra, B(H)/'J. We then explore

its applications to S - universal operators where we establish the condi-

tions under which the equality IID.[AJIB(H)/'JII = IID.AI'JII is satisfied.
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Section 3.3 satisfactorily considers the case of a hyponormal operator
\

while section 3.4 deals with inner derivations and the numerical range,

where we establish the interesting relationship between the norm of inner

derivation on norm ideals and the diameter of the numerical range. Fi-

nally, we explore its applications to S - universality and make attempt to

answer related questions.

3.2 Inner derivation on norm ideals

Recall from definition 1.2.40 that for A E B(H), the inner derivation

induced by A is the operator AA defined on B(H) by AA(X) = AX -

XA, for all X E B(H). The norm of an inner derivation AA on H has

been computed by J. Stampfli, see Theorem 2.4.4 as

IIAAIB(H)II = 2d(A) (3.2.1)

where d(A) = inf>'EcIIA - >.III·

Definition 3.2.1. Let H be a complex Hilbert space and B(H) the alge-

bra of all bounded linear operators on H. A norm ideal (3, II.ID in B(H)

consists of a proper two-sided ideal J together with a norm 1I.lb satisfying

the following conditions;

• (J, 1I·lb) is a Banach space:

• IIAXBlb ~ IIAlIllXlbllBIl for all X E J and all operators A and B

in B(H).
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• IIxlb = IIXII for X a rank one operator.

Note 3.2.2. The norm ideal defined above is sometimes referred to as

symmetric norm ideall.

The following remark is an important characterization of the Quotient

of a normed algebra 21by a closed norm ideal .3,

Remark 2. ([26J) 1f.3 is a closed ideal in a normed algebra 21, then the.

quotient 21/.3is a normed algebra when multiplication is defined as

(X +.3)(Y +.3) = (XY +.3) for X, Y E 21.and 21/.3is endowed with the

quotient norm; IIX +.311= inf {IIX + KII : K E.3}.

In this section, we shall be interested in norms of inner derivations

on norm ideals. Let.3 be a norm ideal in B(H) and let A E B(H). If

X E .3, then ~A(X) E J and

We give the following simple proposition which indicates that the restric-

tion of an inner derivation on a norm ideal is a bounded linear operator

on the ideal

Proposition 3.2.3. Let J be a norm ideal in B(H) and let A E B(H).

Then II~AIJII~ 2d(A).

1We shall write J to denote a symmetric norm ideal (J, 11.113).
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Proof. For any X E .3, we have

II.6.A(X)lb - IIAX - XAlb

- II(A-'xI)X-X(A-'xI)lb, for 'xEC

< II(A - 'xI)Xlb + IIX(A - 'xI)lb
< IIA - ,XIIIIIXlb + IIXlbliA - ,XIII

- 211A- ,XIIIIIXlb
< 2d(A)IIXlb·

This implies that

By definition of II.6.AI.311,it follows that

The following corollary therefore follows,

(3.2.2)

o

Corollary 3.2.4. Let.3 be a norm ideal in 8(H) and A E B(H). Then

Proof. By Theorem 2.4.4, for any A E B(H), we have

II.6.AIB(H) II. 2d(A).
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It therefore follows from Proposition 3.2.3 that

D

Next, we shall show that the inequality (3.2.2) is also possible for the

quotient algebra B(H)/'J. See Theorem 3.2.5.

Let us first note that addition in B(H)/'J is defined as; (X +'J)+(Y +'J) =

(X + Y) + 'J, for X, Y E B(H).

Theorem 3.2.5. Let'J be a norm ideal in B(H) and A E B(H). Then

Proof. Let us first consider the following definitions;

[X] = X +'J, II[X]II = inf {IIX + KII : K E 'J} and

IILl[A]IB(H)/JII = sup {IILl[A]([XDII : [X] E B(H)/J, II[X]II = I}, where

[X] is the canonical image of X in B(H)/'J.

