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spectrometry in severe rheumatic heart 
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showing ongoing inflammation and effectively 
classifying RHD cases
M. Taariq Salie1†, Jing Yang2†, Carlos R. Ramírez Medina17, Liesl J. Zühlke5, Chishala Chishala6, Mpiko Ntsekhe6, 
Bernard Gitura7, Stephen Ogendo18, Emmy Okello8, Peter Lwabi8, John Musuku9, Agnes Mtaja9, 
Christopher Hugo‑Hamman5,10, Ahmed El‑Sayed11, Albertino Damasceno12, Ana Mocumbi13,14, 
Fidelia Bode‑Thomas15, Christopher Yilgwan15, Ganiyu A. Amusa19, Esin Nkereuwem15, Gasnat Shaboodien16, 
Rachael Da Silva4, Dave Chi Hoo Lee4, Simon Frain2, Nophar Geifman20, Anthony D. Whetton21, 
Bernard Keavney2,3†, Mark E. Engel1*†   and the RHDGen Network Consortium 

Abstract 

Background:  Rheumatic heart disease (RHD) remains a major source of morbidity and mortality in developing 
countries. A deeper insight into the pathogenetic mechanisms underlying RHD could provide opportunities for drug 
repurposing, guide recommendations for secondary penicillin prophylaxis, and/or inform development of near-
patient diagnostics.

Methods:  We performed quantitative proteomics using Sequential Windowed Acquisition of All Theoretical Frag‑
ment Ion Mass Spectrometry (SWATH-MS) to screen protein expression in 215 African patients with severe RHD, and 
230 controls. We applied a machine learning (ML) approach to feature selection among the 366 proteins quantifiable 
in at least 40% of samples, using the Boruta wrapper algorithm. The case–control differences and contribution to Area 
Under the Receiver Operating Curve (AUC) for each of the 56 proteins identified by the Boruta algorithm were calcu‑
lated by Logistic Regression adjusted for age, sex and BMI. Biological pathways and functions enriched for proteins 
were identified using ClueGo pathway analyses.

Results:  Adiponectin, complement component C7 and fibulin-1, a component of heart valve matrix, were signifi‑
cantly higher in cases when compared with controls. Ficolin-3, a protein with calcium-independent lectin activity that 
activates the complement pathway, was lower in cases than controls. The top six biomarkers from the Boruta analyses 
conferred an AUC of 0.90 indicating excellent discriminatory capacity between RHD cases and controls.
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Introduction
The morbidity and mortality of rheumatic heart disease 
(RHD) is chiefly due to damage to the cardiac valves, con-
sequent on an autoimmune reaction to Group A Strepto-
coccal infection (typically, childhood sore throat). RHD is 
the only cardiovascular disease of global impact that has 
been shown to be completely preventable [1]. Poor social 
conditions, overcrowding, and limited access to medi-
cal resources are key enablers of RHD, which remains a 
major source of morbidity and mortality, in low and mid-
dle-income countries (LMICs) [2]. In excess of 40 mil-
lion people are currently living with RHD worldwide [3]; 
most are in countries where advanced medical technolo-
gies such as percutaneous or surgical intervention are not 
accessible [4]. The Global Burden of Disease study has 
shown that RHD affects nearly five million more people 
than HIV and causes about 10 million disability adjusted 
life years lost globally.

Group A Streptococcus (GAS) is the etiological agent 
triggering Acute Rheumatic Fever (ARF), with evidence 
of molecular mimicry by the M protein on the bacteria, 
which shares an α-helical coiled structure with cardiac 
proteins such as myosin [5]. Antibodies to the M pro-
tein cross-react with heart tissues, leading to carditis and 
other systemic manifestations such as arthritis [6, 7]. The 
current dominant (but yet to be proved) understand-
ing, is that progression to chronic RHD occurs through 
a pathway that includes repeated episodes of subclinical 
ARF in genetically susceptible individuals and interac-
tions between host genes, GAS infections and social con-
ditions of poverty [8].

RHD demonstrates a wide spectrum of symptoms 
and signs, with no single available confirmatory labora-
tory test; this adds to the difficulty in the diagnosis and 
treatment of early RHD cases [9]. Current diagnostic 
measures for ARF rely on the 2015 revised Jones criteria 
[10] incorporating echocardiography images of the heart 
valves [11]; however, the availability of echocardiography 
is highly limited in poorer countries. A striking mismatch 
between high prevalences of RHD and low prevalences 
of previously diagnosed ARF in developing countries has 
been observed [12, 13] indicating that a significant pro-
portion of ARF cases are undetected, or undetectable 
with current tools, and there is a missed opportunity to 

identity and intervene in, those at risk for progression to 
severe RHD [10, 14]. Given the human and financial cost 
of this inability to recognize the disease until late in its 
course, a better understanding of the biological under-
pinnings of ARF and subsequent progression may pre-
sent important targets for prevention and treatment. This 
study sought to complement our recent GWAS study 
confirming an association between RHD and genetic 
susceptibility loci in African individuals [15] through 
the identification of a plasma protein signature of RHD 
that may aid biological understanding of the processes 
involved, and potentially point towards economically 
feasible interventions to prevent severe RHD in poorer 
countries based upon repurposing of readily available 
and inexpensive medicines.

