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Abstract:

The transport of solutes through porous media where chemicals undergo adsorption or change process on the surface of the
porous materials has been a subject of research over years. Usage of pesticides has resulted in production of diverse quantity and
quality for the market and disposal of excess material has also become an acute problem. The concept of adsorption is essential in
determining the movement pattern of pesticides in soil in order to assess the effect of migrating chemical, from their disposal
sites, on the quality of ground water. Most studies made of movement of pesticides in the ground environment, the mathematical
models so far developed emphasis axial movement and in a few cases both axial and radial movements. Soil processes have a 3D
character; modeling therefore in principle, should employ three dimensions. It should also be noted that the appropriate number of
dimensions is closely related to the required accuracy of the research question. The 1D and 2D approaches are limited since they
are not capable of giving dependable regional influence of pesticides movement in the porous media and ground water. They give
us only theoretical results which are devoid of the reality in the field due to lumping of parameters. In this publication, three
dimensional formulas are developed so that it can enhance our capacity to analyze the realistic regional impact of adsorption of
pesticides in a porous media and the ground water in the field condition. The methodology will involve determining the
comprehensive dispersion equation accounting for 3D movement of solutes in the porous media and finding the solution of the
governing equation using Alternate Direction Implicit method (ADI) which is unconditionally stable for 3D equations of Douglas

and Gunn approach.
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1.INTRODUCTION

Convective-Dispersive equations have been solved using
implicit methods. This is due to their unconditional stability
but the challenges associated with the matrices have become a
concern and a limitation in obtaining solutions [1, 9]. Implicit
finite difference methods obtain the solution for the next step
from the state of both the current and the next steps, while
explicit methods obtain the solution from the current step only.
Implicit methods require computation per time step and can
implement long time step intervals without suffering numerical
instabilities. On the contrary explicit numerical methods suffer
from instabilities. Implicit numerical methods are stable in
one-dimension problems but they do not guarantee stability in
multidimensional problems. Inversion of matrices produced by
explicit numerical are easier to solve compared to those of
implicit numerical methods, but require smaller time interval
thus increasing computation time. In this paper we adopt ADI
method. In numerical analysis, the Alternating Direction
Implicit (ADI) method is a finite difference method for solving
parabolic and elliptic partial differential equations. The
advantage of the ADI method is that the equations that have to
be solved in each step have a simpler structure and can be
solved efficiently with the tridiagonal matrix algorithm., also
called Thomas Alogarithm, whis is user friendly [6]Douglas
and Gunn modified Crank and Nicolson Method developed a
general ADI scheme that is unconditionally stable and retains
second order accuracy when applied to 3D problems with
varied implicit and explicit steps. This method gives a
tridiagonal matrix algorithm (TDMA) which is a simplified
Gaussian elimination. [3] These details are essential in analysis
of many environmental studies related to irrigation and
drainage strategies(efficient water use), transport of nutrients
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and pesticides movements towards ground water and surface
water system (pollution), surface water management of
agricultural areas and natural areas (agronomic and ecological
interest). In this study, we derive a 3D convective dispersive
equation describing movement of pesticides in underground
porous media and solve the equation using an efficient
alternating direction implicit method by Peaceman and
Rachford [1], and Douglas and Gunn [3] developed from a
variation on the Crank Nicolson approximation. Advantages of
ADI method is that it prevents numerical problems
encountered by the fully implicit schemes and it shortens
computing time by a factor of 2 compared to the implicit
method and does not encounter numerical problems such as
negative distribution functions or crashes during matrix
inversion [6] that are seen in implicit methods.

2. DERIVATION OF CONVECTIVE-DISPERSIVE
SOLUTE TRANSPORT EQUATION WITH STEADY
STATE WATER FLOW CONDITION

For a control volume

ZMin :ZMout
oM

— -0
ot
Where, M is the mass of controlled volume=a constant
(Steady state) The speed of water in porous media is
determined by considering the,
Average pore water velocity v 4)=4
0

ie (=-  Is the flux density, and , _v, in which V,,is

v

s

the volume of water in the porous media and Vy is the volume
of solids,
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k-is the permeability

OH -the hydraulic head

Ol -distance travelled

In this study we use the concept of dispersion through a

cubically packed soil vessel with internal dimensions X, y, and
z to derive our equation.

iy

14,

L]

x=cl

14,

Figure 1
At very low flow rate, the dispersion is different in the three

directions. The dispersion coefficients are denoted by D , Dy
,and D, for x, y and z directions respectively.

D(A,v)=D,, +D,
where Dm(LZTfl) is molecular diffusion coefficient and

Dd (LZT _1) is the hydrodynamic dispersion and is the mixing
of spreading of the solute during transport due to differences in
velocities within the pores and between the pores.

The volumetric water content denoted by # can be assumed to
be void ratio for saturated soils. The element height is denoted
by Ol . The measurements are denoted by X, Y and z for x,

y and z-axis of the cube respectively. C is the concentration of
the material to be dispersed and is a function of axial position
X, radial positions y and z, time t and dispersion coefficients
D and D, radial and axial respectively.