Now,

IILl[A]([XDIIB(H)/J - II[A][X]- [X][A]IIB(H)/J

II([A]- AI)[X]- [X]([A]- AI)IIB(HIJ' A E C

< II([A]- AI)[X]IIB(H)/J + II[X]([A]- AI)IIB(H)/J

< II[A]- AlII II[X] IIB(H)/J + IUX]IIB(H)/JII[A]- Alii

- 211[A]- ~IIIII[X1IIB(H)/J·
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This implies that,

ii.6.[AJ([X])iiB(H)/J < 2 II[A] - ).III II[X] IIB(H)/J .

Thus, by definition of ii.6.[AJIB(H)/Jii ' it follows that

where d([A]) = inf.AECII[A] - ),111·
We next establish the relationship between d([A]) and d(A).

By definition;

d([A]) - inf {II [A] - ),111: ). E C}

- inf {IIA + J ~ ),111: ). E C}

- inf {IIA - ),1 + JII: ). E C}.

But since the map B(H) -----+ B(H)/J is continuous and

IIA+JII s IIAII,

it follows from above that

d([A]) - inf {IIA - ),1 + JII: ). E C}

< inf {IIA - ),111: ). E C}

- d(A).

Thus

d([A)) S d(A).
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Hence from equation (3.2.3), it follows that,

11D,[AJIB(H)jJII ~ 2d(A). (3.2.4)

o

The following corollary is immediate,

Corollary 3.2.6. For A E B(H) and J a norm ideal in B(H), then

Proof. By Theorem 2.4.4, for any A E B(H), we have

It thus follows immediately from Theorem 3.2.5 that

o

Remark 3. It is clear from above that Corollary 3.2.4 relates the norm of

inner derivation on the algebra and that on the norm ideal, while Corollary

3.2.6 relates the norm on the norm ideal and that on the quotient algebra.

But one would naturally ask about the relationship between the norm on

the norm ideal and that on the quotient algebra.

We mention here that relating the norm of a derivation on the quotient

algebra and on the ideal has remained a difficult problem in the past.

Partly, this is due to the fact that ideals being subspaces of the algebra,
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ranges from the trivial ideal to the whole algebra itself. In the next

section, we shall realize that this relationship is possible. "-'

3.2.1 Applications to S - universality

In order to examine the extent to which the identity (3.2.1) applies, L.

Fialkow [15] introduced the notion of S - universal operators. Further,

Fialkow studied the criteria for S - universality for subnormal operates

and posed several questions in this context.

Definition 3.2.7. An operator A E B(H) is S - universal if

2d(A) ,

for each norm ideal J in B(H).

In this subsection, we give certain results with respect to this concept

of S - universality. The following Lemma, which gave a big breakthrough

into this study, provides a clear relationship between the norm of inner

derivation on the quotient algebra and that on the norm ideal.

Lemma 3.2.8. If A E B(H) is S - universal, and J a norm ideal in

B(H), then,

Proof From equation (3.2.2) and definition 3.2.7 of S - universality, we
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have respectively

1I~[A1IB(H)/JII < 2d(A),

and

2d(A).

It therefore follows that

Thus,

(3.2.5)

o

Remark 4. From the above Lemma 3.2.8, the following question seems

natural; When does equality hold in equation (3.2.5)7 We satisfactorily

provide an answer to this question in Theorem 3.2.10. We shall first state

the following proposition by Agure [1].

Proposition 3.2.9. ([1)) Let 2{ be a C* - algebra. Then there is a prim-

itive ideal J such that II[AX - XAlIIB(H)/J > IIAX - XAII- E, E > O.

Theorem 3.2.10. Let B(H) be the algebra of bounded linear operators

on a Hilbert space H, J be a primitive norm ideal in B(H). Then for an

S - universal operator A E B(H),'
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where [A] is the canonical image of A in B(H)/J.

Proof. It is clear by Lemma 3.2.8 that

We therefore need to establish the reverse inequality. It suffices to show

that

By definition

II~AIJII = sup{II~A(X)11 : X E J, IIXII= I}, (3.2.6)

which implies that

For any f > 0, we can find X E J with IIXII= 1 such that,

so that

Also, it follows from Proposition 3.2.9 that for all primitive ideals J in a
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C*-algebra, B(H), there exists E > 0 such that

II [AX - XA]IIB(H)/J > IIAX - XAII- E.