Mass spectrometry of clinical specimens using the 
SWATH-MS technique implements a Data-Independent 
Acquisition (DIA) approach for precision identification 
and accurate quantification of proteins [16]. Briefly, the 
approach begins with the generation of precursor frag-
ments coupled with further sequentially fragmented win-
dows across the entire mass to charge ratio range. These 
mass spectra chromatograms are compared to a spectral 
library with a spectral scoring strategy employed as an in-
silico, label-free protein quantification method. SWATH-
MS data have been successfully subjected to various 
informatics techniques, including machine learning (ML) 
algorithms, to identify and characterize the differentially 
expressed proteins from the resultant digitized SWATH 
maps [17]. Here we identify candidate protein biomark-
ers for ARF and RHD, by applying ML methodology to 
proteomic data acquired using SWATH-MS, in severe 
cases of RHD and controls recruited from peri-urban set-
tings across Africa.

Materials and methods
Study design
Two-hundred and fifteen patients with severe RHD, and 
230 healthy controls, of various ethnicities recruited in 
peri-urban settings across the African continent, were 
included in this study. A breakdown of the contribut-
ing countries and sites is shown in Additional file  1: 
Table S1. There was no age restriction of the cases, and 
the controls were ethnically matched individuals with no 

Conclusions:  These results support the presence of an ongoing inflammatory response in RHD, at a time when 
severe valve disease has developed, and distant from previous episodes of acute rheumatic fever. This biomarker sig‑
nature could have potential utility in recognizing different degrees of ongoing inflammation in RHD patients, which 
may, in turn, be related to prognostic severity.

Keywords:  Rheumatic heart disease, Biomarker, Inflammatory response, Adiponectin, Complement component C7, 
Fibulin-1
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echocardiographic evidence of RHD and who were older 
than 15  years of age. Case severity was determined by 
an experienced clinician, who assessed each heart valve 
lesion referring to echocardiographic images, and catego-
rised valve disease for severity according to the Gewitz/
ACC criteria [10]. Informed consent was provided by 
each participant before inclusion into the study. After the 
consent process, 5  ml of blood were obtained through 
standard procedures by a trained on-site nurse and 
transported for processing to the Cardiovascular Genet-
ics laboratory at the University of Cape Town. Briefly, 
blood tubes were centrifuged at 3000  rpm for 10  min 
and plasma aliquoted into vials for storage at −80  °C. 
The plasma samples of cases and controls were then sub-
jected to SWATH-MS at the Stoller Biomarker Discovery 
Centre, University of Manchester.

SWATH‑MS proteomics
Samples were quality-checked, assigned a unique ID and 
cases and controls were randomized and prepared for 
mass spectrometry by tryptic hydrolysis after immunoaf-
finity depletion of the 12 major proteins found in plasma. 
To counteract batch effects following machine cleaning, 
we repeatedly tested plasma from pooled samples or a 
commercial standard until the Total Ion Current (TIC) 
Chromatogram stabilised, before running patient sam-
ples. Digitized proteomic maps were generated through 
SWATH-MS analysis performed on a 6600 TripleTOF 
mass spectrometer (Sciex, Warrington, UK) coupled to a 
Dionex Ultimate 3000 HPLC (Dionex, Thermo, UK), with 
specific mass spectrometric conditions (including isola-
tion window size and overlap and total cycle time) as pre-
viously described [18].

Spectral libraries were generated by TransProt-
eomic Pipeline (version 4.8.0) [19]. X!Tandem (version 
2015.04.01.1) [20] was used to interrogate the SWATH-
MS files generated from the samples. More specifically, 
the samples were pooled together to create a final set 
of 12 fractions and processed, generating 12 files that 
were searched against the appropriate database with 
X!Tandem. These files were further processed with the 
TransProteomic Pipeline, containing xinteract, Inter-
PropherParser and spectrast, to generate the spectral 
library. SWATH maps were generated by OpenMS (ver-
sion 2.0.1) [21] and MSproteomicstools (version 0.4.3). 
pyProphet (version 0.18.3) was used for the False Dis-
covery Rate (FDR) calculations of the resulting transition 
groups. Feature alignment tools were used to align mul-
tiple pyProphet files with the corrected retention times 
and FDR scores. As the aligned SWATH maps contain 
transition-level information, MSstats() function from the 
R package MSstats [22] (version 3.13.5) was used to infer 
protein-level quantification. Parameters chosen were 

“top3” option for parameter “featureSubset” and normali-
sation with Tukey-Median Polish (TMP). Coefficient of 
variance (CV) analysis between technical injection repli-
cates was performed on the resulting MSstats-processed 
data, with samples allowed to go forward to downstream 
analysis if the median and 75% quantiles were 20% and 
30% maximum, respectively. Proteins present in at least 
40% of the samples were retained in the following bio-
marker analysis [23]. The 12 purposely physically immu-
nodepleted proteins were removed in silico prior to 
statistical analysis.