The rate of entry of reference adsorption material due to flow
in axial direction,

q, (yoy)C +q, (zez)C

The corresponding efflux rate,
quay(C +aa—cl:alj + qxzaz(C + aa—cl:alj (1.2)

The net accumulation rate in element due to axial flow,

(1.1)

oC oC
— —0ol—q,z0z—al 1.3
0y Yoy a dy al (1.3)
Rate of diffusion in axial direction across inlet boundary,
oC oC
— D, — —z2026D, — 1.4
yoy b, a 3 (1.4)

Corresponding rate at outlet boundary,

ayeo{ac 0 Cal}— 70z HDFC 0 Cal} (1.5)

ol? ol al?
The net accumulation due to diffusion from boundaries in axial
direction is,
0°C 0°C

yoy @D, Wal + 206D, Wal (1.6)
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Diffusion at inlet y and z direction

oC oC

—z60zD, E—yé@yD ) .7

The corresponding rate at Y and z outlet is,
oC BC oc z‘;‘ZC (1-8)
S|y S Sl

The net accumulation rate due to diffusion from boundaries in
axial directions y and z

2
yoyeD, anz+zaz 8C

For a representative volume of soil, the total amount of a given

—zH@zD[

(1.9)

=2
chemical species X(ML ) is represented by the sum of the

amount retained by the soil. When the adsorption isotherm
obeys the Freundlich equation the Matrix and the amount
present in the soil,

X=p,S+C (1.10)

where, Py is bulky density and S is the solute adsorbed,
therefore,

&C is the solute in the solution

oX oS oC

Z=p —+0—= (111)

ot ot ot
Now the total accumulation rate,
axayaz%x = axayaz( % +0 aCj(l 12)

From equations 1.3, 1.6, 1.9, and 1.12, we have the following
combined equation,

oS o°C ac (1.13
é‘xayaz(p,,gﬁﬂ "tj v —q, wzax ( )
+ 2020 6D, ;—2+ yoyozD, ;—(Z:+ 2020y €D, (STC

For acube x=y=zand x — g =ox = oy = oz for cube

Therefore the above equation gives us,

oS oC o°C oC o’C o°C

Py o+ =2D,0°~ ~29, =+ D055 +D,0 (1.14)
at et oy oz’

x T ox
The presentation of the amount of solute adsorbate per unit
adsorbent as a function of the equilibrium concentration in
bulky solution at a constant temperature is termed as the
adsorption isotherm. One of the most popular adsorption
isotherm equations that is used for liquids was described as

S=KC.," (1.15)

where S = Xm’ is adsorbed solid and Ce is the solute

equilibrium constant.

S 85 oC  y,9C

— =———= e [(1.16)
ot oC ot ot

From equation (1.11) and (1.16) we get,

Where

N-1

NK . C
P ) (1.17)

RO =01+

Takingol =x, V(LT _1):% and oy =0z given that the

width of the element in question is equal, therefore,

2 2
()2 20,7 2, p 2C p 7C(116)
ot * ox? “x o Yoy oz
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Therefore equation (1.18) is our model equation.

2.2 Problem formulation by finite difference

For uniform porous media, the adsorption of solute is give by

our derive equation,

R(c)@ =2D, azf —2v, € .p
ot oX oX

d*C o*C

Tttt (118)

This equation is the second order equation quasilinear partial
differential equation. The first step is to establish a finite
difference method solution of the partial differential equation
is to discretize the continuous domain of its grids with finite
number of grid points. At time step n, the concentration of the
solute C(x,y, z,t) at grid point (i, j,k) can be placed by

+

C(iAX, jAy,kAz,nAt) which is denoted byC/';, . The

initial conditions for solving the model equations are;
The partial derivatives of C with respect to x, implies y, z and t
are kept constant and vice versa

@ijknzd—c\..

ox | T dx !
Ll jkn=25

8y L R dy i,jk,n
@ijknsd—c\..
oz dz MR

wms i jkn=2]

at 1 Jr dt I,j,k,n

The initial condition; the concentration of pesticides at
positions in the porous media at time zero is constant, and

equal to Ci,j,k’

ie. C(X,Y,2,0)= Cijxfor xy,z>0

Boundary conditions: -Two conditions are necessary; 1, in the
first case the concentration of pesticides at position x=0, y=0
and z=0 is specified for a period of time. Following that time,
the concentration at the surface is zero

C(0,00,t)=C,

For 0<t<t; and c(0,0,0,t) =0 for t>0
(Cn+1_Cn) Cn+1+Cn)

a,(cm+cn)

2. in the second case, the concentration of pesticides in the
solution entering the soil system at point x=0, y=0 and z=0, is
specified for a period of time. Following that time, the
concentration at the surface is zero

Assumptions;

e The pore water velocity is constant in time and space. This
condition can be met for a uniform medium if the flux
density of water velocity and volumetric water content are
constant for all positions all the time.

e The spread of solute is dominated by hydraulic dispersion
rather than diffusion

e The hydraulic dispersion can be approximated as a product
of dispersivity and pore water velocity

e The adsorption process is instantaneous and reversible. The
concentration of the pesticides adsorbed on the soil solid is
proportional to the concentration in the solution.