This implies that

Therefore

Thus

IILlAIJII- E < IILlA (X) II
< II [AX - XA]IIB(H)/J + E

II[A] [X] - [X] [A] IIB(H)/J + E

- IILl[A]([XDIIB(H)/J + E.

But by definition,

So that,

IILlA IJII < 1Ib.[A]([XDIIB(H)/J + 2E

< IILl[AJiB(H)/JIl + 2E.
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r

Since E > 0 is arbitrary, we obtain

Considering equations (3.2.5) and (3.2.7), we obtain our result. 0

3.3 Hyponormal operators

In the previous section 3.2, we studied inner derivations on norm ideals

and realized that II~AIB(H)/JII :::;2d(A) for"anyA E B(H), see Theorem

3.2.5.

In this section, we are going to be interested in inner derivations imple-

mented by normal and hyponormal operators on norm ideals. For def-

initions of normal operators, hyponormal operators, compact operators,

S - universal operators and sequence of singular values, refer definitions

1.2.16, 1.2.17, 1.2.18 and 3.2.7. We shall then define the schatten p -

ideal Cp(H), 1 ::; p ::; 00, introduced by R. Schatten [35], which, see

Proposition 3.3.2, form a class of norm ideals.

Definition 3.3.1. The space Cp(H) is a class of compact operators X

such that Lj 8j(X) < 00, where {Sj(X)}j denotes the sequence of sin-

gular values of X. For X E Cp(H) (1 :::; p :::; (0), we set IIXlip =
1

(Lj 8j(X))v, where, by convention, IIXlioo = Sl(X) is the usual operator

norm of X.

The following propositions give significant characterization of this

class of operators, Cp(H), [35].
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Proposition 3.3.2. Let Cp( H) denote the schatten p - ideal. Then

(Cp(H), 1I.llp) is a norm ideal. 0

Proposition 3.3.3. Let Cp( H) denote the schatten p - ideal. Then

(C2(H),II.lb) is a Hilbert space with inner product defined by (X, Y) =

tr(XY*), (X, Y E C2(H)) where tr stands for the usual trace functional

and Y* denotes the adjoint of Y.

We shall write ~AIC2 instead of ~AIC2(H) to denote inner derivation on'

C2(H). In fact in this section we will be particularly interested in the

norm ideal (C2, 11.1]2)'

Before giving the main result of this section (see Theorem 3.3.7), we shall

first state the following results from literature on hyponormal and normal

operators.

Theorem 3.3.4. ([7])An hyponormaZ operator A E B(H) is S - universal

if and only if diam(O'(A») = 2RA where RA is the radius of the smallest

disc containing the spectrum.

In establishing the above result in [7], the authors used the following

theorem due to B.Sz. Nagy and C. Foias [30];

Theorem 3.3.5. ([30]) For every hyponormal operator A on a Hilbert

space H there exists a normal operator N and a unitary operator U on

some Hilbert space K, and a contraction R of H into K, such that;

(a) A = R*NR

(b) IINII = IIAII

(c) NU = UN = N*
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(d) IIR*Ugll :::;IIR*gll for all g E K

(e) The manifolds Ln = U" RH (n= 0, 1, 2,...) form a non- '-'decreasing

sequence and span K

(f) For any complex scalars a, f3,

(J(aN + f3N*) ~ (Jl(aA + f3A*)

(oi; left spectrum).

As a consequence to Theorem 3.3.5 above, Barraa and Boumazgour

in [7]established the following Corollary,

Corollary 3.3.6. ([7]) Let A be a hypo normal operator and let N be a

normal operator given by Theorem 3.3.5. Then d(A) = IIAII if and only

if deN) = IINII·

In concluding their paper [7]with a remark, an open question was posed

as to whether the equality

holds true, where A, N are arbitrary hyponormal and normal operators

defined as in Theorem 3.3.5 above.

