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ABSTRACT

Physicists have been rl;led by a great passion to identify electromag-
netism with gravitation and to relate all other fundamental forces of na-
ture. In order to achieve this, they have attempted to construct various
Unified Field Theories that relate gravitation and electromagnetism and
other fundamental forces of nature based on an extended metric tensor.
Many of these gravitational theories are developed within the framework
of Riemann geometry. However, there have also been recent attempts to
formulate theories of gravitation within the framework of Finsler geom-
etry. Unlike Riemann geometry in which the metric tensor is a function
of spacetime coordinates only, the metric tensor in Finsler geometry is
a function of both spacetime coordinates and the corresponding veloci-
ties normally referred to as tangent vectors. If the metric-dependance on
the velocity is ignored, then Finsler geometry naturally reduces to Rie-
mann geometry. Thus Finsler geometry is a natural extension of Riemann
geometry. Unfortunately, none of the current attempts has been able to
establish an exact general conservation law and field equations to describe
the dynamics and evolution of our universe. In contrast to these attempts,
our work establishes a general and exact conservation law, which through
Noether theorem i.e., with every distribution of matter and fields, there
is always an associated tensor called energy-momentum tensor, yields the
desired relativistic field equations for the description of the dynamics and
evolution of our universe. In order to develop a relativistic theory of
dynamics in a non-inertial reference frame interprevted as a Finsler space
where events are specified by both spacetime coordinates and correspond-

ing velocities, we have closely followed the procedure usually applied in
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Chapter 1

Introduction

1.1 Introduction

The formulation of a successful relativistic theory of the dynamics
of a physical system is based on the nature of the appropriate reference
frame, whether inertial or non-inertial. Einstein distinguished between
inertial and non-inertial frames by the following illustration [1], which we
quote: ‘Let now K be an inertial system. Masses which are sufficiently
far from each other and from other bodies are then, with respect to K,
free from acceleration. We shall also refer these masses to a system of
coordinates K', uniformly accelerated with respect to K. Relatively to
K’ all the masses have equal and parallel acceleration; with respect to
K, they behave just as if a gravitational field were present and K’ were

unaccelerated.’




1.1.1 Inertial reference frame

According to the clear elaboration by Einstein, an inertial reference
frame K, is defined as a reference frame in which there is no accelerating
force, and is suitable for describing the dynamics of free particles governed
by the special theory of relativity, [1, 2-3]. An inertial frame is therefore

specified by rectilinear motion with constant velocity v according to

dv
7 0 =5 v {11
where we have used the bold face to represent velocity as a vector. This

representation will be used throughout this thesis for vectors and tensors.

The system undergoes displacement in space according to

dr

—dzzvy ; =dr= vdt (1:2)

Hence, in an inertial reference frame, only the position in space changes
with time, but the velocity does not change such that after a time duration
dt, we have

dv=0 ; dr =v db (1.3)

according to equations (1.1) and (1.2). An event and any physical quan-
tity characterizing dynamics in an inertial reference frame is therefore

specified by the four-component spacetime coordinate

X = (mpyw", 0’ 2%) = cf, ¥} (1.4)




with
Bp=2" =et ; r=(z',7%, 1) = (2,9, 2) (1.5)

where c is the speed of light. An event interval is specified through
dX = (c dt,dr) = (dz°,dz’, d2?, da®) = (dzo, dz', d2?, dz®) (1.6)

The corresponding velocity four-vector follows immediately from equation

(1.6) in the form
_dX

== (c,v) (1.7)

u

which on introducing the proper time 7 according to

d drd dr 1 1
dt  dtdr > dt ~4 — (18)
c2
gives the standard relativistic form
1dX 1
u= ;E— ;u7—~(C,V) (19)
so that
dX
Hy = E~7u—7(c,v). (1.10)

The distance ds between neighbouring points in an inertial reference frame

is defined through the square of the event interval in the form

ds® = dX? = gwdztdz”, p,v=0,1,23 (1.11)



where g, is the spacetime metric. Expanding equation (1.11) and using

equation (1.6) to obtain
ds* = Pdt* — dr® = *dt? — (dz')” — (da?)® — (dz®)? (1.12)

gives the metric for dynamics in an inertial frame in the form

1 0 0 0
0 -1 0 0
G = (1.13)
00 -1 0
00 0 -1

The set of equations (1.1)-(1.13) capture the main physical and math-
ematical properties for formulating relativistic dynamics in an inertial

reference frame.

