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Ecological drivers of genetic 
connectivity for African malaria 
vectors Anopheles gambiae and An. 
arabiensis
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Sarah Thong1, Samuel Kahindi3, Charles Mbogo2, Harrysone Atieli2,4, Andrew Githeko2, 
Tovi Lehmann5, James W. Kazura6 & Guiyun Yan1*

Anopheles gambiae and An. arabiensis are major malaria vectors in sub-Saharan Africa. Knowledge of 
how geographical factors drive the dispersal and gene flow of malaria vectors can help in combatting 
insecticide resistance spread and planning new vector control interventions. Here, we used a 
landscape genetics approach to investigate population relatedness and genetic connectivity of An. 
gambiae and An. arabiensis across Kenya and determined the changes in mosquito population genetic 
diversity after 20 years of intensive malaria control efforts. We found a significant reduction in genetic 
diversity in An. gambiae, but not in An. arabiensis as compared to prior to the 20-year period in 
western Kenya. Significant population structure among populations was found for both species. The 
most important ecological driver for dispersal and gene flow of An. gambiae and An. arabiensis was 
tree cover and cropland, respectively. These findings highlight that human induced environmental 
modifications may enhance genetic connectivity of malaria vectors.

Anopheles gambiae s.l. are the primary vectors of human malaria in sub-Saharan Africa, a disease responsible 
for 405,000 deaths worldwide annually, with around 90% occurring in Africa1. While the species commonly 
occupy similar ecological niches, An. gambiae s.s. (hereafter referred to as An. gambiae) are generally associ-
ated with more humid environments, whereas An. arabiensis have a higher tolerance for drier environments2,3. 
Another notable difference between the two species is that An. gambiae are highly anthropophagic4,5, whereas 
An. arabiensis are more catholic in their feeding behavior6. Since mosquitoes primarily disperse to seek blood 
meals and oviposit7, these differences in habitat and feeding preferences may result in ecological variables dif-
ferentially driving the dispersal patterns of these two malaria vectors. These differences potentially lead to a 
complex system influencing malaria parasite spread. Knowledge of how geographical factors influence the dis-
persal of malaria vectors can help in efforts to contain insecticide resistance, planning effective vector control 
interventions, and identifying potential areas susceptible to parasite re-introduction from infected mosquitoes 
following antimalarial interventions8.

Organism dispersal patterns and population connectedness can be inferred from measuring genetic related-
ness among populations or gene flow. While studies have reported genetic differentiation between An. arabiensis 
populations, neither physical barriers nor geographic distance have been identified as factors responsible for An. 
arabiensis population structuring9–12. Likewise, geographical distance alone does not appear to be a barrier to 
gene flow among populations of An. gambiae, as Lehmann et al.13 found high gene flow between populations in 
Kenya (East Africa) and Senegal (West Africa). However, An. gambiae populations were found to be highly dif-
ferentiated between western Kenya and eastern Kenya12. The eastern arm of the Great Rift Valley, which bisects 
Kenya, has been speculated to be the cause of genetic differentiation in An. gambiae populations due to its sur-
rounding low temperatures and arid conditions making it inhospitable to agriculture, and as such, lacks human 
settlements12,14. Since the eastern arm of the Great Rift Valley is characterized by several attributes, such as low 
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temperatures, low precipitation, as well as low human population density12, these factors cannot be disentangled 
for driving population structure of An. gambiae using traditional population genetics.

However, using a landscape genetics approach, we can test the impacts of ecological variables on organism dis-
persal to parse out the importance of key variables influencing malaria vector dispersal8,15. Broadly, the approach 
involves inferring population movement from the distribution of genetic markers, quantifying the distribution 
of ecological factors hypothesized to drive dispersal, and statistically testing the relationships between genetic 
variation and landscape heterogeneity15–17. These inferences enable us to identify potential hotspot areas of 
disease movement for targeted public health interventions and containment of disease and drug and insecticide 
resistance8. For example, this approach has been used to identify dispersal corridors for Ae. albopictus mosquitoes 
in the United States, which were found to be primarily highways and non-forested areas18. Moreover, landscape 
genetics has been used to study infectious diseases, including chronic wasting disease19, rabies20,21, hantavirus22, 
H5N1 avian influenza23, and malaria24,25. The objective of this study is to use a landscape genetics approach to 
test the hypothesis that genetic connectivity of An. gambiae and An. arabiensis is influenced by environmental, 
landscape, or social factors, as opposed to geographic distance alone. By testing relationships between population 
genetic structure of malaria vectors and ecological factors, we can parse out confounding factors and determine 
the importance of key variables influencing malaria vector dispersal8,15.