Our result in this section is the following,

Theorem 3.3.7. Let A and N be defined as in Theorem 3.3.5 above. If

A is S - universal, then
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Proof. Since A is S - universal, then by definition 3.2.7 of S -universal
\

operators, assertion (b) of Theorem 3.3.5 and Corollary 3.3.6y it follows

that

Then we have that

II~AIC211 = 211AII ~ II~AIC211 = SUp{II~A(X)1I : X E C2, IIXII = I} = 211AII
~ :3 {Xn} E C2(H) with IIXnll = 1 such that

IIAXn - XnAII2 ---+ 211AII as n ---+ 00.

Since

IIAXn - XnAII2 < IIAXnll2 + IIXnAII2

< IIAII + IIXnll211AII
IIAII+IIAII
2 IIAll ,

we deduce that

and
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Now, from the identity;

we conclude that -~( (AXn; XnA)) ---+ IIAI12 as n ---+ 00, where ~

denotes the real part.

But for every sequence {Xn} E C2(H) and IIXnll = 1, there exists a .

corresponding sequence {RXnR*} E C2(K) such that IIRXnR*1I ~ 1.

Moreover,

(NRXnR*,NRXnR*) - tr((NRXnR*) (RXnR*N)*)

- (AXn,XnA).

as n ---+ 00.

Also

1~((NRXnR*,RXnR*N))1 < IINRXnR* 112IIRXnR*N 112
< IINII2.

So it follows that IIN RXnR*1I2 ---+ IINII and IIRXnR* NII2 ---+ IINII, as

n ---+ 00.
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Therefore

IIN(RXnR*) - (RXnR*)NII~ IINRXnR*II~ + IIRxnR*NII~

-29t( (N RXnR*, N RXnR*))

--+ IINII2 + IINII2 - ( -2I1NII2)
411NII2 as n --+ 00.

In other words,

Implying that

(3.3.1)

Since by definition, II~NIC211 ~ II~N(RXnR*)11, it followsthat II~NIC211 ~
211NII. But it is clear that II~NIC211 ::; 211NII, so that II~NIC211 = 211NII·
Thus by taking into consideration our assumptions at the start of this

proof, it immediately follows that II~NIC211 = II~AIC2" which completes

this proof. D

Remark 5. Theorem 3.3.7 answers partly the question? posed in [7].

2The question posed in [7J still remains open for investigation
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3.4 Inner derivations and the numerical range

This section deals with inner derivation and the numerical range. See

definition 1.2.23 for the numerical range and the spectrum.

In order to state our results in this section in detail, we shall first recall

some notations and results from literature. For A E B(H), we denote

the spectrum by O"(A), the approximate point spectrum by O"ap(A), the

spectral radius by r(A), the numerical range by W(A), and the numerical'

radius by w(A), see definition 1.2.23.

The relationships between the spectra and the numerical range was widely

studied by. P. R. Halmos [20] in his Hilbert space problem book. For

instance, we give the following results;

Theorem 3.4.1. ([20), problem 78) The boundary of the spectrum of an

operator is included in the approximate point spectrum.

The following is an immediate corollary of the above Theorem 3.4.1,

Corollary 3.4.2. For any operator A, IIAII E O"(A) if and only if IIAII E

O"ap(A).

Further, Halmos mentioned the following theorem which is generally re-

ferred to as the spectral inclusion theorem,

Theorem 3.4.3. ([18), Spectral inclusion theorem) W(A) is a compact

convex subset of the plane and O"(A)~ W(A) , where the bar denotes the

closure.

As an immediate consequence, we have the following,
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Corollary 3.4.4. For any operator A, IIAll lies in W(A) if and only if

IIAII lies in o-ap(A). <.-

The numerical range and the spectrum of inner derivations on norm

ideals has been studied by several authors, see for instance [15] or [37],

and several results obtained.' We mention some of the results that shall

be vital in giving the results of this study.

In [37], S. Shaw considered inner derivations acting on subspaces which

satisfy axioms like those of norm ideals. In particular, he proved the

following proposition,

Proposition 3.4.5. ((37]) Let A E B(H), then W(~AIC2) = W(A) -

W(A).