1.1.2 Non-inertial reference frame

We now proceed to develop the basic physical and mathematical fea-
tures of a non-inertial reference frame. According to the above elaboration
by Einstein, K’ is a non-inertial reference frame satisfying the principle of
equivalence. A particle in the non-inertial reference frame K’ undergoes

acceleration due to gravity according to

dv

where v is the instantaneous velocity defined in equation (1.2), while g is

the gravitational field intensity, generally referred to as acceleration due
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to gravity. From equations (1.2) and (1.14), we observe that in such a
non-inertial reference frame, a particle changes both position in space and

velocity as time varies in the form

dv = gdt ; dr = vdt (1.15)

These are the basic physical properties characterizing dynamics in
a non-inertial reference frame in accordance with Einstein’s equivalence
principle. They generalize the physical properties summarized in equation

(1.3), to which they reduce in an inertial reference frame where g = 0.

An important physical consequence of the properties in equation (1.15)
is that events and physical quantities characterizing dynamics in a non-
inertial reference frame are to be specified by both spacetime coordinates
and corresponding velocity four-vectors defined according to equations
(1.4) and (1.7)-(1.10). Hence, a dynamical quantity x, which describes
an event in a non-inertial reference frame, depends on both spacetime
coordinate X and corresponding velocity four-vector u, = v u in the

form
_dX

T dr

X:X(Xaur):X(XaX)a X (116)

"This specification of events in a non-inertial frame presented here is
more general than the specification of events within the framework of the
general theory of relativity [4-6], which ignores the varying velocity asso-
ciated with the gravitational acceleration. The fundamental proposal of
the present thesis is that a relativistic theory of dynamics in a non-inertial

reference frame must treat both spacetime position and corresponding ve-




locity four-vector ( or equivalently, momentum four-vector) as variables

specifying events.

A geometrical framework which admits both spacetime coordinates
and corresponding velocity four-vectors, generally referred to as tangent
vectors, in specifying the metric tensor, is Finsler geometry. In this re-
spect, we interpret the non-inertial reference frame as defined in this thesis

to be a Finsler space.

1.2 Finsler space

A Finsler space [4- 7, 10-11] is a real differentiable manifold M en-
dowed with a non-negative scalar function F(z,y) of two sets of argu-
ments, namely, the points z = z* and y = y# such that z* € M and
y* € TyM. x* denotes spacetime coordinates, y* velocity four-vectors
also referred to as tangent vectors and T, M is the tangent space to M at
the point z. © = 0,1,2,3 and so shall be the values of any other greek
letter used in this thesis. The function F(z,y) is positively homogeneous
of degree one with respect to y* such that

_ ldz#

F(z, ky) = kF : b=
(z, ky) () ; y ===

(1.17)
for fixed £ > 0. ¢ is the velocity of light and 7 is the proper time. If

we square F'(z, ky) in equation (1.17) and perform partial differentiation

(twice) w.r.t k, we obtain (for k = 1)

1, ,0%F(z,y)

59y Byroy

F2(.'];’ y) = 2

(1.18)



from which follows the metric tensor of Finsler geometry 9uv(x,y) defined

as
10°F*(z,y)

e (1.19)

G ) =

It is clear from the above discussion that the metric tensor speci-
fying Finsler geometry depends on both spacetime coordinates z* and
corresponding tangent vectors y¥; it is therefore more general than the
metric tensor specifying Riemann geometry, which depends on spacetime
coordinates z# only. As we are aware, Riemann geometry provides the

geometrical framework for Einstein’s general theory of relativity [12-16].

In this thesis, we develop a relativistic theory of dynamics in a non-
inertial reference frame through application of the mathematical proper-
ties of Finsler geometry, following closely the procedure usually applied in
formulating the general theory of relativity through tensor analysis within
Riemann geometry. Work baséd on Finsler geometry has attracted a great
number of researchers [8- 9, 17- 19]. In particular, similar attempts to
formulate a theory of gravitation based on Finsler geometry have been
made earlier by other researchers with various degrees of success [8-9]. In
contrast to those attempts, our thesis establishes a general conservation
law, which by Noether’s theorem, yields the desired general field equa-
tions within Finsler space. We observe that the generalized relativistic
field equations provide the appropriate theoretical framework for accurate

cosmological models of the universe.