Statistical analysis
Proteomic data was log2 transformed to stabilize the vari-
ance and reduce heteroscedasticity. Baseline phenotypic 
characteristics were compared between case and con-
trol groups using Mann–Whitney U tests for continuous 
variables and Chi-squared tests for proportions. As some 
cases were taking Warfarin, we removed proteins known 
to be Vitamin-K dependent. Relationships between med-
ications prevalent among cases (chiefly Warfarin and 
penicillin) and individual proteins were explored using 
Student’s t-tests. Pearson correlation coefficients of pro-
tein expression with BMI and age were calculated among 
case and control samples, and we tested for interaction 
between case/control status and sex in expression of each 
protein. An unadjusted bivariate comparison of all pro-
teins between cases and controls was carried out using 
Student’s t-tests applied to log2 proteomics data; p-values 
from this analysis were corrected for multiple compari-
sons using the Bonferroni method.

Feature selection was undertaken using the Boruta 
algorithm [24], which implements a random forest (RF) 
procedure comparing each candidate feature’s perfor-
mance in a classification model with respect to that of 
a randomly created ‘shadow’ feature. Boruta has wide 
application in feature selection [25, 26] and has recently 
been applied to SWATH-MS data [27]. Boruta has been 
shown to be effective in permutation based feature selec-
tion [28]. The Boruta algorithm also has the merit of 
incorporating data from all collinearly associated pro-
teins instead of randomly selecting one among them, as 
some other algorithms do. Log2 transformed proteomics 
data were randomly split into training and testing sets 
in a ratio of 7:3. The Boruta R package (version 7.0.0), 
was deployed with the parameter ntree, which defines 
the number of trees to grow, set to 500 and the param-
eter maxRuns, which specifies maximum runs the algo-
rithm will iterate, set to 4000; these settings were chosen 
through an initial training of the model on a subset of the 
data.

In order to test the robustness of biomarkers detected 
by Boruta algorithm, the LASSO (Least Absolute 
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Shrinkage and Selection Operator) logistic regression 
method was applied to the same training and testing 
datasets as used for Boruta algorithm. glmnet() function 
from R package glmnet (version 4.1–2) was used to carry 
out LASSO regression.

The glm() function in R was used to implement a logis-
tic regression (LR) model to yield adjusted betas and 
per-marker AUCs for each log2 scaled proteomic feature 
that had emerged as significant from the Boruta analysis. 
BMI, age and sex were included in the model, as was a 
BMI*age interaction term. Twenty-three patients with 
missing BMI information (including 8 controls and 15 
cases) were removed from these analyses. The cumula-
tive AUC for the addition of each biomarker, in order of 
its Boruta importance, was calculated using the Cstat() 
function from the DescTools package.

Enrichment testing using the list of proteins identified 
by the Boruta algorithm was performed using ClueGo 
(version 2.5.7), a plug-in application in Cytoscape (ver-
sion 3.8.2). The following databases were used: GO Bio-
logical Process; GO Molecular Functions; GO Immune 
System Process; KEGG; Reactome Pathways; Wiki Path-
ways. Following the approach used by others in similar 
analyses of plasma samples [29], we used the SWATH 
plasma reference library of 2,559 proteins as background 
in our principal analyses (analyses using the whole 
genome as background are presented in Additional file 1: 
Data). Only pathways with p-value < 0.05 (calculated 
using a two-sided hypergeometric test and Bonferroni 
step down correction) and a minimum of two proteins 
per pathway were considered.

Results
Demographic information
Among 445 participants in the study, there were 215 cases 
of severe RHD and 230 controls. Demographic baseline 
data are shown in Table 1. RHD is typically a disease of 

young people and as age-matching was not carried out in 
population collection, we found cases were significantly 
younger than controls (p = 0.014; Table  1). Sixty-four 
RHD patients were below the age of 18  years, whereas 
only 13 controls were below the age of 18 years old. Also, 
RHD cases had lower BMI than controls (p = 6.02e−12; 
Table  1). We therefore explored relationships between 
age, BMI and protein levels in the cohort prior to the 
case–control proteomic analyses. BMI and age in the 
cases were correlated with Pearson correlation coefficient 
r = 0.63, compared to r = 0.23 in control samples; the 
higher correlation in cases is mainly due to the presence 
of participants younger than 18 in the case cohort (Addi-
tional file 1: Fig. S1). Subsequent LR analyses were there-
fore adjusted for age, sex, BMI and age*BMI interaction. 
Regarding medication differences between cases and 
controls, 111 cases and zero controls in the study were 
receiving secondary prophylaxis for RHD, comprising 
regular benzathine penicillin G injections. Twenty-three 
cases and zero controls were identified as anticoagulated 
with warfarin. One case received both penicillin G injec-
tions and warfarin. Neither penicillin nor warfarin treat-
ment (after the removal of proteins known to be affected 
by warfarin) was a significant factor in explaining protein 
differences between cases and controls.

