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ABSTRACT

Epidemiology models are used to combine complex data from various

sources in order to study equally complex outcomes. The first simple

HIV/ AIDS epidemic model was by Anderson in 1986. Since then a lot has

been done in terms of mathematical models to help understand the trends

in the spread of the HIV/ AIDS pandemic. Researchers over the years

have concentrated on certain aspects of the disease at a time depending

on the area of interest of the researcher sometimes with conflicting results

partly because only some aspects of the disease were considered. No single

model incorporating social behaviour, treatment, vaccination, stages of

infection age structures and vertical transmission has been developed. In

this study a comprehensive deterministic HIV/ AIDS transmission model

incorporating all the above has been formulated using differential equa-

tions. Different parameter values have been simulated numerically and

the spread of the disease monitored against time to determine their ef-

fects on the HIV/ AIDS spread using the Wolfram Research Mathematica

Software. This study harmonizes the existing models into a single model

to study various aspects of the HIV/ AIDS Pandemic.
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Chapter 1

Introduction

1.1 Introduction to Mathematical Models

Mathematical models have become important tools in analyzing the spread

and control of infectious diseases. Computer simulations and mathemati-

cal models are useful experimental tools for building and testing theories,

assessing quantitative conjectures, determining sensitivities to changes in

parameter values and answering specific questions. They provide a broad

conceptual framework within which we can formulate sensible questions

and hopefully find meaningful answers.

HIV disease is characterized by a gradual deterioration of the immune

function of a human being. HIV causes AIDS by triggering events that

weaken a person's immune function. It has no cure and no vaccine as

yet. The magnitude and severity of the problem of HIV/ AIDS became

increasingly evident in the early 1990's with a prevalence rate of about

12 percent in Africa [37]. In some communities i.e in Uganda a whole

generation was wiped out [33]. Therefore the need to develop effective

1



strategies to prevent and control HIV infection became more urgent. The

trend changed in the late 1990's with most Afican countries recording

lower incidence rates and prevalence rates [34].

Mathematical modeling of HIV/ AIDS usually takes two broad ap-

proaches. The first approach involves modeling HIV/ AIDS transmission

from Infectives to susceptibles over some period of time. The second ap-

proach models HIV/ AIDS at the cellular or molecular level within an in-

fected individual. The basis for most National HIV projections is usually

a simple mathematical model often based on a single-stage (SS) model to

fit the observed prevalence patterns yet HIV dynamics are quite complex.

The infectiousness of HIV infected individuals is known to vary with stage

of infection, being highly infectious in the first few weeks after becoming

infected, then having low infectivity for many years, and finally becoming

gradually more infectious as the immune system of those infected with

HIV breaks down. The infection rates forthe first and third stages have

been documented to be several times higher than those for the second

stage. Models that account for such stages are called staged progression

(SP) models.

The first simple HIV Mathematical epidemic model goes back to An-

derson 1986 [1]. By then behaviour change was recognized as the major

way of combating the spread of HIV/ AIDS epidemic given that there

was no treatment or vaccine to the virus. This was later followed in the

1990's by Raw et al, [24]who modeled the effect of combination of anti-

retroviral treatments with different levels of unsafe sex on HIV incidence-

among homosexual men in Australia when effective Anti-retroviral first

became widely available. Recent models have involved aspects such as
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stage of infection, vertical transmission, age structure, social and sexual

mixing groups, treatment, vaccination etc.

In Kenya, HIV/ AIDS epidemic peaked in the 1997/98 with an overall

prevalence rate of 10 percent among adults but has halved in a decade - a

dramatic and sustained decline that has rarely been seen in Africa. The

most recent modeling of sentinel surveillance data from the websites of

The Kenya National Aids Control Council [20] indicates that prevalence

stood at 5.1 percent among adults at the end of 2006 compared with

10 percent in 1997/98. This turn-around can be attributed to greater

awareness and resulting behavior change as well as a lower incidence of

new infections and higher death rates. There is a strong evidence to

suggest that there has been a reduction in risky behavior such as through

increased condom use, delay in sexual debut and fewer partners [20].

These are indicators of a change in social behaviour due to counseling

leading to a reduction in the rate of infection. The number of those

receiving Antiretroviral treatment has also increased from 50,000 in 2005

to 600000 by 2008 [17]. Anti- retroviral therapy has the effect of increasing

the incubation period of HIV before developing AIDS meaning that the

infectives live for more years before they die which may lead to increases

in new infections if there is no change in social behaviour. Research has

shown that ARV's increases the lifespan of the infectives from 8 years to 15

years [13]. Treatment also has the effect of reducing the viral load among

the infectives which could reduce the probability of getting an infection

from a new sexual partner. Prevention of mother to child transmission

(PMCT) have reduced the risk of transmission of HIV infected mothers

to there babies by seventy percent [9].
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Mathematical modeling of HIV/ AIDS incorporating vaccination is not

difficult. This is because vaccination reduces the number of susceptibles in

the population thus reducing the number of new infections. The struggle

for a safe and effective vaccine has been on going for over twenty years but

still remains a difficult target, however recent studies done in Thailand

hinted that some vaccine for some strain of the virus has been found with

an efficacy level of 30 percent [4].

A lot of work has been done in.v0lvingHIV/ AIDS Mathematical mod-

eling with researchers over the years concentrating on certain aspects of

the disease one at a time depending on the areas of interest i.e counsel-

ing, treatment, circumcision, vaccination e.t.c. This study has developed

a comprehensive deterministic HIV/ AIDS transmission model incorporat-

ing counseling, treatment, vaccination, stages of infection, Age structures

and vertical transmission.

1.2 Statement of the problem

A lot of work has been done involving HIV/ AIDS mathematical model-

ing worldwide. Researchers over the years have concentrated on certain

aspects of the disease one at a time depending on the area of interest

i.e social behaviour, treatment, vaccination, stages of infection, circumci-

sion, age structures, vertical transmission, population size e.t.c sometimes

with parallel results partly because only some aspects of the disease are

considered. Some models incorporating counseling, anti-retroviral ther-

apy and vertical transmission assuming stages of infection have shown

that treatment that is not accompanied by a positive change in social be-
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haviour increases the number of both child and adult infectives in the pop-

ulation while other models incorporating stages of infection have shown

that treatment is very significant in controlling the spread of HIV/ AIDS

scourge.

The struggle for a safe and effective vaccine has also been on going

for many years but still remains elusive, however recent studies done in

Thailand hinted that some vaccine for some strain of the HIV/ AIDS virus

has been found with an efficacy level of 30 percent. This study matches

and harmonizes the existing models so that a single model can now be

used to study various aspects of the HIV/ AIDS Pandemic.

1.3 Objectives of the study

The aim of this study is to provide a comprehensive model incorporating

counseling, treatment, vaccination, stages of infection, age structures,

vertical transmission, and the population size.

The specific objective are as follows:

1. Determine wether a trade off exists between vaccination and treat-

ment.

2. Investigate the effectiveness of a vaccine with an efficacy level of 30

percent in combating the the HIV/ AIDS epidemic when treatment

is being applied

5

MASENO UNIVERSITY
S.G. S. LIBRARY



1.4 Research methodology

In this study, we have modeled HIV/ AIDS epidemic incorporating coun-

seling, treatment, vaccination, stages of infection, age structures and ver-

tical transmission using differential equations. A comprehensive model

harmonizing the existing models presented in the literature review has

been developed. The model is analyzed to determine the possible exis-

tence of equilibria and stability. Secondary data obtained from [20] and

[17], have been simulated numerically incorporating different values for

the parameters using the Wolfram Research Mathematica Software.