1.3 Statement of the problem

For a very long time, physicists have been searching for the correct
generalized theory of gravity. The earlier attempts were unsuccessful as
they were formulated in the context of general relativity based on a lim-
ited theoretical framework, i.e., Riemann geometry. Current attempts to
address the same problem have expanded the working theoretical frame-
work to Finsler geometry. However, the models and assumptions em-
ployed have made it difficult to obtain an exact and generalized theory of

gravity.

It is therefore the goal of this thesis to develop an exact generalized
theory that would characterize relativistic dynamics in a non-inertial ref-

erence frame based on Finsler geometry.

1.4 Significance of the study

The exact and generalized field theory formulated in this thesis pro-
vides the appropriate theoretical framework for accurate cosmological
models of the universe. It further provides the starting point for develop-
ing theoretical models for physics beyond Einsten’s general relativity and
the Svtandard Model in quantum field theory. It may account for observed
effects in the universe such as anisotropy, acceleration and expansion of
the universe, as well as the Lorentz invariance violation effects, which are
the major challenges of theoretical physics at the moment. It is observed
that our generalized relativistic field equations governing relativistic dy-

namics in non-inertial reference frames have the necessary physical and



mathematical ingredients to address these problems.

1.5 Aims and objectives of the study

The overall objectives of this study are:

e 'To develop a relativistic theory of dynamics in a non-inertial refer-
ence frame through application of mathematical properties of Finsler

geometry.

e To relate the developed field theory to the challenging problems of
theoretical physics such as anisotropy, acceleration of the universe

and Lorentz invariance violation effects.



Chapter 2

Literature review

The search for an elaborate field theory of gravitation has been a long
on-going research. Until the 1910s, Sir Isaac Newton’s law of universal
gravitation was accepted as the correct and complete theory of gravita-
tion. However, this theory is only accurate in its predictions regarding
everyday phenomena for systems in which the velocities are small com-
pared to the speed of light and where gravitational potentials are weak

enough so as not to cause large velocities.

In order to understand fully the dynamics of systems whose speed
approach the speed of light, a relativistic theory of dynamics is required.
This led to the advent of Einstein’s special theory of relativity in 1905 [20-
23]. With this theory uniting the concepts of space and time into that of
four dimensional flat space-time (named Minkowski space-time after the
mathematician Hermann Minkowski), a problem became discernible with
Newtonian theory. However, even with the advent of special relativity,
gravitational effects such as redshift could not be fully explained. In
order to account for such effects, there was need to search for a theory

of gravitation compatible with the principle of relativity. The basis for
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the development of such a theory was the idea first conceived by the
mathematician Ceorg Bernhard Riemann in 1854 [20-22]. According to
Riemann, the crucial ingredient of the gravitational theory is the concept
of gravitation, not as a force, but as a manifestation of the curvature of

space-time.

After a decade of searching for new concepts, Einstein came up with
the theory of general relativity based on Riemann’s idea in 1915 [22]. This
theory has been regarded as the prototype of all modern gravitational
theories. In Einstein’s hands, gravitation theory was thus transformed
from a theory of forces into the first dynamical theory of geometry, the

geometry of four dimensional curved space-time.

The underlying principle behind the general theory of relativity is Ein-
stein’s strong equivalence principle i.e., physics is the same in the presence
and absence of gravitational fields. Less well tested than the weak Ein-
stein’s equivalence principle (the motion of a particle is independent of its
internal structure or composition), the strong version requires Newton’s
constant expressed in atomic units to be the same number everywhere in

strong or weak gravitational fields.