Results
Anopheles gambiae s.l. larvae were collected in 2014–2015 from thirteen sites across Kenya, which fall within 
four distinct geographical areas: western Kenya lowlands, western Kenya highlands, Great Rift Valley, and coastal 
Indian Ocean (Supplementary Table 1; Supplementary Fig. 1). An. arabiensis specimens included in analyses 
originated from ten populations in western Kenya, Great Rift Valley and coastal Indian Ocean (total individu-
als = 357); whereas, An. gambiae specimens included in analyses originated from six populations in western Kenya 
only (total individuals = 254). To assess genetic diversity and structure of vector populations, six microsatellite 
loci were genotyped in An. arabiensis and five microsatellites were genotyped in An. gambiae specimens (Sup-
plementary Table 2).

Genetic diversity analysis.  For An. arabiensis, a measure of genetic diversity, expected heterozygosity 
(HE), ranged from 0.461 in an Indian Ocean coastal site to 0.723 in an Indian Ocean coastal study site (Supple-
mentary Table 3). HE did not vary significantly among regions (Supplementary Fig. 2). Mean allelic richness (AR) 
ranged from 3.46 in an Indian Ocean coastal site to 6.24 in a western lowland site (Supplementary Table 3). For 
An. gambiae, HE and AR were generally higher in the highland sites (HE:0.588–0.653; AR:3.74–5.87) compared to 
the western Kenya lowland sites (HE:0.503–0.584; AR:3.57–4.90) (Supplementary Fig. 2; Supplementary Table 3). 
An overall heterozygote deficiency was detected across all populations (P < 0.05) for both species. There was no 
evidence indicating linkage disequilibrium at any locus across all population for An. arabiensis (P > 0.05). By 
population, there was significant linkage disequilibrium in An. arabiensis detected at two study sites in western 
Kenya (HB: 45C1/29C1 and AG2H143/AG3H577; KB: 29C1/AG3H577), one study site in the Great Rift Valley 
(MT: AG3H249/AG2H143), and two study sites in Indian Ocean coastal Kenya (JU: AG2H46/AG2H143; KK: 
AG2H46/29C1). For An. gambiae, linkage disequilibrium was detected in two locus pairs across all populations 
(AG2H143/29C1 and AG2H143/AG3H577; P < 0.05). By population, there was significant linkage disequilib-
rium in An. gambiae at three study sites in the western lowlands (PB: AG2H143/AG3H577, AG2H46/AG2H143, 
and AG2H46/AG3H577; KN: AG2H143/29C1; HB: AG2H143/29C1 and AG2H143/AG3H577) and one study 
site in the western highlands (EE: AG2H46/29C1). Since all of the locus pairs observed to be in linkage disequi-
librium for both species do not occur in the same chromosomal region (Supplementary Table 2), this result 
suggests the possibility that random drift or non-random mating are leading to the observed linkage disequilib-
rium in An. arabiensis and An. gambiae. Compared to previously published HE values for An. arabiensis samples 
collected from nearby study sites within the Lake Victoria basin area of Western Kenya in 199612, we observed 
no significant change in overall HE between 1996 and 2014 (Fig. 1; P = 0.417; paired t-test). In comparison to 
previously published HE values for An. gambiae samples collected in 199426, overall HE was significantly lower in 
2014 (Fig. 1; P = 0.002, paired t-test).

Population structure and migration rates.  For An. arabiensis, we identified three clusters consistently 
across ten runs in Structure (Fig. 2). Predominant cluster membership varied between coastal Kenya and the 
other two regions. The AMOVA indicated that 12.77% of variation occurred among groups, which were pop-
ulations grouped by their predominant cluster (FCT = 0.128; P < 0.001). Variation within populations (79.7%; 
FST = 0.203; P < 0.001) and variation occurred among populations within groups (7.49% FSC = 0.086; P < 0.001) 
were also significant. For An. gambiae, we identified two clusters consistently across ten runs in Structure 
(Fig. 2). Predominant cluster membership varied between the western lowland and western highland regions. 
The AMOVA indicated that 6.22% of variation occurred among groups, which were populations grouped by 
their predominant cluster (FCT = 0.062; P = 0.058). Variation within populations (86.9%; FST = 0.131; P < 0.001) 
and variation occurred among populations within groups (6.84% FSC = 0.073; P < 0.001) were significant. Based 
on a linear mixed effects model with maximum likelihood population effects (MLPE), populations did not con-
form to an isolation-by-distance model for either species (P > 0.05; Supplementary Fig. 3).