1.5 Significance of the study

This study harmonizes the existing models so that a single model can

now be used to study all or most aspects of the HIV/ AIDS Pandemic.

The study also shows the relationships of the variables and parameters

incorporated especially vaccination and treatment and hence predict the

effectiveness of a vaccine with an efficacy level of 30 percent.

1.6 Outline of the thesis

Chapter one gives background information on the genesis of mathematical

models.

Chapter two presents literature review of the researches that have been

done in developing epidemic models.
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Chapter three gives basic concepts in Mathematical epidemiology and the

comprehensive model formulated.

In chapter four, we analyze the stability of the disease free equilibrium

and calculate the basic reproduction number, Ro.

Chapter five and six presents numerical simulations of the model.

Chapter seven gives summery, recommendation and conclusion.
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Chapter 2

Literature Review

Some of the first epidemiology models go back to Bernoulli 1760 [5]. He

formulated and solved a mathematical model for smallpox in order to

evaluate the effectiveness of variolation of heathy people with the small-

pox virus. Although a model for small pox was formulated in 1760 by

Bernoulli, deterministic epidemiology modeling seems to have started in

the 20th century. In 1906 Hamer [14] formulated and analyzed a discrete

time model in his attempt to understand the recurrence of measles epi-

demics. His model may have been the first to assume that the incidence

(number of new cases per unit time) depends on the product of the den-

sities of the susceptibles and infectives. Starting in 1926, Kermack and

Mackendric [21] published papers on epidemic models and obtained the

epidemic threshold result that the density of susceptibles must exceed a

critical value in order for an epidemic outbreak to occur. The first sim-

ple HIV epidemic model was by Anderson 1986 [1]. Behaviour change

was recognized as the major way of combating the spread of HIV / AIDS

epidemic given that there wru;;no treatment or vaccine to the virus. He

showed that counseling is an effective method in the control of HIV / AIDS.
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After the discovery of Anti-retroviral treatment, modeling of HIV/ AIDS

was directed towards incorporating behaviour change an~ effects of treat-

ment. Incorporating treatment and social behaviour posed a challenge

to HIV/ AIDS mathematical modeling because treatment acts both in the

positive and negative direction. It reduces the infectiousness of an infected

individual reducing the probability of transmission from an infective to a

susceptible. On the contrary anti-retroviral therapies increases the lifes-

pan of the HIV infectives and as such they can infect more people if there

is no change in their social behaviour.

These directions included the models by Hernandez and Hsieh 1994

[35], who concluded that only significant reductions in the transmission

probability can contain the spread of the epidemic. Such reductions could

be through adoption of safer sexual practices or through reductions in

viral load due to treatment. A model by Yen and Cooke 2000 [38], on

behaviour change and treatment of core groups and its effects on the

spread of HIV/ AIDS showed that behaviour change and treatment can

eradicate the disease however if the treatment and behaviour change levels

do not reach critical values, detrimental effects could be realized resulting

from slower progresion to AIDS without sufficiently lower transmission

rates resulting in increased spread of HIV infection. Raw et al. 2001

[24],modeled the effect of combination of anti-retroviral treatments with

different levels of unsafe sex on HIV incidence in Australia when effective

anti-retroviral treatments first became widely available in Australia. The

results suggested that decreases in HIV incidences through large decreases

in infectiousness as a result of combination anti-retroviral treatment could

be counterbalanced by much more modest increases in the levels of unsafe
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sex.
,

Anti-retroviral treatment also reduces the risk of transmission of HIV

from HIV infected mothers to there unborn babies (Vertical transmission

or mother to child transmission) by over seventy percent [9]. Models in-

corporating vertical transmission have been developed by many scholars.

Among them were the models by Mugisha and Luboobi 2003 [25], who

modeled the effect of vertical transmission in the dynamics of HIV/ AIDS

in an age structured population.

Age structured population models for the dynamics of HIV/ AIDS are

of importance in understanding the actual impact the spread has on a
particular age group of interest .. Such models do give a clear clue as to

which age group should be concentrated on in terms of treatment, ed-

ucation and the kind of strategies 'for containing the spread. The most

vulnerable age group for HIV/ AIDS are those between 15 - 49 years [20j.

These age structured models have something in common: delay in sexual

maturity. This makes the formulation of the models have delay differential

equations. Delay differential equations tend to have analytical complica-

tions due to the nature of the formulations involved and as such obtaining

important population estimations becomes difficult.

Blynthe and Anderson 1988 [7], formulated age - structured models

to study the effect of sexual activity levels in a continuous age structured

population. Anderson et al 1991 [1] developed age structured models to

study the role of sexual contact and proportionate mixing in a population

of HIV/ AIDS. Mugisha and, Luboobi 2003 [25], derived a deterministic

age-structured model in a two age-groups population with a constant
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lIIV prevalence rate and a variable prevalence rate (Force of infection to

behave as a mass action).

HIV / AIDS models have been formulated to incorporate vaccination

though a vaccine does not exist as yet, however recent studies done in

Thailand hinted that some vaccine for some strain of the HIV virus has

been discovered with an efficacy level of 30 percent. [4].

Wells 1998 [36], in his paper, "even imperfect vaccines could be valu-

able" , suggested that vaccines against the AIDS causing virus could save

money, extend lives and prevent deaths even if these vaccines are only

moderately effective in preventing or treating the infection. Mills et al.

2001 [6], studied the effects of the live attenuated HIV vaccines in pro-

tecting against wild-type strains and concluded that the vaccine may not

be completely safe because the attenuated strain could cause AIDS in

some vaccinated individuals so there has to be a trade-off between effi-

cacy and safety, Odeny 2003 [28], incorporated the" all or nothing" type

of HIV vaccine in Kenya that covers a fraction of the vaccinated com-

pletely. Truphosa 2005, [31] modeled HIV AIDS in Kenya incorporating

the "leaky type" of vaccine that protects everyone vaccinated partially.

Kgosimore and Lungu 2006 [23], modeled the spread of HIV / AIDS in the

application of treatment and vaccination with different levels of vaccine

efficacy.
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Chapter 3

Model Formulation

3.1 Basic Concepts

This chapter introduces the basic mathematical concepts that are funda-

mental to the understanding of the entire thesis. Our main source for this

section was the book by Kgosimore and Lungu [23], although many other

sources were used.

3.1.1 Epidemiology Models

Epidemic models are used to describe rapid outbreaks that occur in less

than one year, while endemic models are used for studying diseases over

longer periods during which there is a renewal of susceptibles by births

or recovery from temporary immunity. The two classic (SIR) models

provides an intuitive basis for understanding more complex epidemiology

modeling results.
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3.1.2 Formulating Epidemiology Models

"-'
If 8(t) is the number of susceptibles at time t, I(t) is the number

of infectives at time t, R(t) is the number of the recovered at time t

and N(t) is the total population size, s(t) = ~W)and i(t) = ~W)' are
the susceptible and infectious fractions respectively. If {3,is the average

number of adequate contacts (i.e contacts sufficient for transmission) of a

person per unit time, then ~g?= {3i(t) is the average number of contacts

with infectives per unit time dueto the S(t) = N(t)s(t) susceptibles.

This form of horizontal incidence is called the standard incidence.