Observing that there is very little experimental evidence bearing on
this assertion, Dicke and his student Carl Brans proposed in 1961 [20]
some modification to the general theory of relativity. In the Brans-
Dicke theory, the reciprocal of the gravitational constant is itself a one-
component field, the scalar field, that is generated by matter in accordance
with an additional equation. Then the scalar field as well as matter play

a role in determining the metric via a modified version of Einstein’s equa-

11



tions. The Brans-Dicke theory reduces to Newtonian theory for systems
with small velocities and weak potentials i.e., it has a Newtonian limit. In
fact, Brans-Dicke theory is distinguishable from general relativity only by
the value of its single dimensionless parameter which determines the effec-
tiveness of matter in producing the scalar field. The larger the parameter,

the closer the Brans-Dicke theory predictions are to general relativity.

However, constancy of this parameter is not conceptually required.
In the generic scalar-tensor theory studied by Peter Bergmann, Robert
Wagoner, and Kenneth Nordtvedt (BWN theory) [20, 24], this parame-
ter is itself a general function of the scalar field. It remains true that in
regions of space-time where this parameter is numerically large, the the-
ory’s predictions approach those of general relativity. Initially a popular
alternative to General Relativity, the Brans-Dicke theory lost favor as it
became clear that the dimensionless parameter must be very large, an

artificial requirement in some views.

Bekenstein developed a variable mass theory (VMT) [20] as a special
case of the BWN theory devised to test the necessity for the strong equiv-
alence principle, hence the theory is not different from the general theory

of relativity.

In 1983, Modified Newtonian Dynamics (MOND) theory [20, 24] was
developed. This was a non-metric and non-relativistic gravitational the-
ory based on Newton’s gravitational theory. It is not therefore suitable

for describing relativistic dynamics in the universe.

It is clear that apart from general theory of relativity, there exist a

number of alternative theories of gravitation. They all employ the Rie-

12



mann geometric model of spacetime borrowed from general relativity, and
differ only by the field equations which describe the self-consistent dy-
namics of spacetime and matter. The cosmological models based on such
theories differ accordingly. Common to them, however, is the fact that
spacetime being Riemann and, consequently, locally isotropic, preserves

its local isotropy during the evolution of the universe.

The preservation of local isotropy of space and Lorentz transforma-
tions is now questionable. There are some indications [25] that in our
epoch, spacetime, on the average, has a weak relic local anisotropy, and
that it therefore should be described by Finsler geometry rather than
Riemann geometry. A strong local anisotropy of spacetime must have
occurred at an early stage in the evolution of the universe as a result of
high temperature phase transitions in its geometric structure, caused by
a breaking of higher gauge symmetries and by the appearance of massive
elementary particles. If this was the case, it is natural to assume that the
local anisotropy of space decreased to its present low level (< 1071°) [25]
due to the expansion of the universe. The existence of a local anisotropy of
spacetime is indicated by an anisotropy of the relic background radiation
filling the universe; a breaking of the discrete spacetime symmetries in
weak interactions; and the absence of the effect of cutoff of the spectrum
of primary ultra-high energy cosmic protons i.e., of the so-called GZK cut-
off. The idea of a possible violation of the usual Lorentz transformations
at Lorentz factors (y > 5 x 10'°), and of a corresponding generalization of
the relativistic theories was suggested first in [25]. Its motivation rested
on a discrepancy, assumed at the time, between the theoretical predic-

tions and the experimental data relating to the behavior of the spectrum
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of primary ultra-high energy cosmic protons. If the usual Lorentz trans-
formations would correctly link inertial frames at relative velocities very
close to the velocity of light, then, in the case of uniformly distributed
sources, the energy spectrum of primary cosmic protons should show a
cutoff (due to inelastic collisions of the protons with cosmic background
radiation photons) at proton energies ~ 5 x 10%V. However, as it has
now been firmly established, such a prediction is at variance with present

experimental data [25].

Other researchers who studied Einstein’s gravitational theory include
Elie Cartan, hence Einstein-Cartan theory. The motivation behind Car-
tan’s modification of Einstein’s general theory of relativity was the notion
of torsion. Cartan proposed to relate torsion tensor to the density of in-
trinsic angular momentum well before the introduction of the modern
concept of spin [16]. He seemed to have used the idea of asymmetric
affine connection mentioned first by Eddington in 1922 [16]. In this way,
Cartan expanded the Riemann spacetime with affine symmetric connec-
tion (V4 theory) to Riemann-Cartan spacetime with affine asymmetric
connection (U, theory) to accommodate the new geometric property of
spacetime, spin tensor. In the Einstein-Cartan theory (sometimes called
Riemann-Cartan theory), torsion is associated with the antisymmetric
part of an asymmetric connection and is responsible for dislocation of
spacetime leading to its quantization. The early universe cosmological
problem is associated with elementary particle physics [16]. Elementary
particles are not characterized by mass alone but also spin which occurs
in units of g As a mass distribution in spacetime is described by energy-