Historical migration rates between vector populations were evaluated by analysis in Migrate-N, and the 
highest directional migration rates (migration rate [M] > 18) were visualized (Fig. 3).Analysis of past migration 
rates for An. arabiensis revealed that frequent migrations (M > 18) occurred between populations across regions, 
as well as between populations within regions (Fig. 3). The Great Rift Valley was a source of migration for four 
sites in western Kenya. Frequent migrations were common among sites within western Kenya. For An. gambiae, 
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lowland populations were more often sources for migration than highland populations. Frequent migrations 
occurred most often from a lowland population to a highland population. Migration rates for all pairwise popula-
tion comparisons are available in Supplementary Table 4.

Landscape genetic analysis.  We used landscape genetics to test for associations between landscape fac-
tors and gene flow between populations. We created landscape resistance raster files for the following variables, 
which we hypothesized to potentially influence gene flow of the studied malaria vector species: annual mean 
temperature, annual precipitation, percent tree cover data, presence or absence of croplands or cropland/natural 
vegetation mosaics, human population density, and road proximity (Table 1). Landscape genetic analysis was 
conducted using two measures of genetic distance, FST and DPS. Since the results from both analyses did not 
vary substantially, FST analyses are presented here, and DPS analyses are presented in the supplementary material 
(Supplementary Table 5; Supplementary Fig. 4). Notably, the genetic distance metrics were highly correlated 
(P < 0.0001 for both species). For An. arabiensis, cropland was the top single-surface model in explaining popula-
tion genetic structure of An. arabiensis (Table 2). The cropland model had the lowest ΔAIC (0.000), third lowest 
average rank (2.335), and highest percentage for being the top model across 1000 bootstrap iterations (34.8%). 
For An. gambiae, the tree cover model was the top model in explaining population genetic structure, which had 
the lowest ΔAIC (0.000), second lowest average rank (1.891), and highest percentage for being the top model 
across bootstrap iterations (40.3%).

To determine the relationship between model factors and landscape resistance to gene flow, response curves 
were generated (Fig. 4). In the highest performing model for An. arabiensis, cropland, areas with croplands 
or cropland/natural vegetation mosaics had a low resistance to gene flow. Average temperature was the next 
highest performing model. An average temperature of 15.9 °C had the lowest landscape resistance to gene flow. 
Areas with an average temperature exceeding 23.3 °C had the highest landscape resistance to gene flow (highest 
30% resistance values). For the third highest performing model, landscape resistance to gene flow was lowest 
in areas with annual precipitation 1530.8–1914.8 mm (lowest 30% resistance values) and highest in areas with 
annual precipitation less than 1230.8 mm and greater than 1970.8 mm. In the highest performing model for 
An. gambiae, the lowest landscape resistance values occurred in areas with 9.2–38.2% tree cover and the highest 
landscape resistance values occurred in areas with less than 4.9% tree cover and greater than 61.2% tree cover. 
For the second highest performing model, the lowest landscape resistance occurred in areas with an average 
annual temperature between 18.9 and 22.6 °C and the highest landscape resistance values occurred in areas 
with an average temperature less than 16.1 °C and greater than 23.0 °C. For the third highest performing model, 
the lowest landscape resistance to gene flow occurred in areas with 1401.5–1890.8 mm annual precipitation 
and the highest landscape resistance to gene flow occurred in areas with less than 1017.5 mm and greater than 
1963.0 mm annual precipitation. Our visualization of gene flow between study sites based on the highest per-
forming models, cropland for An. arabiensis and tree cover for An. gambiae, identifies likely pathways for gene 
flow between study sites (Fig. 5).