Proteomic baseline data
A total of 940 proteins were quantified in the blood 
samples and 366 proteins, present in at least 40% of 
the samples, were kept for downstream analysis (Addi-
tional file  1: Fig. S2). The principal reason for protein 
dropout was abundance level, rather than unacceptable 
levels of variation. Among these 366 proteins, no sig-
nificant differences of protein expression were observed 
between participants taking warfarin or penicillin, com-
pared to those not taking medication (pairwise t-test, 
adjusted p-value = 1). Correlation coefficients of protein 

Table 1  Baseline characteristics of included study participants. Data presented as median (IQR) or percentange (%). P-values obtained 
using the Mann-Whitney U test.

* 15 cases and 8 controls have BMI data missing. Missing data are removed from the statistical computation

Characteristics Cases (n = 215)* Controls (n = 230)* p-value

Age (years) 28 (16–41) 29 (23–41) 0.014

Gender, Male n (%) 63 (29.3%) 75 (32.6%) 0.45

BMI (kg/m2) 20.6 (16.3–24.7) 23.8 (20.8–29.2) 6.02e-12

BMI in participants ≥ 18yrs 23.0 (19.8–25.9) 23.9 (20.9–29.6) 0.005

NYHA Index I = 4; II = 150
III = 36; IV = 10

N/A N/A

Number of participants taking penicillin prophylaxis 111 0 N/A

Number of participants taking anticoagulation 23 0 N/A
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expression and BMI or age were in general weak, and 
not systematically different between cases and controls 
(Additional file  1: Fig. S3). No protein showed signifi-
cantly different expression in males than in females, and 
there were no significant interactions between case/
control status and sex in protein expression (Additional 
file 1: Fig. S4).

Boruta machine learning analyses
Fold change analyses showed a total of 84 proteins that 
exhibited significant differences between cases and con-
trols with adjusted p-values < 0.05 (Additional file  1: 
Table S2). Using the Boruta algorithm, 56 features were 
identified as important; these are presented in order 
of their Boruta importance in Table  2. Figure  1a shows 
the boxplots of the permutation importance of the 56 
proteins in order with an emphasis on the top six pro-
teins. Adiponectin (Q15848) and complement factor 
C7 (P10643) are the strongest differentially expressed 
proteins in this analysis, followed by quiescin sulfhydryl 
oxidase 1 (O00391), insulin-like growth factor binding 
protein acid labile subunit (P35858), pregnancy zone pro-
tein (P20742) and glycosylphosphatidylinositol specific 
phospholipase D1 (P80108). Twenty-four of the proteins 
identified by the Boruta algorithm were also identified by 
LASSO regression (Additional file 1: Table S3). However, 
the Boruta algorithm identified some important addi-
tional biomarkers, for example, quiescin sulfhydryl oxi-
dase 1 (O00391), a known marker of cardiac disease, that 
LASSO regression did not detect.

Logistic regression
Results of the marker-by-marker logistic regression anal-
yses adjusted for age, sex, BMI and age*BMI, for each of 
the 56 proteins identified by the Boruta algorithm, are 
presented in Table  2. The top marker from the Boruta 
analyses, Adiponectin, was higher in cases than controls, 
exhibiting an  OR for disease per unit increase on the 
log2 scale (ie per doubling) of 1.18 [95% CI 1.13–1.24]; 
p = 2.00e−12. The second placed marker by the Boruta 
algorithm, complement component C7, had the high-
est absolute case–control difference of any biomarker 
in the LR model, with OR = 3.40 [95% CI 2.41–4.93]; 
p = 2.14e−11. Among other significant markers, Fibu-
lin-1, a known component of cardiac valve matrix, was 
higher in cases than controls, potentially indicating 
ongoing significant valve damage in these chronic RHD 
patients (OR = 1.96; [95% CI 1.46–2.68]; p = 1.44e−05). 
Also, in keeping with previous analyses [30], we found 
the complement-activating protein Ficolin-3 to be lower 
in cases than controls (OR = 0.60; [95% CI 0.47–0.76]; 
p = 2.65e−05). Ficolin-3 had a strong classification ability 
similar to Adiponectin and C7 with an individual AUC 

of 0.81. The cumulative AUC from the logistic regres-
sion analyses is shown in Fig.  1b. Incorporating the top 
6 biomarkers in the model yielded an AUC of over 90% 
and incorporating the top 12 biomarkers yielded an AUC 
of ~ 0.95 (Table  2). Thus, the use of SWATH-MS based 
discovery proteomics identified a candidate biomarker 
signature that accurately discriminates RHD patients 
from controls.