2.3 Alternate Direct Implicit Method (ADI)
The implicit method is also known as the Backward in Time
Central in Space (BTCS) scheme, and is unconditionally
stable. Although it has this great advantage, the drawback is
that a tridiagonal system must be solved for each time step.
Alternate Direct Implicit Method (ADI) is a Difference
Method for solving Parabolic and Partial difference equations.
In this study we will deal with two methods

o Crank &Nicolson Method,

. Douglas & Gunn Method

2.3.1 Crank and Nicolson Method

Implicit numerical methods are stable in one dimension
problem but do not guarantee stability in multidimensional.
Alternate Direct implicit (ADI) Method is a numerical method
developed by Crank and Nicolson and is unconditionally
stable, accurate and deal with time matching problems by
taking simple explicit and implicit methods. It prevents
numerical problems encountered by fully implicit schemes and
shortens computing times by a factor of 2. It also does not
encounter numerical problems such as negative distribution
function or crash during matrix inversion that are seen in other
implicit numerical methods. However its matrix is complicated
to solve. Crank and Nicolson [3] dealt with the time marching
problem by taking the average of simple explicit and implicit
methods. For our equation (1.18),

ai(cn+l+cn) az(cm-l_{_cn)

A
R(C) =2D, = —L—2v,
At 2(Ax)

)

N R

Rearranging the Crank Nicolson equation;

R(Ci,j,k/ At

( n+l _
i+1,j .k
—V +)

\(Cirj;i _Cir,]j,k) -D [(CiTLlj,k

n+l
i-1,j,k

B 2Cir,]}r,1k + Cin—;,lj,k) +D (Cirll,j,k - 2Cir?j,k + Cin—l,j,k)
(Ax)’ ’

(ax)y’

X 2AX
—2cM +CM

(C'n:%—l
D i, j+Lk
i ( 2ay)

) n n
_y i1k T ik
X 2AX

|,jl,k)}+ D ((Cir,]jﬂ,k _2Cir,‘j,k +Cirjj—1,k )]
y

2ay)

+D,

(A2

(e —2ci+ciin) o ((c:,-,M -2}, +c:,-,k.1>J (1.20)

(az)

The equation above gives us;

At At
where I, = r, = r =

R

At

=
Il

P

N
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7, m, =—,and i =12...... I-1, j=1l2....... J—1,and
(AZ) AX
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VXmX

_(2R¢;M)+Rﬁzzk]

n+1

n+l n+l

i-1,j,k HC_) i,j-Lk ﬂc_) i,j.k=1

D,r,

DZ rZ

@+2Dr

+ + c™
R( Ijk) R(Ci,j,k) R(Ci,j,k)] e

_ Dxr n+1 n+1 n+1

(R(Civjk ,Jk ] |+1jk_2RiC ) Ij+lk ZR(C ) Ijk+l
D.r, n n

_[R(Ci,j’k 2R , Jk JCI l]k R(C ) i, ] -1,k + ( ) i,jk-1

Z Z

—(1+ Dty _ D)%y —
RC, ;) 2RCMJ 2R(C,

n

. D,r, L

z rZ
2R(C,,

V. m

n Dxrx _ XX n
) )]Ci’j'k +(R(Ci,j,k) 2R(Ci,j,k )JCHL“(

Cli e (1.20)

TR=0[(At)?, (AX)?, (A)%, (A2)?

The matrix generated by Crank & Nicolson Method has the
best accuracy and unconditionally stable but its main
disadvantage is the matrix generated is expensive (or
Complicated) to solve.

Model Equation Solution

ADI Method

Peaceman and Rachford [1] and Douglas and Gunn[3]
developed a variation on the Crank & Nicolson approximation
which is known as ADI Method. Douglas & Gunn scheme is
more relevant for our calculation.

2.3.2 Douglas & Gunn Method

This numerical method is an alternative solution method which
instead of solving 3D problem solves a succession of three one
dimensional problems. The breakdown of the method is
explained diagrammatically as shown below.

STEP: X Implicit

Explicitin ¥, )
|
- wel
) C._,_:
Figure.2.
STEP: Y Implicit
Explicitin (x, z)

Figure.3.
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STEP3: Z Implicit

Explicitin (x, y)

Figure.4.

Douglas and Gunn [3] modified the Crank Nicolson method
and developed a general ADI scheme that is unconditionally
stable and retains second order accuracy when applied to 3D
problems. This approach exploits the understanding that
Implicit numerical methods are stable in one-dimension
problem but do not guarantee stability in multi-dimensional
problems. The incorporation of Thomas algorithm is based on
the fact that the inversions of matrices produced by explicit
numerical methods are easier to solve compared to those of
implicit numerical methods but require smaller time intervals
Based on Douglas and Gunn approach we rewrite our equation
as follows;

R(C Cn+1 _Cn):

Dxr{ai(c"*1 +c")—%(ax(c"*1 +c"))j

_|_D;ry6§( n+1+cn)+%a§( n+1+Cn)

(1.23)

Instead of directly solving the equation at time step n, we solve
the same equation at three sub-time steps;

Step 1:- R(C{CH%—C ] Dxrxéi(c sec ] XTm“ [c" s4C" ]
+D,r,0’C" +D,r,0°C" (1.24)

y'y-y
Step 2:- w? wl v (ol
R(C)[C tc"]:Dxrxai[c 3+C”J—%6X[C 3+c”]

Dr n+E
+—;ya§[c 3+C”]+Dzrﬁf( ”)
(1.25)
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Step 3:- 1 1
P RE)C™ -C")= Dxrxax[c"*hc"]f%ax[ "3 ]