The Classic Epidemic Model

The classic epidemic model is the SIR model given by the initial value

problem

d8 -{3I8
-
dt N
dI {3IS -,I- =dt N
dR ,I- =dt

(3.1.1)

(3.1.2)

(3.1.3)

Where:" 8(0) > 0, J(O) > 0, R(O) > 0

S(t), I(t), and R(t) are the numbers in these classes so that 8(t) + I(t) +

R(t) = N. This model uses the standard incidence and has recovery at

rate, I, corresponding to an exponential waiting time e:r, Since the time

period is short, this model has no vital dynamics births and deaths. Since

R does not appear in the first two equations, the model can be reduced
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to two equations. Dividing the equations above by constant population
l

size N yields.

ds
dt
di
dt

-f3is (3.1.4)

(3.1.5)

The Classic Endemic Model

The endemic model is the SIR model with vital dynamics (births and

deaths) given by:

d8
dt
d1
dt
dR
dt

(3.1.6)

(3.1.7)

(3.1.8)

where: 8(0) > 0, 1(0) > 0, R(O) > 0

with S(t)+I(t)+R(t)= N. This SIR model is almost the same as the SIR

epidemic model above except that it has an inflow of newborns into the

susceptible class at rate J.LN and deaths at the rates J.L8, J.L1 and J.LR. The

deaths balance the births so that the population size N remains constant.

3.2 The Proposed Model

The population is divided int? two age groups. Group I comprises of the

sexually Immature children aged (0 - a) years and group II comprises

of sexually mature and active adults aged (a) years and beyond. It is
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group II that is responsible for the spread of the epidemic through sexual
\

activity and for the spread in children through infected mothers (Vertical

Transmission) .

3.2.1 Assumptions

1. The transmission of HIV from an infective to a susceptible is through

heterosexual mode and vertical transmission.

2. There is random mixing of individuals within the population.

3. AIDS cases which have full blown symptoms are easily noticeable

and are not sexually interacted with and as such, they don't trans-

mit the virus and do not give birth to new borns.

4. Individuals in group I comprise of sexually Immature children aged

(0 - a) years and therefore do not transmit the disease.

5. The removed class are sexually interacted with but are not infectious

and are immuned.

6. Treatment is done in the adult group only.

3.2.2 Parameters and Notations Used in the Model

Notations for the variables used in the model

• W(t) - denotes the number of susceptible children at time t .

• H(t) - The number of infected children at time t.

15
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"

• U(t) - The number of AIDS Cases at time t in group I.

• S(t) - The number of susceptible adults at time t. <--

• V(t) - The number of vaccinated adults at time t.

• R(t) - The number of removed adults covered by the vaccine at time

t.

• X(t) - The number of infective adults at time t.

• Z(t) - The number of infected adults who receive treatment at time
t.

• A(t) - The number of full blown AIDS Cases in group II at time t.

• P(t) - The total population size at time t.

The Parameters used in the model and how they are obtained

• m - The rate at which the HIV infected children progress to AIDS

in group I obtained from the average incubation period of HIV in

children

• d - The disease related death rate obtained from the number of

years it takes one who has shown full blown AIDS symptoms to die

of the disease

• p, - Natural death rate referring to the number of deaths in a year

per 1000 people, according to the Kenya demographics profile 2010

[30]
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• a - The proportion of susceptible adults assumed to be vaccinated

taken arbitrary.

• 6 - vaccine efficacy, assuming the "All or Nothing type of vaccine" .

Obtained by getting the product of the vaccine efficacy (assuming

the leaky vaccine) and the proportion of the susceptibles vaccinated.

It represents the proportion of the vaccinated completely covered by

the vaccine.

• E - Proportion of the infectives receiving treatment.

• T/ - The rate at which the infectives who do not receive treatment

progress to HIV/ AIDS calculated from the average incubation pe-

riod of HIV in adult infectives

• A - Rate at which those treated progress to AIDS. (both the normal

and vaccinated infectives) calculated from the average incubation

period of treated adult infectives

• b - The per capita birth rate calculated as a ratio of the average

live births per year to the general population size.

• g - Natural child mortality rate calculated as a ratio of the average

number of children below 15 years who die per year to the total

population below 15 years.

• v - Proportion of babies born with HIV from HIV infected mothers

obtained from [27].

• b1 -Per capita birth rate of the adults calculated as a ratio of the

average live births per year among the adults to the general popu-

lation size of the adults excluding AIDS cases

17



0178
• a - Years at which an individual becomes sexually mature.

I.

• {31 - is the per partnership transmission probability of a normal

infective who is not treated. Obtained from the prevalence of the

disease in a given area and their sexual behaviour patterns [3].

• {32 - is the per partnership transmission probability of an infective

who is treated and counseled [3].

• Cl - is the average number of ,new sexual partners acquired per unit

time by those infected but not yet counseled and treated.

• C2 - is the average number of new sexual partners acquired per unit

time by those treated and counseled.

• () - The proportion of the vaccinated protected by the vaccine as-

suming the "leaky type of vaccine" [4],

3.2.3 Age - Structures

Group I consists of children of age (0 - a) years which has three compart-

ments namely W(t) - the number of susceptible children at time t, H(t) -

the number of infected children at time t and U(t) - the number of AIDS

cases in children at time t. The differential equations for group I takes

18



the following form:-

dW(t)
dt = b1N(t) - gW(t) - b1v(X(t) + Z(t))

-e(-ga)b1N(t - a)
dH(t)

dt
dU(t)

dt

b1v(X(t) + Z(t)) - (g + m)H(t)

mH(t) - (d + g)U(t)

(3.2.1)

(3.2.2)

(3.2.3)

Group II consists of adults aged, (a) years and beyond. It has seven

compartments comprising of S(t) - the number of susceptible adults, V(t)

- the number of vaccinated adults, R(t) .- the number of removed adults,

X(t) - the number of infective adults, Z(t) - the number of infected adults

who receive treatment, A(t) - the number of full blown AIDS cases in

group II. The differential equations takes the following form:-

dS(t) (-ga)b N( _ ) _ (,81ClS(t)(X(t)) ,82C2S(t)(Z(t)))
dt e I t a N(t) + N(t)

-(J.L + a)S(t) (3.2.4)
dV(t) ( _ 8)S( ) _ (( _ 0) (,8ICI V(t)(X (t)) ,82c2V(t)(Z(t))) )=dt a . t 1 N(t) + N(t)

-J.LV(t) (3.2.5)
dR(t) oS(t) - J.LR(t) (3.2.6)dt
dX(t) (!hCIS(t)(X(t)) ,82C2S(t) (Z(t)) )= N(t) + N(t)dt ((1- ())(,8ICIV(t)(X(t))' ,82C2V(t)(Z(t)))) (3.2.7)+ N(t) + N(t)

-(J.L + E+ 1])X(t)
dZ(t) EX(t) - (J.L+ >..)Z(t) (3.2.8)dt
dA(t) 1]X(t) + >..Z(t) - (J.L+ d)A(t) (3.2.9)=dt
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With:

P(t) = N(t) + W(t) + H(t) + U(t) + A(t), N(t) = S(t) +. V(t) + R(t) +
<...-

X(t) + Z(t)

The population growth model is given by the following differential equa-

tion.

dP(t)
dt

(b1 - Jk)N(t) - g(W(t) + U(t) + H(t)) - Jk(A(t)) - d(U(t) + A(t))

With W(O) = iIP(O), H(O) = 0, U(O) = 0

P(O) being the the total population at the start of the epidemic and iI, is

the fraction of children (a) years and below at the start of the epidemic

where 0 < iI < 1.