Figure 1.   Comparison of genetic diversity (expected heterozygosity) between 1994/1996 and 2014 from nearby 
study sites within the Lake Victoria basin area of western Kenya for Anopheles arabiensis and An. gambiae. 
**P < 0.01; NS indicates P > 0.05 by paired t-tests. Data from 1996 was obtained from Kamau et al.12. Data from 
1994 was obtained from Lehmann et al.26.
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Figure 2.   Inferred population structure estimated by STRU​CTU​RE among Anopheles arabiensis (K = 3) and An. 
gambiae (K = 2). (A) Map of mean ancestral coefficients by study location. Pie chart color indicates proportion 
of population assigned to each ancestral cluster. (B) Individual level ancestral coefficients. Individuals are 
represented as rows. Horizontal black lines indicate division in sampling location and vertical black bars 
indicates region of sampling location. The most probable cluster is indicated by color. Within each individual, 
the extent of the component colors indicates the magnitude of the membership coefficient corresponding to 
each cluster. The background elevation maps were created from Shuttle Radar Topography Mission (SRTM) data 
in ArcMap 10.6.1 (https​://deskt​op.arcgi​s.com/en/arcma​p/).

https://desktop.arcgis.com/en/arcmap/
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Figure 3.   Migration directionality and intensity among Anopheles arabiensis and An. gambiae populations 
in Kenya. The intensity of gene flow is indicated by the width of migration arrows. Only migration rates with 
median M > 18 are indicated on the map. The background elevation maps were created from Shuttle Radar 
Topography Mission (SRTM) data in ArcMap 10.6.1 (https​://deskt​op.arcgi​s.com/en/arcma​p/).

https://desktop.arcgis.com/en/arcmap/
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Table 1.   Predictor variables used for landscape genetic analysis.

Variable Source

Environmental
Average temperature WorldClim BIO1

Annual precipitation WorldClim BIO12

Landscape
Percent tree cover NASA MOD44B

Cropland NASA MOD12Q

Social
Human population density Worldpop

Road proximity OpenStreetMap

Table 2.   Model selection results of for linear mixed-effects models optimized on pairwise genetic 
differentiation (FST) in ResistanceGA. K, number of parameters in the mixed effects model; Avg., averaged over 
1000 bootstrap iterations; ΔAICc, Difference in Akaike information criterion from the lowest AIC model; rank, 
model ranking; top model, percentage of the bootstrap iterations that a model was the top model.

Model K Avg. ΔAIC Avg. rank Top model (%)

Anopheles arabiensis

(1) Cropland 2 0 2.335 34.8

(2) Temperature 2 1.865 1.878 30.0

(3) Precipitation 2 2.257 2.220 26.3

(4) Geographic distance 1 3.526 3.567 8.9

Anopheles gambiae

(1) Tree cover 2 0 1.891 40.3

(2) Temperature 2 1.520 1.778 35.2

(3) Precipitation 2 3.428 2.635 19.3

(4) Geographic distance 1 6.271 3.696 5.2

Figure 4.   Response curves signifying the relationship between ecological variables and landscape resistance to 
gene flow in the three highest performing single-surface models for Anopheles gambiae and An. arabiensis. Blue 
number in plot indicates model ranking by Avg. ΔAIC value.
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Discussion
Using a landscape genetics framework to test hypotheses related to whether environmental, landscape, or social 
factors predominantly influence the population structures of An. gambiae and An. arabiensis, we found that 
landscape and environmental factors primarily influence the population structures of these species in western 
Kenya. For An. gambiae, tree cover was the most important factor shaping population structure. While, for An. 
arabiensis, presence of cropland was the highest performing explanatory factor. These ecological drivers of gene 
flow may help to explain broad-scale population structuring patterns previously observed.

In this study, we observed a significant reduction in diversity (HE) in An. gambiae from 199426 to 2014 (this 
study), which were collected from neighboring populations within the Lake Victoria basin area of western Kenya. 
For An. arabiensis, we did not observe a comparable reduction in HE in between similar time points, 199612 to 
2014 (this study). Notably, we do not report on diversity from within the 18 to 20-year period, so we cannot 
describe how diversity may have fluctuated within this time frame. With that said, these findings of reduced HE in 
An. gambiae are consistent with a population decline, which has been observed throughout much of East Africa 
in response to mass distribution and increased coverage of insecticide-treated bed nets (ITNs)27–32. Conversely, 
the maintenance of HE in An. arabiensis suggests that An. arabiensis populations have remained relatively more 
stable despite the high coverage of ITNs in Kenya. Anopheles gambiae are known to be more susceptible to 
malaria interventions than An. arabiensis due to their preference for feeding on humans and resting indoors4,5. 
Whereas An. arabiensis are more catholic in their feeding behavior, taking blood meals from both human and 
non-human hosts, especially cattle33–35, as well as more commonly feed and rest outdoors27,28,36,37. These find-
ings highlight the role that An. arabiensis may play in maintaining residual malaria transmission in sub-Saharan 
Africa28,38 and the need for alternative intervention strategies to target this species. Moreover, understanding how 
ecological features influence An. arabiensis dispersal will likely become increasingly important to interrupting 
residual malaria transmission.