D,r ni2
+—r ai(c : +C”J+—D;rz ocm+cn)

(1.26)
Expanding the equation in the steps above

Step 1
nt 1 1 1
R(Ci.l‘kxcinj,lk 7Ci".j‘k): Dxr{[c N ’ch ik +Cis 11K]+(CI Lk —2CT *Cinfux)}

mex n+ n+1 n n
- T [Ci+l,j,k - Ci—l,?Jj,k J + (Ci+1,j,k - Ci—l,j,k )

+Dyry[(Ciljj+1k 2ank +C| j lk)+D r ( i,j,k+1 2C|Jk +Cljk 1)]

Wl

(1.27)
Step 2

2 1 1 1
R(Ci,j,k{cljk Cn J:Dxrx{[cwljk 2CIjk+Cllij+(Clr:—ljk 2C|Jk+C|1]k)i|
vm [y e ! .
2 l:[CHls] k C|71,3j,k J + (Ci+1,j,k - Ci—l,j,k >:|

D.r n+2 +2 n+2
+ ; ! [Cu j+Lk 2C +C, ,j31,kJ+(Cir,lj+1,k _2C| jk +C| j 1k)
+Dr[|jk+l 2CIjk+Cljkl]

(1.28)

Step 3

! nel
R(Ci,j,k Xcln]rlk _Cir,]j,k)= DXrX|:(CI+ljk 2CI i +C 3] j ( |rlljk 2CI j.k +C| 1Jk)j|

i

V.m nel net

- X2 : l:(cm,sj,k _C 31 (C|n+11k Cin—l,j,k)
D,r, *3 "% n% n

+ 5 C| gk —2C 2 +C 5k +(C

+ Dzrz ( n+1

i, jLk -2C! ik +CIJ lk):|
Ciika _ch, K +C|n]r1k 1) (Cir,]j,k+l -2C! ik +C/ ik 1)]

1.29)
Rearranging Douglas & Gunn equation gives us the equation which provides the matrix of solving the model equation

Stage 1; Implicit in x direction, explicit in (y, z) directions
( v,m,

O A e R AR

( |Jk)+R(C|] )] |1j,k+ +m i,j,k+(2R(Cnljk) R(Cnij,k)] i+1 ).k
I v, m,
=[R(Cn"ivk) ZR( 'lk

Jll]k ﬂcn—)lnjlk E(Cn—)ljkl

oy 2D 2D,r, 2Dy, - +( D,r, v.m, j )
R(Cni,j,k) R(Cni,j,k) R(Cni,jk) LIk R(

Cni,j,k) 2R(C|],k) LIk

+ oy Cl .+ D., (o8
R(Cni,j,k) i, j+1k R{Cni,j,k) i,j,k+1

(1.30)
Stage 2; Implicit in y direction, explicit in (x, z) directions
D,r e D.r n+= D,r e D.r et V.m et
— Y Y C.3 +|1+ C .2- Y _C 3, =—2XX.C 3 +—F*X.C. 3
ZR(CIan ) i,j-1k ( R(C,njk )J i,j.k ZR(CIan ) i, j+1k R(C,njk ) i-1,j.k ZR(CIan ) i-1,j,k
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2D 2D,
+[Cir,]j,k _a_r)cu ik !

D,r, D,r,

1
n+=

R(Cirv\ij)CiA,j,k-‘_ Clnjk .+1,k mcn—)c

DZrZ n

+ (0N

Ri X iC”
A

I
7—)C” - +7—)y y_.Cc
i+1,j,k 2R Cn i+1,j,k 2R Cirijk i,j+1,k

D.r

Z°7

n Cirj',k—
R(CI,, ) M

Ij—lk +

"R c,“,k

D,ry

n 2DZrZ n
n Ci,j,k - n Ci,j,k
RiC ik ) RIC/; « J

(1.31)

Step 3; Implicit in z direction, explicit in (X, y) direction

D,r,

ﬂcn_)cln]—lk—l +| 1+

n+

D,r
R Ciijk

z n+1 Dz rz n+1

R cmM
i,jk m ijk+1

ned D Dyr N+

D, ™5, Vym v,m,

R, ) T rler, ) O R
D r, ~n D r, o

ZR( n ) i,j-Lk ZR( |n1k) ijk-1

2D,r,

1
ZDX rx "*5

n

o+ )

i,jk

D r ne2
3

2
’ 2
2R(C], )C”}Lk

D,r,

+{ijvk -

D,r, Cg D,r
+ R(Cinj k) i ' R(Clnj k)
D,r, D,r,
ZR( n )Cir.]jdk ZR(C.an)C:j‘kﬁ

ik

VXmX
2Rr(cy,

n
C|+1 jk

R, ) RECT) TR

no_ Dzrz n
|njk)Civij_R(Cir.1j‘k) e R(Cir.]j,k)Ciyj'kj

1 2
c nes B mex n Dyry 3
) ik

Clujx * Ciidk
) )

(1.32)

2R(C,,, 2r(C!

ijk

The above is the solution to the model equation which are equations (1.30), (1.31) and (.32).