S(O) = (1 - <Po)hP(O), X(O) = <PohP(O), A(O) = 0,

with ° < h < 1, being the fraction of the population that were adults at

the start of the epidermic. <Po,is the fraction of the adult population that

were HIV infective at the start of the epidemic with II + h = 1.

In chapter four we analyze the stability of the disease free equilibrium

points of equations 3.2.4, 3.2.5, 3.2.6, 3.2~7,3.2.8 and calculate the basic

reproduction number Ro.

20



Chapter 4

Analysis of the Disease Free

Equilibrium (D.F.E)

4.1 Introduction

We analyze the stability of the D.F.E in group II (adults) since it is

this group that is sexually active and responsible for the spread. We also

assume that the AIDS cases A(t) in the population can easily be identified

from the full blown symptoms and are not associated with sexually and as

such are not involved in the spread of the diseases though their projection

will be investigated numerically to identify the impact they have on the

population.

4.2 Proportional Variables

We use the proportions of the populations to enable us study the steady

states. This is based on the assumption that it is more likely for the

21



population proportions to attain the steady states than an individual

population class which perhaps may only happen when the carrying ca-

pacity is reached.

We set the proportions as follows: s(t) = ~~1),x(t) = ~~g,z(t) = ~~~~,

r(t) = ~Z~), /I(t) = ~~!).

Note: s(t) + v(t) + r(t) + x(t) + z(t) = 1

We set e-ga = p

. Set)Given N{t) = s(t) ==} S(t) = N(t)s(t),
Hence dS(t) = N(t) ds(t) + s(t) dN(t)

dt dt dt

d~;t) = pb1N(t - a) - /IN(t) - 'T/X(t) - ),Z[tj

The equations 3.2.4, 3.2.5, 3.2.6, 3.2.7, 3.2.8, with e-ga = p become

22



ds(t) pblN(t _ a) <..-

(4.2.1)= N(t) (1 - s(t)) - (!3ICIS(t)X(t) + !32C2S(t)Z(t))dt
-(p, + a)s(t) + p,s(t) + TJs(t)x(t) + AS(t)Z(t)

dv( t) (a - c5)s(t) - ((1 - ()) (!3ICIV(t)X(t) + !32C2V(t)Z(t))) (4.2.2)=dt
pblN(t - a)

-p,v(t) - N(t) v(t) + p,v(t) + TJx(t)v[tJ + AZ(t)V(t)

dr(t) pb1N(t - a)
. (4.2.3)dt 8s(t) - p,r(t) - N(t). r(t) +p,r(t)

+TJx(t)r(t) + Ar(t)z(t)
dx(t) (!3ICIX(t)S(t)) + !32C2S(t)Z(t)).dt

+ ((1 - ()) (!3ICIV(t)X(t) + !32C2V(t)Z(t))) (4.2.4)

pblN(t - a) 2
-(p, + E + TJ)x(t) - N(t) x(t) + p,x(t) + TJ(x(t)) + AX(t)Z(t)

dz(t) pblN(t - a)
(4.2.5)= EX(t) - (p, + A)Z(t) - N(t) z(t)dt

+p,z(t) + TJx(t)z(t) + A(Z(t))2 .

In a Disease free system, we have

N(t) = Noe(rt) ===? N(t) = N(t - a)e(ra)

with r = b - p,

We set wIN(t) = N(t - a),

where WI, denotes the weight given to the population size at time (a).

Again we let s*(t), v*(t), r*(t), x*(t), z*(t), be the equilibrium points. The
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equilibrium equations 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.2.5, become

o = pb1Wl(1- S*(t)) - (f31ClS*(t)X*(t) + f32C2S*(t)Z*(t)) "-' (4.2.6)

-(p, + a)s*(t) + p,s*(t) + 7]s*(t)x*(t) + AS* (t)z* (t)

o = (a - o)s*(t) - ((1- 8) (f31CIV*(t)X*[t] + f32C2V*(t)Z*(t))) (4.2.7)

-p,v*(t) - pb1WIV*(t) + p,v*(t) + 7]x*(t)v*(t) + AZ*(t)V*(t)

o os*(t) - p,r*(t) - pb1wlr*(t) + p,r*(t) + 7]x*(t)r*(t) (4.2.8)

+Ar*(t)z*(t)

o = (f31CIX*(t)S*(t)) + f32C2S*(t)Z*(t))

+ ((1 - 8) (f31CIV*(t)X*(t) + f32C2V*(t)Z*(t))) (4.2.9)

-(p, + E + 7])x*(t) - pb1wIX*(t) + p,x*(t) + 7](x*(t)? + AX*(t)Z*(t)

o EX*(t) - (p, + A)Z*(t) - pb1WIZ*(t) (4.2.10)

+p,z*(t) + 7]x*(t)z*(t) + A(Z*(t))2

4.3 Testing the Stability of the Steady state

solutions of the D.F.E

At the disease free equilibrium (D.F.E), we have

[s*(t), v*(t), r*(t), x*(t), z*(t)] = [1,0,0,0,0]'

We find the eigenvalues of the jacobian of the equations 4.2.6, 4.2.7,4.2.8,4.2.9, 4.2.10

by obtaining their partial derivatives with respect to each variable. The

corresponding matrix is therefore given by J.
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-pblwl - a 0 0 rt - {llCl A - {l2D2
\

(a - 6) -pblWl 0 00 0

Where J = 6 0 -pblWl 0 0

0 0 0 {llCl - pblWl - (E + rt) {l2C2

0 0 0 E -A - pblWl

Using the Wolfram Research Mathematica Software the eigenvalues

are given as:

Al = -pblWl

A2 -pblwl

A3 -pblWl - a
1 1

A4 = -( -2pblWl + Cl{ll - E - rt - A) - -0
2 2
1 1

A5 = -( -2pblWl + Cl{ll - E - rt - A) + -02 2

The disease free equilibrium (D.F.E) is locally asymptotically stable

when any of the following conditions are satisfied:

2. Cl{ll < (E + rt + A + 2pblWl) and 0 is not a real number.
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This means that if an infective is introduced in a host .population of
<.."

susceptibles, the infective will not invade the host population, i.e the

disease will die out.

4.4 Threshold Quantities

The Threshold for many epidemiology models is the basic reproduction

number Ro defined as the average number of secondary infections pro-

duced when one infected individual is introduced into a host population

where everyone is susceptible [24].

For many deterministic epidemiology models, an infection can get started

in a fully susceptible population if and only if Ro > 1. Thus the basic

Reproduction number Ro, is often considered as the threshold quantity

that determines when an infection can invade and persist in a new host

population. It is also called the Basic Reproduction Ratio or Basic Re-

production Rate. The contact number is defined as the average number of

adequate contacts of atypical infective during the infectious period. Ad-

equate contacts is one that is sufficient for transmission if the individual

contacted by the susceptible is an infective.

The reproduction number could be obtained by inspection if we have only

one infective class. If the number of infective classes are two or more, then

the technique due to Diekmann [12]1990, called the next generation ma-

trix is more appropriate. The technique has been studied by a number of

researchers among them Kgosimore and Lungu [23].
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4.4.1 The Next Generation Matrix

Define Xs, be the set of all disease free states, that is

Xs = {Xi ~ 0, i = 1,2, ..m}

In order to compute Ro, it is important to distinguish new infections from

all other changes in the population.

• Let Fi(x), be the rate of appearance of new infections in compart-

ments i.

• V/, be the rate of transfer of individuals into compartment i by all

other means.

• ~-, be the rate of transfer of individuals out of compartments i.