Pathway enrichment
Statistically significantly enriched pathways identified by 
ClueGo functional enrichment conducted on the Boruta-
identified proteins are presented in Additional file  1: 
Table S4. A functionally grouped network of pathways is 
shown in Fig. 2. Enriched pathways confirmed our infer-
ence from the individual protein analyses that the activity 
of protein networks involved in inflammatory mecha-
nisms were significantly different between cases and con-
trols. For example, proteins involved in the Insulin like 
Growth Factor (IGF) and IGF-binding protein (IGFBP) 
pathways were significantly enriched (FDR-adjusted 
p = 1.70e−04) which are of known importance in auto-
immunity [31]. Pathways of previously unsuspected 
relevance in RHD included serine-type endopeptidase 
inhibitors (FDR-adjusted p = 4.94e−05), including mem-
bers of the Serpin family involved in stabilization of the 
extracellular matrix and inhibiting clotting proteins; and 
lipoprotein metabolism (FDR-adjusted p = 1.30e−04). 
Subsidiary analyses using the whole genome as back-
ground produced results highly congruent with the 
plasma reference library analyses (Additional file  1: 
Table S5).

Discussion
In this study of geographically and ethnically diverse 
African patients with severe RHD and healthy controls, 
we identified a proteomic signature consistent with 
ongoing inflammation, during what has typically been 
considered a “burned out” phase of disease—when severe 
chronic valve disease is established.

Previous plasma proteomic studies of RHD have 
involved smaller numbers of patients than the present 
study: Mukherjee et  al. [32] studied six patients with 
rheumatic mitral stenosis and six controls; Gao et al. [33] 
studied 40 RHD patients and 40 controls; and Wu et al. 
[34] carried out the only previous study of compara-
ble size to the present investigation, involving 160 RHD 
patients and 160 healthy controls. There was minimal 
overlap between the proteins identified in those stud-
ies and the present investigation, which is the first to 
employ a machine learning approach to identify differen-
tially expressed proteins. Proteomic studies of rheumatic 
human valves replaced at surgery offer the potential to 
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Table 2  List of biomarkers identified from Boruta package with their log2-scaled mean expression in cases, controls, log2 fold change, 
mean permutation importance (meanImp); and with Odds Ratios (ORs), 95% Confidence Interval (CI), p-values and AUCs from single-
marker LR models adjusted for age, sex, BMI, and age*BMI