Dxirx

=120 L =12,

In each of the three steps, we have | +1 equations for each of

(j,k) J +1 equations for each of (i,k) and K+1 for

each of (i, j) value. We also have three unknown values in

variables in each step. In all the three cases, the tridiagonal
matrix can be solved by use of Thomas algorithm [16]. In
numerical algebra, the triadiagonal matrix (TDMA), also
known as the Thomas algorithm, which is simplified form of

b, ¢ 0 %
X

aZ bZ 2 2
X

a, G, 3

Y i

| 0 a, b, || X,

The first step consists of modifying the coefficients as follows,
denoting the new modified coefficients with primes
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Yii 'y D, _ Dzkrz
~R(CT “R(C!

ik ) on ijk
...... Jand k=1,2,.................K

Gaussian elimination that can be used to solve numerical
equations like this. The triadiagonal system of one dimension
for n unknown may be written as;

8y +0X +CX,y =0, (1.33)

Where a, = 0and Cn =0 This algorithm is only applicable
to matrixes that are diagonally dominant, as illustrated below;

dl
d2
d3
dn—l
- (1.34)
d .
—i=1
! bi
d = i doa
bi_ =23, n-1
i —Ciad (1.36)
18z http://ijesc.org/



This is a forward sweep. The solution is obtained by back  unknown quantity as the change from a known value of the

substitution; variable of interest. Here we use a time delta and defined

A n+l _ e/~n
X, =d Ciix =Cijx +AC; j«

r_ _ (1.37)
X, _d C' X'+1’I - ]"n 2 """"" ’1 (1.36b) In this analysis, the discrete Fourier transform of the non-
This will be the method that will be applied in find the solution homogeneous is used so as to establish
pp taking, Z“ClnJ ke/rel K6, KHk

in the equations, ijk
Th 1: The ADI Method used in solving th del (1.38)

eorem 1: The ethod used in solving the mode =1
equation is unconditionally stable. (9)( = Zﬂa)xxi , Qy = Zﬂa)yyj _and (92 = Zym)zzk .
Proof: - i=01.....cccen.... =1, j=01,........... J-1, and
The three-dimension equation; K=01.ooo... K -1

Douglas and Gunn [1964] derived an ADI scheme based on
“’approximating factoring’’ that is unconditionally stable and —7 > 0 49 9 ST, and @ = (wx,a)y,a)z)

retains second order accuracy when applied to three using the dlscretlzatlon and Fourier transform for equations

dimensions’ schemes. .
A development of the scheme that highlights the approximate (1.37) to (1.38) the to the equations below

factorization point of view is best carried out making use of a
delta form of the equation. A delta form expresses the

Stage 1
1
(1 Ad: + ; B/0 Jc 3 :(1+ A2 —%B;ax +%C;8§ +%D;8§)C” (1.39)

Equation (5.39) becomes;
Cliw + Ai’(cinﬂ,j,k —2C, + Ci—l,j,k)

B (Cin+1,j,k ~Cluix )

nel it W1 et B’ Nt net 2 1.40
Ci,j,i - Al'(CHljk 2C +C; 1,3j,kJ+?l(Ci+l,3j,k _Cil,aj,kj = 1 n (1.40)
+§C ( i,j+1k 2CIjk+Cljlk)

+;DI( |njk+1 2CIjk+Cljk)

Using equation (5.38), we find the following expression;

(e +e (e —e% ) ]
e +e ek —e ™ || aney 1+2Ai( 2 _1j_ Bi’{ 2x J A
1-Al S8 e 216 = ¢,
| 2 . e ye e ye ™ .
ZC{T_@”D&(T%}

(1.41)

K6 _ e—m9 eké’ —Kk0
From basic trigonometry, Sinf = T and Cos@ = T . Therefore;

[L-2A/(Cos6, —1)+ B,sSin& ]c, 3 =[L+2A(Cos6, —1)-BixSing, +2C! (Cos, —1)+ 2D; (Cosd, ~)CT,, (1.42)

, 0 0

Cos@ = Cos? = 0 —Sin? =, Sin? = + Cos? 2 0 =1 and Sin@ = 2Sin QCOSQ
2 2 2 2 2

Therefore,
0. 0 0. 1 |1- 4A'Sin? 6; 2B KSanZXCose—ZX
1+4A'Sin? X + 2xB/Sin =~ Cos 2 [C, 3 = Gl (1.43)
2 2 2 ' i 6’y ) o
—4C:Sin——4D,Sin*
2 2
1
The amplification factor 53 is given as;
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: 0,
1+4A{Sin2&+2KB{SinﬂC03& &3 = 1—4A{Sin2&—ZB{KSin&Cose —4C;Sin* > —4D;Sin® -+ 20, (1.44)
2 2 2 2 2 2 2 2

1
Where 8, =60, =0, =0=mILmel,J,K andlet £2 =G

- ) , "
1—4A{Sin2&—4C}Sin2—y—4D;Sin2& + —ZBi'Sin&COS&
2 2 2 2 2

G,|= : A <1(1.45)
Qi ng Q; ex Hx
1+4ASin® —= | +|2B/Sin—=Cos—*
2 2 2

Stage 2

n+E 1 22 nel 1 Nt 1
c'e-2C] 92C 3 =C"+ AOC 3 -5 Bi0,C  ARICT - T BO,C

+%c;a§c:" +D;o%(c")

(1.46)
Following the same process as in stage 1;