It is assumed that each function F; (x), ~+, ~-, is continuously differ-

entiable at least twice with respect to each variable.

The transmission Model consists of the non-negative initial conditions

together with the following systems of equations. .

(4.4.1)

Where Xi = fi(X) = Fi(x) - Vi(x), i = 1, 2 .. n, and Vi = v:- - Vi+·

If XO, is a (D.F.E), of 4.4.1 then the derivatives DF(xo), DV(xo), where

F and V are the m * m, matrices defined by.

F = 8FXQ and V = 8VxQ. '
OXi OXi

With 1 :s i :s m. F is non-negative and V is non-singular m - matrix. m is
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the number of the infective compartments. Following Diekmann (1990),
o

[21], we call FV-1, the next generation matrix for the model and Ro, is

set to be the spectral radius of FV-1. i.e Ro = p(FV-1).

4.4.2 Use of Proportional Populations

Applying this technique to our model we have two infected compartments

m = 2, in group II given below.

dx(t)
dt

(f31cix(t)s(t) + f32C2S(t)Z(t)) +- ((1 - 0) (f31CIV(t)X(t) + f32C2V(t)Z(t)))

-(E + TJ)x(t) - pb1WIX(t) + TJ(x(t)? + AX(t)Z(t) (4.4.2)

= EX(t) - (f.L+ A)Z(t) - pb1WIZ(t) +dz(t)
dt

f.Lz(t) + TJx(t)z(t) + A(Z(t))2 (4.4.3)

We obtain matrix F given by:

F= ( (thCIX(t)S(t) + p,c"s(t)z(t)) + ((1
0
- 0) (fl,C,V(t)X(t) + fl2C2V(t)Z(t))) )

and matrix V given by:

_ + ( (E + TJ)x(t) + pb1WIX(t) - TJ(X(t))2 - AX(t)Z(t) )

V = ~ - ~ = (A)Z(t) + pb1wIZ(t) - EX(t) - TJx(t)z(t) - A(Z(t))2

The (D.F.E), point of the system has coordinates

[s*(t), v*(t), r*(t), x*(t), z*(t)J = [1,0, 0, 0, OJ

The derivatives of matrices F and V at [1,0, 0, OJ,are given by:

28



o )

Using the Wolfram research mathematica software

o

The eigenvalues of Fl * ~-l are given as
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According to [2], [1], [7], [23], [8] and [12] if (Fl * VI-I) = Ro > 1,

the infection will invade and persist in a host population of susceptible's.

However, if Ro < 1, the infection will die out.

4.4.3 Use of Individual Populations

From the work of Kgosimore and Lungu [23],we have two infected com-

partments m = 2, in group II given below.

dX(t)
dt (

131 ClS( t)(X (t)) f32C2S( t) (Z( t)))
N(t) + N(t)

((1 _ B) (f31Cl V(t)(X(t)) f32C2V(t)(Z(t))))
+ N(t) + N(t)
-(It + e + 7])X(t) (4.4.8)

= EX(t) - (It + ),)Z(t) (4.4.9)
dZ(t)

dt

We obtain matrix F given by:

(

(
.alClS(t)(X(t» + .a2C2S(t)(Z(t») + ((1 _ e) (.ale} V(t)(X(t» + i32C2V(t)(Z(t»)) )

F= N(t) N(t) N(t) N(t)

o

and
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v = ~- _ v/= ( (E + T])X(t) + {LX(t) )
(A + {L)Z(t) - EX(t)

The (D.F.E), point of the system has coordinates

[S*(t), V*(t), R*(t), X*(t), Z*(t)] = [S*(t), 0, 0, 0, 0]

The derivatives of matricesF and V at (S*(t), 0, 0, 0), are given by:

In a disease free·system, S* (t) = N* (t), thus

) (4.4.10)

(4.4.11)

) (4.4.12)

Using the Wolfram research mathematica software

1
(JLH)
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(M)·
J.L+'>' ) (4.4.14)
o

The eigenvalues of Fi * V1-1 are given as

Al = 0
A - ( (31C1 + e{hc2 )

2 - (J.L+e+7J) (pbl Wl +e+7J) (J.L+'>')

Hence if Ro = (J.L~ec~7J) + (J.L+e~)(J.L+'>')) > 1
then the infection will invade and persist in a host population of suscepti-

bles. The disease remains endemic in the population. However, if Ro < 1,

then the infection will die out.
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Chapter 5

Numerical simulations of the

Model

5.1 Introduction

In order to illustrate some of the analytical results in this thesis, numerous

simulations of the full model were carried out using a set of parameter

values given in section 5.2. During the early stages of the disease, the

force of infection was estimated to be /31Cl= 0.6667 deduced from the

disease doubling time of 1.5 years [27], which gives the value of Ro > 1

according to our analytical results from section 4.4.1 and 4.4.2. Numer-

ical simulations confirms the same and shows that the disease remains

endemic in the population (section 5.3.1). Treatment and counseling that

reduces infectiousness when Ro < 1 eliminates the disease as indicated in

section 5.4. These simulations also shows that a trade-off exists between.'

vaccination and treatment (chapter 6).
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5.2 Initial parameter values from literature
\

review

We present numerical simulations of the model using the followingdefault

parameter values unless specified otherwise:

• b = 0.03664- The birth rate referring to the number of live births in

a year per 1000people. The value used is obtained from the Kenya '

demographics profile 2010 [301.The value of 0.04 used in section 5.2

is adjusted to ensure that the ratio of the adults and those under

15 years is at steady state.

• J.L = 0.00973 - Natural death rate referring to the number of deaths

in a year per 1000 people. Obtained from the Kenya demographics

profile 2010 [30].

• 9 = 0.015 - Natural under 15 child mortality rate estimated to be '

1.5 times higher than the natural death rate. Obtainedfrom[3]. The

estimation is done because the statistics for the under 15 mortality

rate is not available in Kenya.

• v = 0.3 - Proportion of babies born with HIV from HIV infected

mothers obtained from [27].

• m = 0.2 - The rate at which the HIV infected children progress to

AIDS in group 1. Calculated from the average incubation period of

HIV in children. Obtained from [31.

• d = 0.4 - The disease 'related death rate. Calculated from the num-

ber of years it takes one who has shown full blown AIDS symptoms
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to die of the disease. Obtained from [271.

• /31 = 0.019 - The probability of getting an infection from a new

sexual partner. Obtained from [31.

• Cl = 9.9 - The rate at which an individual acquires new sexual part-

ners per year. Calculated from the rate of new infections of 55000

per year obtained from the Kenya National Aids Control Council

Report of 2007 and the transmission probability of 0.019 above [31.

• i31C1 = 0.1881 - The force of infection of the infectives who are not

treated and counseled. The value used is obtained from [31 and the

Kenya National Aids Control Council Report of 2007. A force of

infection ofQ.666.7used in section 5.4.1 is.calculated from the disease

doubling time of 1.5 years experienced during the early stages of the

disease.

• 6 = 0.12 - Vaccine efficacy, assuming the" All or Nothing type of

vaccine". Obtained by getting the product of the vaccine efficacy

assuming the leaky vaccine and the proportion of the susceptible

vaccinated [41.

• e = 0.3 - The proportion of the vaccinated protected by the vaccine

assuming the "leaky type of vaccine". Obtained from [41

• 'fJ = 0.125 - The rate at which the normal irifectives who do not

receive treatment progress to AIDS. Calculated from the average

incubation period of HIV in adult infectives. Obtained from [31.