UniProt 
ID

ProteinName Mean of log2-scaled 
expression in cases

Mean of log2-scaled 
expression in controls

Log2-fold change meanImp OR with 95% CI P value AUC​

Q15848 ADIPOQ 11.21 10.08 1.14 13.67 1.18 [1.13–1.24] 2.00e−12 0.820

P10643 C7 16.72 16.00 0.72 11.76 3.40 [2.41–4.93] 2.14e−11 0.815

O00391 QSOX1 12.49 11.96 0.52 9.95 1.27 [1.12–1.47] 5.58e−04 0.774

P35858 IGFALS 15.40 15.99 − 0.60 9.20 0.34 [0.23–0.48] 2.16e−09 0.799

P20742 PZP 16.64 15.79 0.85 8.95 2.25 [1.73–3.00] 7.98e−09 0.794

P80108 GPLD1 12.63 13.30 − 0.67 8.45 0.40 [0.29–0.54] 2.94e−09 0.799

P23142 FBLN1 13.86 13.31 0.55 7.49 1.96 [1.46–2.68] 1.44e−05 0.792

P25311 AZGP1 16.57 17.07 -0.49 7.00 0.35 [0.24–0.49] 5.30e−09 0.794

P36955 SERPINF1 15.19 15.66 -0.47 6.66 0.33 [0.22–0.49] 6.07e−08 0.785

P06396 GSN 16.92 17.49 − 0.57 6.63 0.39 [0.28–0.54] 2.86e−08 0.787

P00450 CP 20.34 19.91 0.44 6.39 2.34 [1.67–3.35] 1.49e−06 0.781

Q99784 OLFM1 10.93 10.53 0.40 6.06 1.09 [1.05–1.14] 5.16e−05 0.770

P02743 APCS 16.32 16.92 − 0.60 6.04 0.36 [0.26–0.50] 1.19e−09 0.795

P02749 APOH 18.54 18.98 − 0.44 5.94 0.38 [0.26–0.54] 2.28e−07 0.784

P19320 VCAM1 10.77 10.19 0.58 5.95 1.09 [1.05–1.14] 4.17e−05 0.773

P61626 LYZ 12.45 12.00 0.46 5.78 1.09 [1.05–1.15] 1.50e−04 0.771

O75636 FCN3 14.02 14.82 − 0.81 5.60 0.60 [0.47–0.76] 2.65e−05 0.811

P30041 PRDX6 14.82 14.44 0.37 5.44 1.41 [1.14–1.99] 1.93e−02 0.770

P05546 SERPIND1 18.07 18.52 − 0.45 5.31 0.40 [0.29–0.55] 5.20e−08 0.787

P07333 CSF1R 11.08 10.59 0.49 5.26 1.08 [1.03–1.13] 2.99e−03 0.761

P51884 LUM 17.03 16.78 0.25 5.15 1.52 [1.12–2.08] 7.48e−03 0.757

Q06033 ITIH3 15.51 15.16 0.35 5.08 1.73 [1.27–2.39] 6.97e−04 0.768

P07237 P4HB 16.41 15.69 0.72 5.08 1.02 [0.99–1.05] 1.63e−01 0.743

P05090 APOD 17.00 17.48 − 0.48 4.90 0.49 [0.36–0.66] 2.84e−06 0.778

P02766 TTR​ 17.61 18.21 − 0.60 4.73 0.49 [0.37–0.64] 1.73e−07 0.784

P62701 RPS4X 12.94 13.36 − 0.41 4.61 0.96 [0.90–1.02] 1.53e−01 0.747

P02741 CRP 13.94 12.77 1.17 4.27 1.13 [1.08–1.19] 1.25e−06 0.793

P61769 B2M 12.01 11.53 0.48 4.25 1.06 [1.01–1.11] 1.17e−02 0.761

P11413 G6PD 18.30 17.83 0.47 4.25 1.01 [0.97–1.07] 5.83e−01 0.743

Q9UK55 SERPINA10 12.92 13.13 -0.22 4.13 0.63 [0.42–0.90] 2.60e−02 0.769

P02790 HPX 21.43 21.87 -0.43 4.07 0.31 [0.20–0.45] 1.30e−08 0.793

P29622 SERPINA4 15.16 15.55 − 0.39 4.08 0.44 [0.30–0.62] 4.65e−06 0.771

Q86VB7 CD163 11.00 10.66 0.34 3.97 1.06 [1.02–1.11] 8.43e−03 0.753

O95445 APOM 16.09 16.54 − 0.45 3.92 0.93 [0.85–1.00] 4.80e−02 0.751

P17948 FLT1 13.21 13.51 − 0.30 3.91 0.99 [0.96–1.02] 6.26e−01 0.743

Q9Y6U3 SCIN 15.26 15.83 − 0.57 3.80 0.35 [0.25–0.48] 3.02e−10 0.800

P35442 THBS2 12.24 11.83 0.42 3.63 1.06 [1.02–1.10] 2.83e−03 0.760

O75369 FLNB 18.95 18.23 0.72 3.64 1.03 [1.01–1.06] 2.12e−02 0.756

P02750 LRG1 17.10 16.72 0.39 3.39 1.63 [1.26–2.12] 2.72e−04 0.768

O14791 APOL1 13.31 13.73 − 0.42 3.36 0.46 [0.34–0.62] 4.13e−07 0.788

P06276 BCHE 13.58 14.07 − 0.48 3.35 0.50 [0.36–0.70] 5.44e−05 0.789

P04424 ASL 16.30 15.70 0.60 3.31 0.99 [0.97–1.02] 5.62e−01 0.743

P05186 ALPL 13.55 13.83 − 0.27 3.25 0.94 [0.91–0.98] 1.74e−03 0.757

P02654 APOC1 15.45 15.95 − 0.50 3.26 0.59 [0.46–0.76] 4.60e−05 0.774

O43707 ACTN4 18.53 18.14 0.39 3.24 1.07 [1.03–1.11] 7.18e−04 0.760

P27169 PON1 16.08 16.63 − 0.55 3.22 0.54 [0.40–0.72] 4.19e−05 0.790

P32119 PRDX2 12.60 12.75 − 0.14 3.14 0.95 [0.90–1.00] 3.03e−02 0.750
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Table 2  (continued)