momentum tensor, so a spin distribution is described in a field theory by a

14



MASENO UNIVERSITY
S.G. S. LiBRARY

spin density tensor. Similarly, as mass is connected with the curvature of
spacetime, so spin should be connected with another geometric property
of spacetime i.e., torsion. In the Einstein-Cartan theory, the field equa-
tions in empty space are the same so that the majority of its experimental
verifiable consequences for the solar system cannot be distinguished from

the predictions of general relativity.

Einstein’s theory was further studied by Kibble (1961) and Sciama
(1962) sometimes referred to as Sciama-Kibble theory [16]. Sciama’s
approach is that of a gauge theory of the homogeneous Lorentz group
starting from a Riemann background i.e., Einstein theory with affine con-
nection. In his approach, Einstein’s theory is manifestly gauge invariant
under the local Lorentz group. Kibble’s approach on the other hand
starts from Minkowski space and a passive interpretation of the Poincaire
transformation. Sciama-Kibble theory is invariant under local rotations,
hence leads to the same geometry i.e., Einstein-Cartan geometry and is

therefore within the U, theory involving torsion.

The geometrical framework of Einstein-Cartan or Uy theory provides a
rudimentary basis for its extension. If spacetime turned out to be locally
anisotropic, we would be forced to consider a richer geometrical framework
that would take care of matter directions. This would naturally lead to

the modification of the general theory of relativity using Finsler geometry.

Another step towards Finsler geometry from Einstein-Cartan geome-
try was the urge to formulate a unified field theory. This, upto now, has

attracted a number of researchers over a period of over 50 years, dating
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back to Randers’ [26] original suggestion of a unified metric in the form

dxt dxv fl_x_“
dr dr B dr

ds = (4/ 9w YdT

Although Randers’ spaces are Finsler spaces, Randers’ metrics are not
absolutely homogeneous, hence the metric is strictly Riemann. Therefore,

Randers’ metrics fit in the context of general relativity.

Work in [26] tried to formulate a unified field theory based on ’free’
geodesic connections in Finsler space. The equation of structure based
on ’'free’ geodesic connection is found to incorporate, as a special case,
equations which are closely comparable to Einstein’s equations of gravity.
"The method of ’free’ geodesic equation is based on Randers’ metric, hence
is unsuitable for description of dynamics within the framework of Finsler
geometry as the metric is Riemann. Furthermore, in the geodesic theory,
the geodesic function defines ’the Berwald connection which is known to

be nonmetric compatible.

Other work [27] addressing this subject develops the physical moti-
vation for Finsler structure using gauge transformations on the tangent
space. The author’s method is based on the fibre bundle and is aimed at
the unification of gravitation and electromagnetism. The theory suffers
setbacks due to the use of Randers’ metric and assumption of surfaces of

constant curvature.

Further recent research in this area is the work by Yazaki [8] and Ikeda,
[9]. Yazaki [8] considers a generalization of Einstein’s field equations in

a Finsler space using tensor analysis and the assumption of surface of

constant curvature. lkeda [9] on the other hand approaches the same
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problem using vector bundles approach under the same assumption of
surface of constant curvature and ultimately arrives at field equations in
Finsler space. Therefore the field equations derived by these two authors
are not general enough to describe general features of dynamics in the

universe.

In [28-30], a gravitational theory is developed based on vector bun-
dles and differential forms. The formulation of this theory is based on
Modified Newtonian Dynamics(MOND), which as mentioned earlier is a
non-relativistic gravitational theory. Furthermore, the field equations in
this theory are derived through Berwald covariant differentiation, which

is non-metric compatible.