Neither An. arabiensis nor An. gambiae conformed to an isolation-by-distance model in this study. These 
findings are consistent with previous studies9–13, which suggests the possibility that factors aside from geographic 
distance alone drive gene flow, such as climate, landscape, or social features. Additionally, for An. arabiensis, we 
found frequent past migration across regions of Kenya. This finding is also consistent with previous studies and 
may be in part due to a past range expansion, facilitated by the expansion of human settlement and agriculture, 
rather than large-scale, contemporary cross-country migrations39–41. For An. gambiae, most frequent migrations 
occurred from lowland to highland populations. Nonetheless, we did find significant population structuring, 
indicating the presence of gene flow barriers for An. arabiensis and An. gambiae in Kenya. Notably, FST values 
for both species were on average higher than those observed in the 1990s12,26, which suggests that population 
connectivity has reduced since then. This pattern of reduced connectivity may be potentially confounded by the 
recent history of vector control. With that said, these results together suggest the possibility that factors aside 
from distance alone drive gene flow patterns of malaria vectors in Kenya.

We tested the hypothesis that low human population densities and scant agriculture between An. gambiae 
populations provide a barrier to gene flow12,14. This notion was postulated since populations of An. gambiae 
between western Kenya and eastern Kenya were found to be more distinct than between western Kenya and 
Senegal in western Africa, despite that the two countries are separated by more than 5000 km12, whereas western 
Kenya and coastal Kenya populations are only 700 km apart12. The lack of human settlement on the high plateaus 
of the eastern arm of the Great Rift Valley, which bisects Kenya, was thought to explain the population structuring 
pattern, since unlike the eastern arm of the rift, human agricultural activity occurs in a broad band across the 
area between Senegal and western Kenya12. However, we provide evidence that tree cover primarily explains gene 

Figure 5.   Gene flow map based on highest performing landscape resistance model for Anopheles gambiae and 
An. Arabiensis. Black circles indicate sampling locations. Yellow color indicates areas of high hypothesized gene 
flow between sampling locations. For An. arabiensis, map is based on the cropland model. For An. gambiae, map 
is based on the tree cover model. The maps were created in R 3.6.0 (https​://www.r-proje​ct.org/rdata​) with output 
currents from Circuitscape 4.0 (https​://circu​itsca​pe.org/) based on the highest performing landscape resistance 
models.

https://www.r-project.org/rdata
https://circuitscape.org/


8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19946  | https://doi.org/10.1038/s41598-020-76248-2

www.nature.com/scientificreports/

flow patterns in western Kenya rather than human population densities or agriculture. Both low (< 5%) and high 
(> 61%) tree cover were found to be gene flow barriers for An. gambiae in western Kenya. Whereas an intermedi-
ate tree cover of 9–38% was associated with enhanced gene flow for An. gambiae. This finding is consistent with 
a previous study in Kenya, which found that a canopy cover of 26% was associated with the presence of the An. 
gambiae complex, while a canopy cover of 44% was associated with the absence of the An. gambiae complex42. 
Moreover, this finding may also be consistent with the broad-scale population structuring observed across 
Africa12,14, as unlike with the western arm of the Great Rift Valley, a wide swath of land to the East of the eastern 
arm of the Great Rift Valley is characterized by short vegetation and a tree cover < 5% (Supplementary Fig. 5).

While populations of An. gambiae across the eastern arm of the rift were previously found to be highly 
genetically differentiated, lower differentiation was found between populations of An. arabiensis in this and 
other studies12. This result suggested that different factors drive gene flow patterns for An. arabiensis than for 
An. gambiae despite that the species commonly occupy similar ecological niches2,3. We provide evidence in sup-
port of this conjecture, as unlike for An. gambiae, a low percent tree cover was not a barrier to gene flow for An. 
arabiensis, but rather, the absence of cropland was the primary barrier to gene flow. Notably, however, the pres-
ence and absence of cropland does not explain the lack of population structuring between western and eastern 
Kenya observed by Kamau et al. in the late 1990s12