UniProt 
ID

ProteinName Mean of log2-scaled 
expression in cases

Mean of log2-scaled 
expression in controls

Log2-fold change meanImp OR with 95% CI P value AUC​

P19827 ITIH1 18.66 19.01 − 0.34 3.16 0.45 [0.31–0.64] 1.49e−05 0.767

P03952 KLKB1 15.75 16.10 − 0.35 3.07 0.43 [0.30–0.62] 7.24e−06 0.782

O14980 XPO1 15.74 15.31 0.43 3.09 1.05 [1.00–1.11] 6.13e−02 0.753

Q6UX04 CWC27 14.37 14.74 − 0.38 3.04 0.96 [0.94–0.99] 1.44e−02 0.752

P02656 APOC3 15.32 15.93 − 0.61 2.96 0.71 [0.58–0.86] 5.84e−04 0.764

Q9H4G4 GLIPR2 12.70 12.28 0.42 2.93 1.01 [0.97–1.05] 7.13e−01 0.743

P19823 ITIH2 19.26 19.54 − 0.28 2.92 0.54 [0.37–0.76] 4.83e−04 0.760

P22307 SCP2 14.59 14.09 0.50 2.89 1.04 [1.00–1.07] 3.36e−02 0.752

P17936 IGFBP3 13.75 14.11 − 0.36 2.88 0.53 [0.37–0.73] 1.94e−04 0.763

Fig. 1  a Boxplot representing the permutation importance of the 56 proteins (from 215 cases; 230 controls) found to be significant by the Boruta 
algorithm. UniProt IDs are presented in Table 2. b Cumulative AUC for Boruta-identified biomarkers calculated from logistic regression analysis
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more directly interrogate pathological processes, how-
ever these have involved only small numbers of patients, 
due to limited availability of specimens for study (recently 
reviewed by Lumngwena et  al. [35]). Moreover, while 
such studies of valve tissue provide directly pathologi-
cally relevant information, they do not necessarily inform 
the basis for a potential field diagnostic. In the following, 
we discuss certain of the proteins that showed most sig-
nificant differences between cases and controls and their 
potential relevance to RHD.

Adiponectin was the top protein identified in the 
Boruta and logistic regression analyses. Plasma adi-
ponectin was a mean of 2.2 fold higher in cases than 
controls. Adiponectin has a complex relationship to 
inflammation, being currently thought to act as either 

an anti-inflammatory or a pro-inflammatory protein 
dependent on context [36]. In the context of diabetes, 
obesity and coronary artery disease, adiponectin is lower 
in cases than controls and inversely correlated with 
C-reactive protein (CRP) levels. By contrast, levels are 
higher in cases of rheumatoid arthritis, Systemic Lupus 
Erythematosus (SLE) and inflammatory bowel disease 
than controls. Thus elevation of adiponectin appears 
to be a specific autoimmune marker in the context of 
inflammation, in keeping with the disease process in 
RHD.

Complement factor 7 was the second most important 
protein in the Boruta and logistic regression analyses. 
Plasma C7 was a mean 1.6 fold higher in cases than con-
trols. Unlike some other complement components, C7 

Fig. 2  Functionally grouped networks of enriched pathways from ClueGO. For the full enrichment analysis results see Additional file 1: Table S4
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is not considered an acute phase reactant, and it is the 
only terminal complement component not predomi-
nantly synthesised by hepatocytes [37]. C7 is often the 
limiting factor for terminal complement complex gen-
eration, and has been found at higher levels in plasma 
of diabetic patients with kidney disease [38]. Thus far 
there is no evidence for plasma C7 levels being altered in 
rheumatoid or autoimmune diseases. The combination 
of Adiponectin and C7 elevation in cases compared with 
controls together is therefore, to the best of our knowl-
edge, unique to RHD among inflammatory diseases stud-
ied so far, and suggests their combination could have 
diagnostic utility.

Quiescin sulfhydryl oxidase 1 (QSOX1) was the third 
most important protein in the machine learning analy-
ses. QSOX1 was on average 43% higher in cases than in 
controls. When fully adjusted for age/sex/BMI/age*BMI 
in logistic regression analyses, it fell to 29th position 
among the identified proteins, but remained statisti-
cally significantly different between cases and controls 
(OR = 1.27 [95% CI 1.12–1.47]; p = 5.58e−04). QSOX1 
catalyses disulphide bond formation in fibroblasts, and 
supports ECM assembly in fibroblast cultures. It has 
been described as a marker of acute heart failure [39] 
and is higher in patients admitted with MI who later go 
on to develop LV dysfunction [40], in which situation 
it is thought to originate from the infarct border zone. 
QSOX1 has not previously been implicated in rheumatic 
or other heart valve disease.

Fibulin-1 is an extracellular matrix protein strongly 
expressed during development in the cardiac cush-
ions, from which the heart valves develop, and in adult 
valve tissue [41, 42]. Plasma fibulin-1 levels have been 
suggested to be an early plasma marker of aortic ste-
nosis [43]. Levels have been positively associated with 
N-terminal pro-BNP, and left atrial size [44], and fibulin 
is hypothesised to play a key role in determining aortic 
stiffness [45]. Our data showing a 46% higher mean value 
plasma fibulin-1 in RHD cases compared to controls, 
particularly when coupled with the pro-inflammatory 
signature constituted by other proteins, tends to support 
the notion of ongoing valve damage in late-stage RHD. 
However, this observation could also be consistent with 
left atrial size increase consequent upon mitral stenosis 
or regurgitation among a proportion of the cases.