Other recent research [31-32,33] obtain Einstein field equations based
on Friedmann-Robertson-Walker (FRW) model. In this model, field equa-
tions are derived from curvature tensor of Riemann metric and the model
is similar to that formulated earlier by Bekenstein. Even though the
model is introduced within a Finsler geometrical setting, field equations
similar to Einstein’s equations of general relativity are derived from a
Riemann metric to account for Lorentz violation effects in terms of the
cosmological acceleration. Therefore, relativistic dynamics in this model

strictly fall within the context of the general theory of relativity.

In [43], Cohen and Glashow developed Very Special Relativity model
to account for Lorentz non-invariance effects. Its generalization to in-
clude features of Finsler geometry by other authors [44]. The model is
strictly based on Einstein’s theory of special relativi‘ty, which has its own

limitations as discussed above.
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Further recent works [34-38] consider Einstein’s equations of gravity in
Finsler geometry. By imposing nonholonomic constraints on generalized
- metrics, connections and adapted frames, the author generates solutions
in Einstein’s gravity. However, the work has an underlying assumption of

dynamics on surfaces of constant curvature.

"The above recent works by various authors present various theoretical
models of gravitational theory. However, most of them have the dynamics
based on vector bundles approach and make use of assumption of surface
of constant curvature. Other models are based on Berwald covariant
differentiation that are non-metric compatible. It is therefore clear that
none of this work has been successful in the development of an exact
theory of gravitation. Our thesis addresses the problem of formulation of a
relativistic theory of dynamics in a non-inertial reference frame within the
framework of Finsler geometry. Using tensor analysis but without using
the assumption of surface of constant curvature, it turns out that the field
equations obtained by this method are more general and exact, hence are

suitable for describing dynamics in a non-inertial reference frame.

In the next chapter, we give the method that we shall adopt to achieve
the desirable results in Chapter 4. In particular, we derive Cartan’s cur-
vature tensors and the corresponding Bianchi identity in Finsler space

that we shall later need for the derivation of our field equations.
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Chapter 3

Methodology

In this chapter, we give an overview of Finsler geometry, followed by
the derivation of Cartan curvature tensors. We then proceed to derive the
associated Bianchi identity necessary to obtain the desired conservation

laws and field equations in a Finsler space.

3.1 Review of Finsler geometry

As already mentioned in the Introduction, a Finsler space [4-7, 10-11]
is a real differentiable manifold M, endowed with a non-negative scalar
function F(z,y) of two sets of arguments, namely, the points z* and y*
such that z# € M and y* € T,M . The function F(z,y) is positively ho-
mogeneous of degree one with respect to y* as defined in equation (1.17).
If we square F'(z,y) in equation (1.17) and perform partial differentiation
(twice) w.r.t k, we obtain (for k = 1) equation (1.18) from which follows

the metric tensor of Finsler geometry as defined by equation (1.19).

The metric function of Finsler space F(z,y) can also be written in

19



terms of Cartan torsion tensor C,,, as [10]

1 ¥F%(z,y)

C Ve = o
. 4 OyrOy» Oy

(3.1)
The Cartan torsion tensor satisfies the property
Cuat =1,

Ifz# = (2 2!, 2?, 2°) are the spacetime coordinates and y* = (y°, ', 32, 1)
are the corresponding tangent vectors, then at each point (z#,y*), the

metric tensor g,g is such that

9o = Gap(z", y"). (3.2)

Clearly, we recognize the tangent vector y* as defined by equation (1.17)

to be the velocity four-vector
B =gy (3.3)

according to our definition in equation (1.10). This four-velocity is the in-
stantaneous velocity of a particle or system as defined by equation (1.17).
The rate of change of the four-velocity gives us the gravitational field in-
tensity or acceleration for dynamics of a particle in a non-inertial reference
frame within the framework of Finsler geometry. In such a non-inertial
reference frame, a particle changes both position in space and velocity as
time varies according to equation (1.15). Therefore, events and physical
quantities characterizing dynamics in a non-inertial reference frame are

to be specified by both spacetime coordinates and corresponding velocity

20




four-vectors. Since physics is formulated in a geometric way, we shall
use the appropriate language of differential geometry to describe rela-
tivistic dynamics in a curved spacetime. So specification of position and
four-velocity vector for a particle undergoing dynamics in a non-inertial
reference frame is associated with a vector field which is a function of
the independent variables X(z,y). Since the spacetime information is
encoded in the Finsler metric g,,(z,y), throughout this thesis, g,;,, is
understood to mean g, (z,y) with the lower case z and y denoting space-
time coordinates and tangent vectors respectively. We use upper case X

to denote vector field X(z,y).