, as western and eastern Kenya are not connected by cropland 
areas (Supplementary Fig. 5). That this cropland model does not explain population structuring patterns outside 
of western Kenya may be explained by previous observations that An. arabiensis is more of a climate generalist 
than An. gambiae38. Anopheles arabiensis are found across a very diverse environmental range, which ultimately 
allows the survival of the species in many locations in Africa38. Moreover, An. arabiensis are known to be relatively 
resilient to drastic environmental changes through both natural causes and control measures43. Lastly, since An. 
arabiensis are able to withstand more arid conditions than An. gambiae44, it is possible that other environmental 
indicators which were not evaluated in this study explain gene flow patterns, such as maximum temperature. 
Since An. arabiensis may not be as constrained by environmental heterogeneity, as well as are less susceptible to 
traditional malaria interventions, controlling residual malaria transmission may prove more challenging and 
require additional, alternative interventions.

The importance of tree cover in shaping population structure of An. gambiae and cropland for An. arabiensis 
suggests the significant role that land cover and land use plays in providing suitable microhabitats for larvae to 
develop. This notion is underscored by the fact that the tree cover model outperformed models based on envi-
ronmental and social factors in An. gambiae, and that cropland was the top model for An. arabiensis. Too much 
tree cover may lead to a lack of sunlight and lower temperatures, which slows or inhibits the growth of larvae42. 
Whereas a lack of tree cover may lead to or be indicative of conditions that are too dry, potentially leaving adult 
An. gambiae susceptible to desiccation44,45. Whereas An. arabiensis are more desiccation tolerant44, and as such, 
can thrive in drier environments. These findings of high tree cover hindering gene flow of An. gambiae high-
light the effect that deforestation may have in promoting gene flow of malaria vectors. Further, deforestation for 
agricultural purposes may promote gene flow of An. arabiensis, as cropland areas may enhance gene flow. Thus, 
deforestation may increase invasion risk of novel malaria vector and parasite genotypes to surrounding areas, 
potentially also enhancing the spread of insecticide resistant vectors and drug resistant parasites.

This study has several limitations. First, the landscape genetic analysis included genetic data from a single 
time point. It is not clear whether these spatial trends would be consistent across time. Second, we only examined 
relationships between genetic distance and ecological variables at one spatial scale. Patterns driving gene flow 
for these species may vary across spatial scales, i.e. one factor may be more important at a finer scale than at a 
coarser scale8. Third, the genetic data used for this study was based on five to six microsatellite loci per species, 
which may provide a limited sample of the genome. Future studies capturing a larger proportion of the genome 
may improve the resolution of population structure assignment. Finally, this landscape genetics analysis only 
examined populations in western Kenya. It is likely that different factors drive gene flow patterns depending on 
the ecological setting, and thus the patterns identified here may differ from those in another region. Thus, the 
generalizability of these findings to different scales and regions is unknown and requires further investigation. 
With that said, this study has sought to extend our understanding of local malaria transmission settings in Kenya. 
Further, this approach may be broadly applicable for investigating factors driving gene flow of malaria vectors 
in other geographic regions, as well as for additional studies in Kenya.

To conclude, we found that corridors for An. gambiae in western Kenya are most likely to be areas of moderate 
tree cover (9–38%). Potential corridors for An. arabiensis are areas with cropland or cropland/natural vegetation 
mosaics. These findings underscore that human induced land cover and land use modifications may enhance 
connectivity of these species. Specifically, agricultural deforestation may promote dispersal and gene flow for 
both species. Understanding the factors that limit and promote movement (gene flow) of malaria vectors can 
help us to more effectively deploy interventions to maintain vector control by identifying areas susceptible to 
invasion from neighboring mosquito populations. Moreover, this knowledge can be leveraged to help limit the 
spread of malaria parasites by mosquitoes from nearby areas, as well as contain insecticide resistance8. Finally, 
knowledge of factors influencing malaria vector dispersal are likely to become increasingly important as malaria 
transmission becomes increasingly heterogeneous46.