We found Ficolin-3 levels to be about 43% lower in 
RHD cases than controls. Ficolin-3 is one of three fico-
lin proteins that bind to microbial surface residues, and 
play key roles together with the Mannose-binding lectin 
(MBL)-associated serine proteases 1 and 2 in the cleav-
age of complement components 4 and 2 to form the C3 
convertase C4b2a [46]. The lectin pathway, of which Fico-
lin-3 is the most abundant plasma component, has been 

implicated in RHD by multiple previous studies; Ficolin 
3 itself binds to the highly conserved N-acetyl-beta-D-
glucosamine (GlcNAc) antigen, the main carbohydrate 
antigen of the Group A Streptococcus cell wall. Recently, 
a focused ELISA based study of serum Ficolin-3 con-
centrations showed a 30% lower serum ficolin-3 among 
179 patients with a history of rheumatic fever com-
pared to 170 healthy controls, a result strongly in con-
cordance with our large-hypothesis experiment [30]; 
although a smaller recent study of Egyptian adolescents 
did not confirm this result [47]. It is possible that either 
consumption of Ficolin-3 by an ongoing inflammatory 
process, or a genetic predisposition to lower Ficolin-3 
levels resulting in a greater propensity for streptococcal 
sore throat to progress to acute rheumatic fever among 
cases, may explain the association we and others have 
shown between severe RHD and lower plasma Ficolin-3. 
Further research will be required to distinguish these 
possibilities.

Taken together, our results strongly suggest an ongo-
ing inflammatory process involving damage to the car-
diac valves among these cases of severe RHD, which to 
date has remained an unresolved question. Of note, over 
50% of the case population were treated with second-
ary penicillin prophylaxis, and we observed no differ-
ence in proteomic profile among those cases who were, 
and who were not, taking penicillin prophylaxis. This 
suggests that recent undiagnosed episodes of rheumatic 
fever would be an unlikely explanation for our observa-
tions. This is important in light of alternative plausible 
hypotheses for the drivers of progressive valve severity 
that are emerging. For example there is previous work 
showing that myocarditis remained in its active phase in 
patients with ARF, months after the disease ventured into 
the quiescent phase [48] suggesting that continuous valve 
damage may occur in a similar fashion in chronic RHD 
patients, with evidence of a continuum of inflammation 
due to the presence of high levels of CRP [49]. Elsewhere 
Karthikeyan and colleagues have suggested that a major 
driver of persistent inflammation and progression of 
valve disease may be related to the hemodynamic bur-
den and turbulence created by transvalvular pressure 
gradients across damaged valves [50]. Of interest, Rifaie 
et  al. reported that high concentrations of inflamma-
tory markers present in the sera of patients with chronic 
rheumatic valvular heart disease subsequently disap-
peared after administration of anti-inflammatory drugs 
[51]. Clinical observation tends to support the notion of 
ongoing valve damage distant from ARF episodes—for 
example, while pure mitral regurgitation dominates in 
the young, mixed valvular pathology is the most com-
mon finding in chronic RHD, indicating progression [52]. 
Our results suggest these clinical changes reflect ongoing 
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inflammation-driven valvular scarring and remodelling 
occurring in RHD, even distant from recurrent episodes 
of ARF.

Our analyses were able to distinguish a six-protein sig-
nature of severe RHD (ADIPOQ, C7, QSOX1, IGFALS, 
PZP, GPLD1) that correctly classified over 90% of cases; 
incorporation of the top 12 proteins enabled correct clas-
sification of over 95% of cases. Certain features of the 
signature appear, from the literature, to confer specific-
ity—the combination of high Adiponectin and high C7, 
higher levels of Fibulin-1, and lower levels of Ficolin-3 in 
cases. If ongoing inflammation were shown to have prog-
nostic importance in chronic RHD, the protein signature 
could be used to attempt to stratify RHD patients, and 
potentially identify opportunities for drug repurposing 
in future studies. A similar protein signature identifying 
ARF would be of even greater utility in low-resource set-
tings, where access to experts trained in clinical cardio-
vascular evaluation, and the use of echocardiography, is 
very limited. Similar studies to ours will be necessary in 
ARF patients and controls to investigate this question.

This study has limitations. Although it is the larg-
est study thus far, the only one to date to incorporate 
machine learning, and the first to use the SWATH-MS or 
proteomics methodology, replication of our findings in 
a second cohort of similar size would be of value. Incor-
poration of genetic information could enable a “Mende-
lian randomisation” approach to distinguish causal from 
non-causal association—this could be of particular value, 
for example, in the case of Ficolin-3 where lower levels 
could be due to either genetic predisposition or enhanced 
consumption by an ongoing inflammatory process. Such 
experiments would require larger samples. Adiponectin 
exists in three isoforms (trimer, hexamer and multimer) 
which are known to have differential properties in, for 
example, induction of chemokine expression in  vitro 
[53]. Our approach could not distinguish these differ-
ent isoforms, which would require alternative analytic 
platforms. It is therefore possible that we have underes-
timated the importance of a particular isoform of Adi-
ponectin. Some of the proteins we identified as among 
the strongest biomarkers do not, as yet, have plausible 
mechanisms linking them to RHD; further research will 
be required to discover these.

In summary, we have identified a plasma protein signa-
ture of rheumatic heart disease that suggests an ongoing 
inflammatory process in the chronic phase of the con-
dition. A small number of proteins considered together 
accurately classified chronic, severe RHD cases distinct 
from healthy controls. This work may could contribute 
to opportunities for drug repurposing, guide recommen-
dations for prophylaxis, and/or inform development of 
near-patient diagnostics.
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