• /3zOJ = 0.03762 - The 'force of infection for those treated and coun-
seled. It is estimated that treatment reduces infectiousness by 50
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percent From AIDS science [91. The combined effects of treatment
l

and counseling (Condom use) is assumed to reduceInfectiousness

further.

• >. = 0.08 - Rate at which those treated progress to AIDS. Calcu-

lated from the average incubation period of HIV in treated adult

infectives. Obtained from AIDS science [111.

• E = 0.44 - The proportion of the infectives who receive treatment

obtained from [161.

• a = 0.4 - The proportion of the 'susceptibles assumed to be vacci-

. nated since no practical vaccine exist as yet.

• a = 15- Age at which one becomes sexually mature. Obtained from

[31·

• k = e-(b-I')*a - The weight given to the population size (a) years

ago, calculated from the values of J-L and (a) above.

• p = e(-g*a) - Is the proportion of uninfected children who survive

the developmental stage of (0 - a) years, calculated from the values

of (a) and (g) above.

The initial conditions are obtained from the Kenya demographics profile

2010 [301, the Kenya National Aids Control Council Report 2007 [201 and

the Kenyan population census report of 1999 - 2009 [101.
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5.3 P-opulation model

To develop a population model when the disease is not incorporated, we

set all the disease parameters to zero. We begin by presenting the' graph of

the population proportions with time to investigate wether our parameter

values gives us steady state solutions of the population proportions. We

need the steady state solutions as a background to study the effects of

HIV / AIDS on the stable states. Using the birth rate of 0.03664, the graph

of the population proportions appears as shown in figure 5.3.1

·"-adulls

y - population proportion.
x - time in years

0.50

0.45 children

150

Figure 5.3.1: Graph of Population proportions of adults and children.
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We observe that the stable solution either requires different initial

conditions or different birth and death rates. To obtain a c,onstant pop-

ulation proportion (stable solution) between adults and those under 15

years we adjust the birth rate to 0.04. The new graph is shown "infigure

5.3.2.

y adults
0.54••• ---------~---------

0.52 y - population proportion.
x - time (years)

0.50

0.48
children

50 100 150 00

Figure 5.3.2: Graph of Population proportions of adults and children. The

parameter for the birth rate (b) used is 0.04.
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5.3.3.

Using the birth rate of 0.04, the population model is shown in figure

1.6 x 108

y

1.4 X 108

1.2 X 108

1.0 X 108

8.0xl07

6.0xl07

y - population size.
x - time(years)

20 30 40 x 5010

Figure 5.3.3: Graph of population size against time. The population

growth rate in this case is 3.027 percent.
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At the current growth rate of 2.691 percent, [30J the Kenyan popu-

lation is expected to double in about 26 years assuming tpat the birth

and death rates remains constant. Running our simulations "tor 50 years

with the adjusted birth rate of 0.04 (growth rate of 3.027 percent), we

obtain a population size of about 160 million people as shown in figure

5.3.3. According to the HIV / AIDS Policy fact sheet of October 2009 [17J

and the Kenya demographics profile 2010 [13Jdeaths due to HIV / AIDS is

estimated to be about 150,000 per year (2003 estimate). Given that the

growth rate of 2.691 percent is inclusive of HIY / AIDS in the population;

the underlying growth rate of 3.027 percent is a reasonable estimate for

the population growth rate exclusive of HIV / AIDS which gives a doubling

time of about 23 years. We thus have a consistent population model from

which we can start our analysis.

5.4 Disease Incorporated

In this section we factor in the disease alone without any intervention into

the model and investigate its effects on the population size and structure.

5.4.1 Early stages of the disease.

During the early stages of HIV / AIDS pandemic, the force of infection was

estimated to be 0.6667 which was deduced from the disease doubling time

of 1.5 years obtained from [27J. Using this force of infection of 0.6667 and

the 2009 Kenyan population size obtained from the Kenyan population
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census report of 1999 - 2009, the simulations for the population size in 50

years would appear as in figure 5.4.1.
<...-

4.4 x lO7

y
4.2x 107 y - population size.

x - time(years).
4.0x lO7

3.8 X 107

3.6x 107

3.4xl07

3.2x 107

10 20 30 40 x 50

Figure 5.4.1: Graph of Population size against time with the force of

infection {JICI = 0.6667. In this case Ro = 4.~4842
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We observe that the population begins to decline after about 12 years.

This reflects the scenarios witnessed in the 1990's in Uganda.Bouth Africa

and other African countries where the scourge of HIV/ AIDS wiped out

almost a whole generation in some communities.

The population proportion for adults would reduce from 56 percent

to about 24 percent and for those below 15 years would increase from 44

percent to 76 percent in 50 years time as shown in figure 5.4.2.

0.8

Y
0.7

0.5

children

0.6
y - population proportion.
x - time(years).

0.4
adults

60 80 x 100

Figure 5.4.2: Graph of the Population proportions against time. R; =

4.94842

The graph of the population proportions for the susceptible adults,

susceptible under 15, and the infectives would also appear as shown in

figure 5.4.3.
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~ susceptiblechildren.

y - population proportion.
x - time(years).

infective

susceptible adults.

80 x 100

Figure 5.4.3: Graph of the Population proportions of susceptible adults,

susceptible children and infective. In.this case Ra = 4.94842.

We notice that the prevalence of the disease would increase from 5

percent to about 46 percent in less than 15 years then stabilize at 28

percent in 50 years time with the proportion of the susceptible adults in

the population reducing from 52 percent to below 5 percent in less than 15

years. The steady states of the population proportions are attained in 50

years time. The model suggests that in 10 years time, the proportion of

the HIV/ AIDS victims in the population will be equal to the proportion

of the susceptible under 15 years with the susceptible adults almost wiped

out in the population. This reflects the scenarios that transpired in the

early stages of the disease in some African countries however, everything

changed thereafter.
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5.4.2 Current Stage of the Disease.

Current Force of Infection.

Using the current force of infection which is estimated to be 0.1881 with-

out other interventions the population growth curve appears as shown in

figure 5.4.4.

y - Population.
x - Time(years).

10 20 30 40

Figure 5.4.4: Graph of Population size against time with the force of

infection {31Cl = 0.1881. Ra = 1.39613.

If there is no intervention at the current estimated force of infection

of 0.1881, the increase in the population size would be about 48 million

people less than it could have been in the absence of the disease in 50

years. (figure 5.3.3. and 5.4.4.)

According to this model, the prevalence (The fraction of the popula-
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tion infected) of the disease would increase from 5 percent and stabilize

at 12 percent as shown in figure 5.4.5.

0.10

0.1
Y

y -Prevaleece,
x-Time(ycars).

100 I" x 200

Figure 5.4.5: Graph of the Prevalence. against time. Ro = 1.39613.

The population proportions for the adults changes dramatically from

56 percent to about 43 percent and for those who are 15 years and below

from 44 percent to 57 percent as sho'wn in figure 5.4.6.
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y

"--'0.55 Children

y - Population proportion.
x - time(years)

0.50

Adults0.45
50 150 x 200

Figure 5.4.6: Graph of the Population proportions against time. R;

1.39613.

This model suggests that even with the current reduced rates of in-

fection the adult population would reduce to much lower levels compared

with the children's population in the next one hundred years which would

lead to more dependants than the work force.

The graph of the population proportions for the susceptible adults,

susceptible under 15, and the infectives is shown in figure 5.4.7.
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0.6

Y

0.5 Susceptible children
"-'

0.4 Susceptible adults.

0.3 y - Population proportion.
x - time (years).