We note that W(A) - W(A) = {a - (J : a, (J E W(A)}.

Proposition 3.4.5 formed the numerical range analogue of Fialkow's [15]

formula for spectra which we state in the following proposition,

Proposition 3.4.6. ((15]) For an operator A E B(H), o-(~AIC2)

o-(A) - o-(A).

We also note that o-(A) - o-(A) = {a - (J : a, (J E o-(A)}.

Fialkow's work [15] followed from the work of A. Brown and C. Pearcy

[6] who studied the multiplication operators, LA and RA (see definition

1.2.24) in detail. Specifically they established the following Theorem,

Theorem 3.4.7. ((6]) For A E B(H), o-(LA) = o-(RA) = o-(A) and that

(3.4.1)
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The following is a corollary to Theorem 3.4.7 above,

Corollary 3.4.8.

(3.4.2)

In this section, we are going to be interested in the relationship be-

tween the diameter of the numerical range and the norm of inner deriva-

tion on norm ideals.

We begin by establishing the inequality between the diameter of the nu-

merical range and the norm of inner derivation implemented by A E B( H)

on norm ideal J of B(H), see Theorem 3.4.10. The same result was first

established by 1. Fialkow [15]. We shall first state the following Lemma,

Lemma 3.4.9. Let A E B(H) be non - zero and J. be an ideal in B(H).

If B E J with BXn = Yn and Xn, Yn E H such that IIYnl1 = Ilxnll = 1 \In,

then B is unitary.

Proof.

(Bxn, Bxn)

IIBxnl12
IIYnl12

IIxnl12

(Xn, xn)

u«; xn).
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Thus

B*B = I.

Similarly, it is easy to show that BB* = I which completes the proof. D

Theorem 3.4.10. For any operator A E B(H) and each norm ideal J

in B(H), diam(W(A)) ~ II~AIJII.

Proof. By definition,

II~AIJII - sup {II~A(B)II : B E J, IIBII = I}

- sup {IIAB - BAil: B E J, IIBII = I}.

It therefore follows that

II~AIJII ~ IIAB - BAil, BE J, IIBII = 1.

Let us consider IIAB - BAIl,
So:3 {xn} E H with Ilxnll = 1 V n such that

IIAB - BAli ~ IIABxn - BAxn11 ~ IIABxnl1 -IIBAxnll·
Thus

(3.4.3)

But

I(ABxn,Bxn)I'~ IIABxnllllBxnl1

< IIABxnllllBllllxnl1
- IIABxnll·
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Similarly,

So that equation (3.4.3) becomes;

By letting BXn = Yn with IIYnl1= IIxnll = 1, we have by Lemma 3.4.9

that

and

(BAxn, Bxn) - (Axn, B* Bxn)

(Axn, xn).

Thus,

II~AIJII > I(AYn,Yn) - (Axn,xn)1

- [o - .81;a,.8 E W(A).

This implies that

II~AIJII > sup{la -.81: a,.8 E W(A)}.
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Hence

II~AIJII ~ diam(W{A)). '-' (3.4.4)

o

Remark 6. Theorem 3.4.10 above lead us to the following question;

When does equality hold in equation (3.4.4) above?

3.4.1 Application to S - universality

We begin this subsection by stating the following Theorem by Barraa and

Boumazgour [8],

Theorem 3.4.11. (f8}) Let A, B E B{H) be non - zero. Then the

equation IIA+ BII = IIAII+ IIBII holds if and only if IIAIIIIBIlE W{A* B)

We shall satisfactorily provide an answer to the question in Remark 6

above in Theorem 3.4.13. This will form the major result in this section.

To do this, we need to first establish the condition when the diam(W{A))

attains its optimal value, 211AII,which we immediately establish in the

following Theorem,

Theorem 3.4.12. Let A E B{H) be S - universal. Then

diam{W{A)) = 211AII.