0, 2 0, 0, . 0, A 0,
1+2C; Sin? ~ CI Jﬁ =|1-4A/Sin® = -2C; Sin? -~ — 4D, Sin? 2= — 2B/xSin = Cos = |C" ik
2 2 2 2 2 ’ (1.47)

1
= {4A{Sin2 O, 2B/xSin b cos &}é, 3
2 2 2| "
o
ol 1- 4A,S|n 6; 4C Sin? 2y - 4D, Sin? 6; 2KBS|n9—Cose—

2 2 |An
Ci,j,i = 0 0 0 Ci,j,k
1+4ASin? ?X + 2xB/Sin ?Cos?X

Making the denominator real numbers gives us;

0 2
1-4ASin’ 26y _ 4C:Sin* -’ - 4D, Sin*® 34 1+4A{Sin2& - ZBi’Sin&Cos&
2 2 2 2 2 2

0,
1-4ASin® 9——4C 'Sin? Y —4D!Sin® % 2 9, 2B/Sin—=> 6, Cosé)—X
2 2 2 2 2

+| 2B;Sin &Cos& 1+4A'Sin? Ox
2 2 2

2

2
1+4ASin’ % 2B/Sin b cos
2 2 2

(5.48)
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.6, 6? 0, 2 | 2B/SIn 2>
1-4A Sin? =% 2C Sin? —-4D; Sin? =% 1+4A Sin? = | + 2
2 2 2 2 Cosg—x

0,
—|[1-4A/Sin? 9——4C 'Sin? - — 4D, Sin? 2 b0 1+4A/Sin? 2 b 4A{Sin20—X
2 2 2 2 2

B 2
+ ZB{Sin&Cos& 4A/Sin® by
2 2 2

0
1—4A{Sin2&—4C’.Sin2——4D sin? %= 1+4A/Sin? 2 O,
2 ! 2 2 2
2
+ ZB{Sin&Cose—X
2 2

—K|+ 4AS|n 9— 1- 4AS|n 9——40 'Sin? 9——4D 'Sin? 9— 2B/ SII’I&COSQ—
2 2 2 2 2 2

2B/Sin Oy Cos Oy
2 2

+|1+4A Sin? 9— 2B/Sin —* O, Cosg—X
2 2 2

6, 6 ,6,) 6, 6,
+| 2B/Sin—*Cos —* | | 1+4A/sin®> | +| 2B,Sin—*Cos —*
nel 2 2 2 2 2
3
9 2 2
1+2C!Sin? -~ 1+ansin? | [ 287sin % cos O
2 2 2 2

Cirjjk
2
The amplification factor 53 is given above;

N

Where(9 9 (9 =0= mHmE|JKandlet§3
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- 12

9 2 2
1-4ASin* =X 2 Oy —2C}Sin® - 4D, Sin* 20, 1+4A{Sin29X + ZB{SinHXCosQX
2 2 2 2 2 2

0
~| 1-4A'Sin’ <92x_ 4C;Sin’ 2y ~ 4D, Sin’ 622 [1+ 4A'Sin’ QZXIMSinZ %Jj

2
—~| 4A'Sin’ O 2B/Sin O s %
2 2 2

i 6,
~| 1-4A'Sin? 0——4C 'Sin® Y~ 4D; Sin’ 20 2B/ Slng—Cose—
2 2 2 2 2

0,
1+4NSin29X ZB{Slng cos 2 [ 1- 4A'Sin® X 2 Oy —~4C!Sin® - 4D, Sin* 20
2 2 2 2 2 2

|
aS]

3
+| | +| 2B;Sin &Cos&
2 2

- 1+4A{Sin29x ZBi'SineXCong
2 2 2

2 2
~ ZBi'SingXCosHX 1+4A{Sin2(9X +| 25in % cos &
2 2 2 2 2
0, 0, 2 9 9\ 2 (1.49)
1+2C!Sin? 2 | [ 1+4ASin? 2 | +| 2B/Sin— Cos
2 2 2 2

Stage 3

1 1
REC)(C™ -C")= Dxrxa{c 3+C“j—%ax[0 3+C”J

D,r ne 2
s g2l o |+ Dl pz(cm )
2

(1.50)

Following the process in Stage 3;
A 0 A
[1+ 2D, Sin’ H—ZZjCin}lk - {1—4Aﬁ’sm2 H—ZX— 2C!Sin’ Ty_ 2D Sin’ % - ZBi'KSiHH—ZXCOS e—zx}ci”,jk

(1.51)

= 0, i1t
—[4A{Sin2 b omsin %Cosqc $-2CSin*=C, ;3
2 o2 a2ttt
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9 2 2
2B/ Slne—Cose— 1+ 2C;Sin? 1+4ASin? bx +| 2B/Sin &Cos&
2 2 2 2 2 2

-~ (ZBi’Sin 92x Cos ezx](u 2C/Sin* b,

2
—| 2B/Sin— O, Cosg—
2 2

0,
1-4A'Sin? 2O _ 4C'Sin* - —4D;Sin® 7 0 [ZBi’SinHXCosng
_4ASin? 0, 2 2 2 2 2
2
—~ ZBi’SinZ&COS& 1+4A{Sin2&
2 2 2

2
- 1+4A{Sin2& + ZBi'Sin&Cos& ZBi’Sin&Cos& 2C}Sin2&
2 2 2 2 2 2
0,
—| 2C}Sin* - 1+4ASm29X ZBi'Sin&CosQ 1-4A'Sin* = 2 Oy —4C/Sin’
2 2 2 2 2