0.2 IInfective.

50 100 l50 x 200

Figure 5.4.7: Graph of the Population proportions of susceptible adults,

children and infective. R; = 1.39613.

5.5 Treatment Incorporated

Treatment of adult infectives with no behavioral change and no

change in infectiousness

We investigate the effects of treatment which does not reduce infectious-

ness or which is counterbalanced by reckless sexual practices with no

counseling on those treated. The population growth curve appears as

shown in figure 5.5.1.
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y - Population size.
x - time(years).

10 20 30 40 x 50

Figure 5.5.1: Graph of Population against time m years with i31Cl

0.1881, Ro = 1.93215 ..

According to this model, treatment that does not reduce infectiousness

dramatically changes the population size 8$ shown above. The increase

in the population size would be about 62 million people less than it could

have been in the absence of the disease and less than 14 million people in

the presence of the disease without treatment in 50 years, (Figure 5.3.3,

5.4.4 and 5.5.1).

The parameter E is the proportion of infectives who receive treatment.

Different parameter values for treatment are simulated and the results are

shown in figure 5.5.2.
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0.25
<:

Prevalence
€ = 0.44

0.20
€ = 0.1

0.15

€=o
0.10

-200 -100 100 200 300 400

time (years)0.00

Figure 5.5.2: Graph of the disease prevalence against time. When f. =
0, Ro = 1439613. When E = 0.1, Ro = 1.69441.When E = 0.44, Ro =

1.93215.

The increase in the disease prevalence level with treatment may be

due to the fact that treatment lengthens the lives of the infectives and

as such those who would have died of AIDS do become healthier and

continue to spread the disease if they are not counseled or the counseling

has no effect in changing there social behaviour.

The population proportions for adults and for those under 15 years is

shown in figure 5.5.3.
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0.60

y
Children

0.55

y - Population proportion.
x - time (years)

0.45

50
~ ~ ~x__ ~o

Figure 5.5.3: Graph of the Population proportions against time. In this

case, R; is calculated to be 1.93215.

The steady states of the population proportions changes drastically

from 56 percent to 38 percent for adults and from 43 percent to 62 percent

for those below 15 years after about 100 years.

The population proportions of those below 15 years, adults and HIV / AIDS

victims are shown in figure 5_5.4.
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Susceptible children

so 100 [SO 200

Figure 5.5.4: Graph of the population proportions against time, Ro

1.93215.

This model suggests that the proportion of HIV/ AIDS victims in the

population would be higher than the susceptible adults (figure 5.5.4).

Treatment of adult infectives with behavioral change and change

in infectiousness

This reflects the current state of HIV/ AIDS in Kenya where 44 percent

of HIV/ AIDS infectives receive treatment and counseling. According to

medical research done in the U.S.A [131 treatment alone reduces infec-

tiousness by 50 percent. In Kenya, no data exist to estimate by which

percentage treatment coupled with counseling (zero grazing,condom use

and circumcision) reduces infectiousness. We begin our simulations by

varying the effectiveness of counseling and treatment from 50 percent

(f32C2 "" 0.0905) to 80 percent(f32c2 "'" 0.03762). The simulations for the

population size is shown in figure 5.5.5.
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Population against time
J.6x108

Y
1.4 X 108

1.0 x 108

reduction of infectiousness by 80 0

y - Population size.
x - time (years)

6.0x107

10 20 30 40 x 50

Figure 5.5.5: Red line represents treatment and counseling where !hC2 =

0.03762. Black line represents treatment alone where i32C2 = 0.09405.

The application of treatment alone that reduces infectiousness by 50

percent would increase the population size by about 20 million people

less than it could have been in the absence of the disease and more than

28 million people in the presence of the disease without treatment in

50 years, however, when the treatment is coupled with counseling that

reduces infectiousness by 80 percent, then the increase in the population

size would be about 10 million people less than it could have been in the

absence of the disease and more than 38 million people in the presence of

the disease without treatment in 50 years. (figure 5.3.3, 5.4.4 and 5.5.5).

We observe here that the population size in 50 years time, assuming

treatment and counseling that reduces infectiousness by 80 percent is

equivalent to the expected population size of Kenya in the next 50 years

(150 million people) at the current growth rate of 2.691 percent. This is

clearly shown in figure 5.5.6 ..
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Population against time

1.4 X 108

Y

1.2 X 108

y - Populationsize,
x - time (years)

10 20 30 40 x 50

Figure 5.5.6: Population growth rate is 2.691 percent, {32C2

~ = 0.648258

0.03762

In this stage we simulate the prevalence of the disease with time in the

application of treatment alone that reduces infectiousness by 50 percent,

treatment coupled with counseling that further reduces infectiousness by

80 percent and treatment that does not reduce infectiousness as shown in

figure 5.5.7.
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prevalence against time
0.25

Y

0.20

0.10

E =0.44

0.15
y - prevalence.
x - time (years)

E = 0.1

E=O

Treatment that reduces infectiousnessby 50%
Treatment coupled with counseling

100 150 x 200

0.00

Figure 5:5.7:

According to this model as observed in 'figure 5.5,2, increasing the

proportion of the infectives who receive treatment when that treatment

does not reduce infectiousness is disastrous, however when the treatment

reduces infectiousness, then it would be helpful (yellow line). Treatment

coupled with counseling that further reduces infectiousness is even much

better (blue line).

We again simulate the prevalence of the disease with time for i32C2 =

0,0905 (reducing infectiousness by 50 percent), i32C2 = 0.07524 (reducing

infectiousness by 60 percent), i32CZ = 0.03762 (reducing infectiousness by

80 percent) and i3zcz = 0,01881 (reducing infectiousness by 90 percent)

as shown in figure 5.5.8.

54



prevalence against time

Y
0.04

y - Prevalence
x - time (years).

0.03
2 C2 =0.05643. (lnf. reduced by 70 %.)

lnf. reduced by 80 %

0.02 reduced by 50 %)

0.01

50 100 150 200 250 x 300

Figure ..5.5.8:

We observe that at the estimated current force of infection of (31 C1 =
0.1881, coupled with treatment alone that reduces infectiousness by 50

percent, the disease will die out in about 200 years time (figure 5.5.8),

however if effective counseling that further reduces infectiousness by 80

percent is incorporated, the disease would die out in less than 70 years (fig-

ure 5.5.8). We thus conclude that counseling and treatment that reduces

infectiousness is very effective in controlling the spread of the disease.

Using the force of infection of (31C1 = '0.1881, coupled with treatment

and counseling that reduces infectiousness by 80 percent ((32.C2. = 0.03762),

the disease will always die out even with different initial conditions as

shown in figure 5.5.9.
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prevalence against time

0.8

y y - Prevalence.
x - time (years)

0.6

0.4

0.2

20 40 60 80 x 100

Figure 5_5_9: Ro = 0_648258_

The simulations for the population proportions assuming that treat-

ment reduces infectiousness by 50 percent for adults and for those under

15 years is shown in figure 5_5_10_

y - Population proportions.
x c rimefy ears ).

Adults.0.52

0.50

0.48 Children

50 100 150 200

Figure 5_5_10: Graph of the Population proportions of adults and children

against time.

It appears that the proportion of the adults in the population is declin-

ing while the population proportion of those under 15 years is increasing,

It is also important to note that after 200 years, the proportion of adults
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added together with the proportion of children equals to one implying

that the disease must have been eliminated.

The population proportions of those below 15 years, adults and HIVIAIDS

victims appears as shown in figure 5.5.11.