Proof. Since A is S - universal (see definition 3.2.7), we have
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By Stampfli [40], for any A E B(H),

II~AIB(H)II = 2 inf IIA - Alii.
AEC

By a compactness argument, considering that ~AIC2 is compact, ::I/-L E C

such that

inf IIA - Alii
AEC

Hence

Since

IIA - /-LIII·

it follows that,

On the other hand, by Theorem 3.4.7 we have;

and
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Hence,

Without loss of generality, we may assume that J1 = 0 and then

Then by Theorem 3.4.11 due to Barraa and Boumazgour, this is equiva-

lent to

As remarked in the introduction this implies that

But from equations (3.4.1) and (3.4.2),

and

So :3 a, fJ E o-(A) such that IIAI12= -afJ.

Since lal ~ IIAII and IfJl ~ IIAII, one can find e E lR such that

a = IIAIleio and

fJ = -IIAllei6
. Since
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it follows that

So

By the spectral inclusion theorem; o-(A) ~ W(A),

.'. diam(o-(A)) ::; diam(W(A)).

Hence,

diam(W(A)) ~ diam(O"(A)) ~ 211AII.

That is

diam(W(A)) ~ 21IAII.,

Conversely, we need to establish that

diam(W(A)) < 211AII.

So by definition

diam(W(A)) = sup {Ia - ,81: a,,8 E W(An·

This implies that; :3 x, y E H with [z] = Ilyll= 1 such that;

a = (Ax, x) and ,8 = (Ay, y).

:. a -,8 = (Ax, x) - (Ay, y).
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So that

10:-,81 - I(Ax, x) - (Ay, y)l·

But

I(Ax,x) - (Ay,y)1 < I(Ax,x)1 + I(Ay,y)1

< IIAxllllxll + IIAYllllyl1

< IIA1111x1111x11+ IIAllllYlillyl1
_ IIAllllxl12 + IIAlillYl12
- IIAII+ IIAII
- 211AII·

Hence,

sup {1(Ax,x) - (Ay,y)l: X,y E H, [z] = Ilyll = I}:::; 211AII·

Thus

diam(W(A)) :::; 211AII. (3.4.6)

Now, from equations (3.4.5) and (3.4.5), we obtain our result. D

We now proceed to answer the question in Remark 6 in the following

result,

Theorem 3.4.13. Let A E B(H) be S - universal and J a norm ideal in

B(H). Then

diam(W(A)) = II~AIJII.
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Proof. From Theorem 3.4.10, for any A E B(H)

diam(W(A)) < IIL\AIJ"II. (3.4.7)

We therefore need to establish the reverse inequality, that is,

diam(W(A)) 2 IIL\AIJ"II·

Since A is S - universal, then by Theorem 3.4.12, we have

diam(W(A)) = 211Alr,

and by definition of S - universal operator,

But by Lemma 2.2.4, since B(H) is a normed algebra, then IIL\AIB(H)II ~

211AII.It therefore follows that,

II~AIJ"II= II~AIB(H)II :::;211AII= diam(W(A)).

Hence

(3.4.8)

Now, from equations (3.4.7) and (3.4.8), we obtain our result. D

The following Corollaries are immediate,

76



Corollary 3.4.14. If A E B(B) is S - universal, then

diam(W(A» = IILlAIB(B)II.

Proof. This follows immediately from Theorem 3.4.13 and the definition

3.2.7 of an S - universal operator. 0

Corollary 3.4.15. If A E B(B) is S - universal, then IILlAIB(B)1I =
IILlAIJIl = 211AII·

Proof. The proof of this Corollary follows.immediately from Theorem

3.4.12, Theorem 3.4.13 and the Corollary 3.4.14 above. 0

The next result which is the last in this series and even in this thesis,

considers the Hilbert - Schmidt class C2(B) and establishes the necessary

and sufficient condition for an operator A E B(H) to be S - universal.