0,
- ZC’.SinZQ 2B/ Slne—Cose— 1-4ASin? Q—4C 'Sin* - 4D, Sin® 20
: 2 2 2 2 2 2

0,
—| 2B/ Slne—Cosg— 1+4A'Sin? 2 O 2C; Sin? >
2 2 2 2

, 0, 0, , 0, . 0,
1-4ASin® —* —4C| Sin® Y —4D/Sin® ~% | 1+ 4A'Sin® -*
2 2 2 2

0
J—4D;Sin2i
2 2
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0, , 0, 0,
1-4ASin® ——ZC Sin* Y - 2D, Sin* ~- 1+2C; Sin? -~
2 2 2
2 2
1+4AIS|n + ZBi’Sin&Cose—x
2 2
, 0, , 0, 0, . 0,
4A,S|n 1+4A,S|n 1-4A'Sin® -~ 4C] Sin? Y —4D;Sin* ~*
2 2 2 2
’ 0
( 'SlnXCosj (1+2C}Sin22xj

2 0, 0, , 0,
(1 4ASin? ? 2C; Sin? > — 4D, Sin® 2]

2
((M 4A'Sin? 6;*) + (2 B/Sin 6;XCos HEJJ

0
—[2c;sm”

2
+| 4A'Sin? Oy ZBi'Sin&Cos&
2 2 2

0
1-4ASin® 0—*—4C;Sin2 Y —4D,Sin? b, 2B,Sin Ox cos O
2 2 2 2 2 . 0 0
2B/Sin ?Cos?X

(1+ 4ASin? 6; ](ZB Sin %Cosij

., 0 . 49 , 0, . 0, . 0,
—|1-4A’Sin* X —4C’Sin® Y —4D/Sin* ~% | 4A'Sin* ~* | 1+ 4A'Sin?
( A S 2}( A 2)( A 2]

S+l
Ci,j,k

0 2 2
14205102 2 |14 2¢7sin? 2 | (14 asin? % | 1 [ 28750 & cos &
2 2 2 2 2
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7 2 0 29 re; ZHy
1- 4AS|n 2 =2C] Sin® Y —2D|Sin* = 1+2C;Sin"—
2 2 2
2 2
( 1+ 4A,S|n2 X (ZB{SinHXCosaxj J
2 2
, 0,
4A15|n2 X 1+4A{Sm29xj 1- 4,&1S|n2(9X 4C;Sin? Y- — 4D, Sin 20
2 2 2 2
’ 0
( 'Sm Cos j(1+2C}Sin22Xj
, 0,
1-4ASin® 2 —2C}Sin* X - 4D,;Sin* = 2
2 2 2

2
(1+ 4A'Sin? 9*] + (ZBi’Sin 6’*0059*]
2 2 2

, 0,
—| 1-4ASin*—* O, —4C'Sin*-Y —4D;Sin* 2% 2 4ASin® —* O 14 4A’SinZi
2 2 2 2 2

2
+ (4A{Sin2 0*](2 B/Sin % Cos 0*]
2 2 2

26,

0
—(2c;sm“

(7]
(1 4A'Sin 4C}Sin2?y—4D;S|n2 92 JZB'SIn O cos & ) )
- 2B/Sin—=>*Cos—>
( 2 2 j

—~ (1+ 4A'Sin? @jKZB{Sin HXCOSHXJ
2 2 2

H 2
1+ 2D;Sin2§ 1+2C’'Sin* -~ 1+4A’Sm20 ZBi’Sin&Cosﬂ
2 . 2 2 2 2

1
Sk
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0 2 2
-| 2B/Sin O cos e | 14 2Csin® -~ || 1+4ASin? % 2B/Sin O cos O
2 2 2 2 2 2

- ZBi’Sin&Cos& 1+ 2C;Sin2 b
2 2 2

2
—(ZBi’SinHXCos ex]
2 2
0
1-4A'Sin? 9—*—4C}Sin2 Y 4D, Sin? 0 ZBi’Sin&Cos&
2 2 2 2 2

—4A,.’Sin2&
- ZB{SinZ&Cos& 1+ 4A{Sin2&
2 2 2

2
~[|1+4A’Sin? b 2B;Sin O cos 2B;Sin O cos 2C}Sin’ b
2 2 2 2 2 2

0

0
_[acrsin?? ZBi’Sin&Cos& 1-4ASin? 9 _acrsin? Y —4D|Sin? b
! 2 2 2 2 ! 2 2

0
- ZBi’Sin&Cos& 1+4A{Sin2& 2C;Sin® -
2 2 2 2

0
1-4A’Sin? b _ycrsin? Y —4D;Sin* -
2 ! 2 2

4 0
- 2C}Sin® - l+4A{Sin26’—X ZBi’Sin&Cos— 1—4A{Sin20—*—40;Sin2i_4D;Sin2i
2 2 2 2 2 2 2

1+ 4A'Sin? 92)

+ K]

(1.53)
Gz — 5 n+l

)
Let Sin&:SX,COS&ZCX,Sin—y:Sy,Sin&:S
2 2 2 2

International Journal of Engineering Science and Computing, June 2018 18450

z

http://ijesc.org/



N

(L-4A's2—2C!S? —2D/S? 1+ 2c§s§)((1+ ans?) +(B;s,C, ) )
—(aas?)i+2cis?f(1-4AS? —4Cis? — D;S? fi+ 4A'S2)—(2B;S,C, )

(1-4A'S? —2C!S? -4D;S )(1+4A' 2f +(2B5s,C, ) )
—(2c!s?) (L-4A'S? —4C!S2 —4D;S? J4A'S? fL+ 4A'S?)