O.5.4------------III!!!!!~~A~d:ul;ts:_-------

0.4 Children y - Population proportions.
x - time (years)

0.3

0.2

0.1 Infectives

50 100 150 200

Figure 5.5.11: Graph of the population proportions of adults, children and

infectives against time.

Here we confirm that in the next 200 years the disease would be no

more.

The simulations for the population proportions assuming that treat-

ment coupled with counseling reduces infectiousness by 80 percent for

adults and for those under 15 years is shown in figure 5.5.12.
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0.54
y

0.52
Adults

y - Population proportions.
x - time (years)

0.50

0.48 Children

50 100 150 x 200

Figure 5.5.12: Graph of the Population proportions of adults and children

against time. Ro = 0.648258

Again it would appear here that the proportion of the adults in the

population is declining while the population proportion of those under 15

years is increasing then stabilize in the next 30 years when the disease

has been eliminated, however the graph of the the population proportions

of those below 15 years, adults and HIV/ AIDS victims reveals that the

proportion of the adults in the population is actually increasing but ap-

pears to be reducing because the infectives are being eliminated as shown

in figure 5.5.13.
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0.4 Children

y - Population proportions.
.x - time (years)
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Figure 5.5.13: Graph of the population proportions of adults, children and

infectives against time. Ru = 0.648258
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Chapter- 6

Speculative studies

This chapter is based on speculative studies in the event that an effective

HIV / AIDS vaccine is found which currently is not there though the search

for an effective HIV / AIDS vaccine has been on-going for over 20 years

with the latest findings in Thailand [4] indicating that some vaccine for

some strain of the HIV / AIDS virus .has been obtained with an efficacy

level of 30 percent. It is not known however that the vaccine acts as the

"Leaky type" or as the" All or Nothing type" or both.

6.1 Vaccination incorporated

In this section we assume that 40 percent of the susceptible are vaccinated

and the vaccine acts both as the" leaky" type and the" All or Nothing"

type of Vaccine. We also assume that one million susceptibles are vacci-

nated with 300,000 of them completely covered by the vaccine. We further

assume that the vaccine is 30 percent effective [41. We begin by investi-

gating the effects of treatment alone without vaccination then simulate

for vaccination alone without treatment in a single graph to. determine
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which of them would be more effective using the parameters in chapter

6 assuming that treatment alone reduces infectiousness by ~Opercent, i.e

{32C2 = 0.09405. The simulations are shown in figure 6.1.1. "-'

Prevalence against time
0.05

y

0.04

0.01

Treatment alone.

0.03
y - Prevalence.
x - time (years)

0.02
Vaccination alone.

50 100 150 200 250 x 300

Figure 6.1.1:

This model suggests that vaccination alone (Green line) without treat-

ment is more effective in controlling HIV spread using the vaccination and

treatment parameters above.

The graphs for the population size in separate application of treatment

and vaccination is shown in figure 6.1.2.
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8.0x 107

6.0x107

y - population size.
x - time (years)

Vaccination alone

10 20 30 40 x 50

Figure 6.1.2: Graph of population size against time

As was stated earlier (figure 5.5.5), the application of treatment alone

would increase the population size by about 20 million people less than

it could have been in the absence of the disease and more than 28 million

people in the presence of the disease without any other intervention in

50 years, whereas vaccination when applied alone, would increase the

population size by about 15 million people less than it could have been in

the absence of the disease and more than 33 million people in the presence

of the disease without any other intervention in 50 years, (figure 5.3.3,

5.4.4 and 6.1.2).
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6..2 The trade - off between vaccination and

treatment

In the second step we simulate vaccination alone, treatment alone and

a combination of the two within a single graph to determine wether a

trade off exists between vaccination and treatment. In this case we again

assume that treatment reduces infectiousness by 50 percent as shown in

figure 6.2.1.

Prevalence against time
0.05

0.03

y - prevalence.
x - time (years).y

0,04
Treatment alone.

Vaccination alone.

0.02 Treatment and vaccination

0.01

50 100 150 200 250 x 300

Figure 6.2.1:
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We note that a trade - off seems to exist between vaccination and

treatment using our parameter values for treatment and vaccination. We
.,

observe that vaccination alone (Green line) is still more eff~tive than a

combination of treatment and vaccination (Red line) implying that treat-

ment would be counter productive when applying vaccination.

6.3 ThresholdParameters

We set to numerically investigate the thresholds of the disease transmis-

sion rates beyond which treatment and vaccination is counterproductive

by incorporating counseling in treatment. We assume here that counsel-

ing and treatment reduces infectiousness by 70 percent i.e /32C2 = 0.05643.

The graph appears as shown in figure 6.3.1.
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Prevalence against time

0.05
y

x 200

Vaccination alone.

0.03

y - prevalence.
x - time (years)

0.04

0.02
~--i~ Treatment and vaccination

0.01

50 100 150

Figure ,6.3.1:

We observe that treatment and counseling that reduces infectiousness

by 70 percent coupled together with vaccination (Black line) is equiva-

lent to applying vaccination alone (Green line) thus Counseling coupled

with treatment that reduces infectiousness by less than 70 percent will be

counterproductive if applied together with vaccination whereas if infec-

tiousness is reduced by more than 70 percent as a result of treatment and

counseling then a combination of treatment,counseling and vaccination

would not be counterproductive using our parameters above.

Assuming that treatment coupled with counseling reduces infectious-

ness by 80 percent, we set to simulate the effects of the same in terms of

prevalence. The simulations for the prevalence appears as shown in figure

6.3.2.
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Prevalence against time
0.05 y - prevalence.

x - time (years).y

0.04-
alone.

0.03 Vaccination and treatment

0.02 Vaccination alone.

0.01

50 100 150 200 250 x 300

Figure 6.3.2:

It is important to note here that a combination of treatment, counsel-

ing and vaccination (Green line) would be more effective than each one

of them applied separately.
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Chapter 7

Summary Recommendat ion

and Conclusion

7.1 Summary

We formulated a comprehensive HIV/ AIDS transmission model incorpo-

rating counseling, treatment, vaccination, stages of infection, age struc-

tures, vertical transmission, and the population size with reference to the

Kenyan situation and according to this model, we observed the following:

• If there is no intervention even at the current reduced rates of

HIV/ AIDS infection, our model predicts that we might get a lower

proportion of adults in the population than those who are 15 years

and below which would mean that we have more dependants than

the workforce in the country,

• Treatment that does not reduce infectiousness is worse than when

the treatment is not applied at all, however when coupled with
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effective counseling, then it is very effective in combating the spread
'-'

of the disease and finally eliminating it.

• Our speculative studies for vaccination showed that careful con-

siderations should be made when a combination of vaccination and

treatment is to be applied because a combination of the two could be

counterproductive or helpful depending on how it is implemented.

7.2 Recommendation

HIV/ AIDS still remains a very serious problem in Kenya though a lot of

effort has been put to combat the spread of the disease through condom

use, male circumcision e.t.c., but more still needs to be done in terms of

awareness campaigns. It is also important to ensure that any treatment

applied reduces infectiousness. This is perhaps a possible area of research

in clinical health to identify possible ways of improving the effectiveness

of HIV/ AIDS drugs.

7.3 Conclusion

It should be stressed that mathematical models have become important

tools in analyzing the spread and control of infectious diseases and non

mathematicians should be able to appreciate the usefulness of these mod-

els, however deterministic Mathematical modeling is more useful in pre-

dicting trends of diseases usually over longer periods of time but might

not be very accurate in the short run because of changirigcircumstances.
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