Before giving the next result, we state the following results by Barraa and

Boumazgour [8],

Theorem 3.4.16. ((8}) Let A E B(H) be non- zero. Then IILlAICzlI =

IILlAIB(H)1! if and only ifr(~AIC2) = II~AIB(H)II

Corollary 3.4.11. ((8f) For A E B(H), the following are equivalent:

1. A 1.-; .9 - uniuersal

2. diam(W(A» = 2inf'\Ec IIA - ),111

3. diam(a(A» = 2inf'\EC IIA - ),111

Our result states as follows;
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Theorem 3.4.18. Let A E B(H) be non- zero. Then A is S - universal

if and only if <--

Proof. Assume that A is S - universal. Since,

then it follows that;

diam(W(A)).

Also, since

it follows that;

Since A is S - universal, then by corollary 3.4.14,

diam(W(A)) = II~AIB(H)II

Also, by the definition of S - universality, we have

7R



Thus;

But by Theorem 3.4.16 due to Barraa. and Boumazgour [8}, equation

(3.4.9) results to (3.4.10) below;

w(L\AIC2) = IIL\AIB(H)II = r(~AIC2). (3.4.10)

Hence

r(~AIC2) - w(~AIC2).

Conversely, assume that

r(L\AIC2) - w(L\AIC2).

Then since

w(~AIC2) - diam(W(A»

and

r(L\AIC2) - diam(a(A»;

it follows that;

diam(W(A» - diam(a(A».
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Thus, by corollary 3.4.17 above, it follows immediately that A is S -

universal. "--' 0

We end this work with the following remark,

Remark 7. Can the condition established in Theorem 3.4.18 hold if we

restrict the derivations on Cp, (I ~ p ~ (0), that is the Schatten p - class?

What about on any norm ideal J. We predict that if it can hold for any

norm idealJ? then it will hold for the whole algebra, B{H).
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Chapter 4

SUMMARY AND

RECOMMENDATION

4.1 Summary

In this chapter, we summarize our work by highlighting the main results

based on our objectives of study.

In chapter one, we gave the background information with respect to the

study of derivations which enabled us to state the problems with a lot of

ease.

In chapter two, we considered basic results on inner derivations and fur-

ther exhausted the elementary properties of inner derivations. These to-

gether with the theory of tensor products highlighted in chapter one en-

abled us to establish Stampfli's equality for the algebra of bounded linear

operators on a Hilbert space.

Chapter three contains the main results of this study on norms inner

derivations on norm ideals and the quotient algebra. First, we have ex-

tended the inequality (1.5.2) by Barraa and Boumazgour to the quotient
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algebra. This enabled us to give.the relationships between norms of inner
~

derivations restricted to algebra, ideal and the quotient algebra Further,

we introduced the concept of S - universal operators where we realized

that for an S - universal operator, the norm of inner derivation on the

quotient algebra equals that on the ideal if the ideal is primitive.

We then focussed on hyponormal operators where we partially answered

the question by Barraa and Boumazgour as to whether equality hold be-

tween the norm of inner derivations implemented by hyponormal and'

normal operators respectively on the Hilbert - Schmidt class operators.

Specifically, we've established that equality hold if the hyponormal oper-

ator is S - universal.

Moreover, we have established the inequality between the norm of inner

derivation on norm ideals and the diameter of the numerical range, and

further realized that equality holds when the operator is S - universal.

Finally, we have provided a necessary and sufficient condition for any non-

zero operator to be S - universal, where we have shown that an operator

is S - universal if and only if the numerical and spectral radii of inner

derivations on Hilbert - Schmidt class are equal.

4.2 Recommendation.

From this study, it has clearly emerged that the study of derivations is

still an interesting and active area of research in pure mathematics, and

still calls for a special attention.'

The notion of S - universality was introduced in 1979 by L. Fialkow, but

it did not attract the attention of mathematicians until in 2001 when
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Barraa and Boumazgour studied some applications of these operators.,
Even though this study explores reasonable norm properties and several

'beautiful' applications of S - universal operators, a lot is still not known

about the structural properties of these operators, for example, the spec-

tra, the essential spectra, the numerical range, the essential numerical

range, among others. We therefore invite researchers into the study of

structural properties of S - universal operators. Moreover, the conditions

for S - universality for any operator can also be investigated.

On the other hand, the Stampfli's equality can be investigated for other

algebras other than the ones where it has been established.
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