+(aAs?)28rs,C,)
—(L—4A)s? —ac’s? —4D;S?)2B'S,C, )~ (2B'S,S, N1-4A'S?))
~(2Bis,C, J1+2C’s )(1+4AS +(2B/s,C,) ) 2
~(2B5s,C, ) NL+2Cs )(1 4NS? - 4C.52—4DkSZXZBi’SXC )— (ZB,SXCX))
~(2B;s,C, )2c!s )(1+4As +(2B/s,C, ¥ )

~(2c1s? (1+4Aﬁsx)(2Bi s,C X)(1—4as3—4cgs§—4D;s )-(2Bs,C,))
—(2c1s2)2BiS,C, N1-4A'S? —4C|S? —4D;S?)
—(2Bs,C, JL+4AS?)2C!S?)

I=X =X

((1+ 20,52 L+ 2c;s§)((1+ 4AS?) +(2B/s,C, ) ))2

From the details above, the nominator is diminishing and denominator increasing
|G| 1 therefore the theorem is right.

GG,G (1.54)

Xy ~z

Gy|GZ| -

2.3.3 Determination of time step using stability criteria
Fourier or Von Neumann Stability analysis
Using Fourier transform,

_ n K6, A K0y KO,k _ _ _
Clix _ZCH’ke e e %  andlet Ax=Ay =Az =h (1.55)

1
Ci'jjfk C“J « TAC; . (156)
Fitting this in the model equation (5.18);
2 2 2
)€ _2p, 2C 5, X p OC o, 2'C
ot OX OX oy oz
Using equation (5.55),
Fourier transforms give;
& )aéx,y,z .. (4D,(Cosd, -1) V,xSing, 2D,(Cosd, ~1) 2D, (Cose, 1)
ik =C/" > - + > + 5
ot h h h h
(1.57)
Define;
From equation (1.56)

R(C

« (8D, .0, 4D, ,0, 4D
( |Jk)AC0 0 0 AtCi,j,k[ h S 2 2 _ hzy S|n27y_ h2

0,

—2.8in? > \;X KSinBXJ
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A particular time stepping scheme will be stable provided C lies in its stability region.
To simplify the discussion suppose that the stability region is contained in an ellipse:

2 2
X
Stability Region: A: [—} + (ﬂl] <1
% 0 (1.58)

If real and imaginary parts C are;
C =R(C) +i3(C)
then the scheme is stable provided,
A 2 A 2
R(C 3(C
©) (30 _,
, Bo

which implies that;

2 2 ?
0 —
H 4“] (2DXSin2‘9—2X+ D,Sin® 2+ DZSinZ@J —( Atj (VxSiné’x)2]<1

(1.59)

2
a,h 2 po.h (L60)

which can be a sufficient condition, using 6, = gy =0,=60= z

. . . . . T
Maximum value of a sine function is realized at E

amt)(D. D, DY (—at)
— Xp Y V2 <]
a;h 1 2 2 4.h

Implying that;

2 2 277t
at<|| =2 &+&+DZ B
leh?) L 2 2 B.h
(1.61)

a,aNA; are constants which can assumed to be equal to 1.

2.3.4-Determination of fractional step using stability in Multispace dimensions
Model Equation (5.18)

2 2 2
R(C)@=2DX%—ZVX§+ Dy%+ DZ%
ot OX OX oy 0z
0<x,y,z<1

C(x,y,2,0)=C,(x,y,2)
C and C, 1 Period

Discretization in space,

R(C)(jj_ct: = [2Dxi D+x D—xCi,j,k - 2in D+xCi,j,k + Dyj D+yD—yCi,j,k + Dzk D+z D—zCi,j,k]
(1.62)
=012, e ,N-1
§=012 . N -1
K=0L2.cccmvirrrrnne. N-1
0, = 2mw, X 0, =20y, 0, =2mw,7,
., 0 _,0 ., 0 .0 . 0
i 8D,Sin"-* | | 4D,Sin*-> | | 4D,Sin" == | | v,kSin-*Cos—*
(O e B N B B N 22
dt h; h? h; h
(1.63)
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And the scheme will be stable for,

0
8DXSin202x 4D, Sin* - 4DZSin26;Z vXkSinQXCosiX
RIC)QI4, .6, .0, )= At — -
(1.64)
0=2-0,-0,=-0,
For maximum value 2 ,
o | (-4at)’(2D, D, D, v, Y
‘(Q) ‘_ 2 Toneton2 | T
R(C)) | h} 2n}  2h 2hR(C)
(1.65)
(-4V(20, D, D Y dh
- Vv
At = ‘(Q)z‘ 2x n y2 n z2 Y%
R(C)) | h} 2nh] 2N 2hR(C)
- (1.66)
For Forward Euler time step, we require,
1+Q<1 Qe -2<Q<0
Or since we need
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