Methods
Sample collection.  An. gambiae s.l. larvae were collected between May 2014 and January 2015 from thir-
teen sites across Kenya (Supplementary Fig. 1). These sites fall within four distinct geographical areas: western 
Kenya lowlands, western Kenya highlands, Great Rift Valley, and coastal Indian Ocean (Supplementary Table 1. 
Larvae were collected using a standard mosquito dipper. No more than five larvae were collected per habitat 
(pool of water) to reduce potential bias from collecting mosquito full siblings47. Larvae in a given study site were 
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collected from between 14 and 53 habitats within a 1.5 km diameter area. Collected larvae were stored in 100% 
ethanol until DNA purification. Genomic DNA was extracted using standard ethanol extraction procedures 
with phenol:chloroform48. DNA was eluted into 20 µl of TE buffer. Then, DNA was quantified using a NanoDrop 
8000 Spectrophotomer and diluted to a concentration of 1 µg/1 µl sterile water. We identified An. arabiensis and 
An. gambiae species within the An. gambiae s.l. complex using a ribosomal DNA polymerase chain reaction 
(PCR) assay49.

Microsatellite genotyping.  Six microsatellite loci were selected for genotyping An. gambiae and five loci 
were selected for An. arabiensis based on evidence of polymorphism in previous studies, reliable amplification, 
and distribution across chromosomes (Supplementary Table 2)50. We used the M13 tailed primer method to flu-
orescently label our primers51. Amplification was conducted in a total volume of 10 µl with 5 µl of 2 × DreamTaq 
Green PCR Master Mix (Thermo Fisher, USA), 0.5 µl of 10 µM primer (forward primer with M13 tail), and 1 µl 
of DNA template. Thermocycling conditions for An. gambiae and An. arabiensis were as follows: initial denature 
of 94 °C for 3 min, followed by 35 amplification cycles of 94 °C for 30 s, annealing temperature (Supplementary 
Table 3) for 30 s, and 72 °C for 45 s, and then a final extension of 72 °C for 6 min. PCR products were analyzed 
on an automated 4300 DNA analyzer (Li-Cor, Lincoln, NE), and alleles were quantified with the use of Gene 
ImagIR 4.33 software (Li-Cor).

Population genetic analysis.  To test whether population genetic diversity has been altered over the past 
two decades in the face of intense malaria vector control campaigns, namely the increase in use of insecticide-
treated bednets (ITNs)27–32, we assessed measures of heterozygosity in Arlequin52. We then compared expected 
heterozygosity, a measure of genetic diversity, from western Kenya lowland specimens collected in this study to 
previously published expected heterozygosity values in nearby lowland populations of An. arabiensis and An. 
gambiae, which were collected in 199612 and 199426, respectively, prior to the scale-up in use of ITNs. Expected 
heterozygosity was averaged across nearby populations within the Lake Victoria basin area of western Kenya 
(n = 2 for An. arabiensis-1996 and An. gambiae-1994; n = 5 for An. arabiensis-2014; n = 3 for An. gambiae-2014) 
for each loci and then compared. We used paired t-tests to assess statistical significance between expected het-
erozygosity in pre-ITN scale-up populations (1994/1996) and post-ITN scale-up (2014) populations at matching 
loci. In addition, for populations from this study (2014), we tested for deviation from Hardy–Weinberg equilib-
rium and linkage disequilibrium (LD), independence of microsatellite loci, as well as estimated the inbreeding 
coefficient in Genepop 4.253,54. We also estimated allelic richness at each study site in the R package diveRsity55.

Population structure and migration rates.  We estimated population structure using STRU​CTU​RE v. 
2.3.4, which uses a Bayesian algorithm to group samples into genetically distinct clusters56. We tested K = 1–7 for 
An. gambiae and K = 1–10 for An. arabiensis, with ten replicates for each K-level, an initial burn-in of 100,000, 
and then 500,000 Monte Carlo Markov Chain iterations. The program was run using an admixture model. ∆K 
was used to detect the number of K (clusters). The output data for the best estimate of K were analyzed using 
CLUMMP to calculate the mean cluster membership coefficients across multiple runs57. An analysis of molecu-
lar variance (AMOVA) was conducted in Arlequin to test for significance of genetic differentiation52. To test for 
isolation-by-distance, we used linear mixed effects models with the maximum likelihood population effects58 
to fit pairwise geographic distance to FST measured in Genepop 4.253,54. Gene flow frequency among popula-
tions was estimated for each species in Migrate-N v3.7.2 with the Brownian motion model and Bayesian infer-
ence search strategy59. Bidirectional gene flow between all pairwise population comparisons was considered. 
Four independent runs were conducted with a burn-in of 104 steps, sampling increment of 100 steps, and 5,000 
recorded steps in each chain for a total of 2 × 106 visited parameter values.

Landscape genetic analysis.  To test for hypothesized associations between landscape factors and gene 
flow between populations, we used a landscape genetic analysis approach. When testing the effects of environ-
mental factors on gene flow between populations, between-site characteristics are of the greatest concern60. 
Hence, landscape resistance surfaces were created based on factors hypothesized to prevent or promote gene 
flow between sites. Since mosquitoes primarily disperse to seek blood meals and oviposit, as well as have physi-
ological constraints regarding development and desiccation, we selected variables which influence these phe-
nomena, i.e., the availability of blood meals and oviposition sites (larval habitats) and environmental suitability. 
Further, we selected variables that did not closely correlate with each other, which can lead to erroneous model 
selection results. All pairs of variables had a Pearson correlation coefficient <| 0.6 | (Supplementary Table 6). 
We created landscape resistance raster files in ArcGIS 10 using climate data (annual average temperature and 
annual precipitation) from WorldClim (BIO1 and BIO12)61, percent tree cover data from NASA (MOD44B)62,63, 
cropland from NASA (MOD12Q)62,63, human population density from WorldPop64, and road proximity from 
OpenStreetMap (Table 1). Specifically, tree cover and cropland variables were chosen because these factors may 
alter the local ambient temperature and humidity as well as the availability and nutrient content of larval habi-
tats. The cropland raster file was created by reclassifying croplands and cropland/natural vegetation mosaics 
(IGBP land cover classification system) to “presence of cropland” and all other land cover types to “absence of 
cropland.” The cropland raster was categorized into two classes to limit the number of parameters estimated and 
to ensure classes were adequately represented in the landscape. The road proximity raster file was created using 
the proximity analysis tool in ArcGIS 10. All raster files were resampled to a grain size (resolution) of 2 km to 
balance computational efficiency. Landscape resistance distance among all pairs of sites was measured using 
the commuteDistance function in PopGenReport, which is based upon electrical circuit theory65. Resistance 
distance, defined as the effective resistance between a pair of nodes where all edges are replaced by analogous 
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resistors, reflects the movement cost, as well as availability of alternative pathways, providing an advantage over 
the commonly used least cost path method65.

Genetic distance between populations was calculated as FST measured in Genepop 4.253,54 and DPS measured 
in PopGenReport66 (Supplementary Table 7; Supplementary Table 8). FST is a commonly used metric in popula-
tion and landscape genetic studies, but relies on equilibrium assumptions, which may not be met. Whereas DPS 
does not rely on any such theoretical assumptions. Evaluation of locus-specific effects to overall genetic distance 
(FST) values indicated that FST values obtained from each individual locus positively correlates with overall FST 
for both species, but loci contribution to overall FST was not even, particularly with regard to the 29C1 locus for 
An. arabiensis (Supplementary Fig. 6). Since the 29C1 locus for An. arabiensis was an outlier in contributing to 
overall FST, pairwise FST was calculated both with and without the 29C1 locus. Notably, the omission of 29C1 
in calculating overall FST did not substantially alter the isolation-by-distance analysis (Supplemental Fig. 6). 
Therefore, we used pairwise FST and DPS values inclusive of 29C1 for landscape genetic analyses.

We used the R package ResistanceGA to unbiasedly optimize resistance surfaces to our genetic data67. This 
method has been demonstrated to have a low type 1 error rate for continuous and categorical surfaces, as well 
as a high correlation between true and optimized resistance surfaces in simulations68. Prior to optimizing our 
terrestrial resistance surfaces of interest (Table 1), we optimized a surface with lakes and land (no lakes) only to 
assign a resistance value to lakes. We then masked lakes in subsequent optimizations with the optimized resist-
ance assignment value from the prior analysis, so that continuous land factors were optimized independent of 
lake features. Linear mixed effects models with the maximum likelihood population effects (MLPE) were used 
to fit optimized resistance surfaces to genetic data58. The three optimized resistance surfaces with the highest 
MLPE were then bootstrapped over 1000 iterations by subsampling 80% of the sample locations and refitting 
the MLPE model. Akaike information criterion (AIC) was used to compare model fitness to genetic data. We 
excluded eastern Kenya sites from landscape genetic analysis for Anopheles arabiensis due to the biases uneven 
sampling can introduce in analysis, as population sampling was not evenly distributed across the country69.

Data availability
The authors declare that the data supporting the findings of this study are available within the paper and its sup-
plementary information files (Supplementary File S1; Supplementary File S2).
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