3.2 Curvature tensors in Finsler Geometry

Covariant differentiation in Finsler geometry has been developed in
several different forms [7,10-11]. We consider only Cartan’s form of covari-
ant differentiation and associated curvature tensors in Finsler geometry,
since these are relevant to our model of relativistic dynamics in a non-

inertial reference frame.

We denote Cartan’s covariant derivative operator by V4 and its action

on a vector field X*(z,y) is given by

oxX*  9XH oG~

10 = e
VeX' =55 i 9B

+ T g X (3.4)
where the Cartan connections I'*#,4 are defined by

oGP oGP oGP

o = Yowr = Oz = Con g + Covt s

auv

(3.5)
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0GP oGP oGP

FQNV = quu o Cauﬂb? = Yaur — Cup,@% + CaVﬁW (3,6)
with
.a:-——_: (S o o, a __ Z 0 pﬂ. SO A Vi v e
¢ dT y FI% G 2’7 pBY Y5 YT T 2—_01'0‘ x
(3.7)

In the above, [* is a unit vector in the direction of £ [10].

The partial covariant derivative of a vector field X* w.rt y = & is

given by
FoxX*
B G
DﬁX = BYY: + A aﬁX (38)
Al = FClyp (3.9)

Using Cartan’s covariant differentiation (equation (3.4)), we obtain com-
mutation relation of the form [10]

1
X v 1 (3.10)

VaVpX! — VpVaX* = Kl XY — PooKY,

which together with equation (3.8) gives

VaVpXF: = VaVoXt = Kl X" — (5,X" — A%, X7 )K"

= K*

vBa

X.V + Auyﬂr ,Vyﬁal’yXT e ,I;ﬂalfypuxu.

(3.11)

If we interchange 7 and v in the second term on the R.H.S of equation

22




3.11) and noting that A*,; is symmetric in the lower two indices, we get
¥

VaVpX: — VgVoXF = K5, X" + A% K gl XY — K2, [, X

= (Kfj‘ﬂa + A* K g0 l7) XY — Bal DL X

(3.12)
Making use of equation (3.7) and (3.9) gives
Al = CE 57 (3.13)
so that upon using equation (3.13) in equation (3.12), we write

VaVpX¥ — VVX* = R,5, XY — K2, 175, X¥ (3.14)

where we identify
Rul’ﬁa = Kﬁﬁa 2 CHVTKT'y,Baj{Y (315)

to be the first Cartan curvature tensor defined explicitly by [10]

OT*,5 O8G0,  OT*M,, OT*,,8G°

I — - -
( R% e (o= Fr A e o5 a:7) T
e A e PYes aG?
12 e, — T ol T i = me
g8 ~ ganaap ~ F Pgze T Fasga) T

[P, T — I LT (3.16)




while

OT*,g OT*,30G® O™, OI*,,0G®
12 e _ = —_—
Kivpa = ( Oz oo ai:a) ( OzP oo aa':ﬁ)+

T T — T, 5T, (3.17)

Application of the property of the Cartan torsion tensor Cuad” =0 to

equation (3.16) gives the result

R* pai” = K", gad". (3.18)

Let us now derive the second curvature tensor in Finsler geometry.

The commutation relation involx}/ing equation (3.8) can be written as
F Fo
DabaXF — Db XH = 5 ——(>X*) + A¥ o (pX7) — _j;E(DO‘XH ) + A¥rp(>6XT)

o
o FOXH FoX? ]
{ o a( LYY + A* 75X7)+AM’70¢( 9P +A7TﬁX )}

XH FOX"
~{Fg ﬁ(Fg w ALK + At (= 8

+ A X"}
(3.19)

Equation (3.19) can be expanded to read

OF OX# ih Fo2X* " X7"0A*, 5 A"A,Bc?X7
ozre 05? ° Qr2ds? oz® 0z

X" .
A“'ra 8_335—) = A“WaAWTﬁX } -

PabpXt — g XF = {F(

{ ((9F oX* £ Fo*xX+ % X"0A*,, " A*L,0X7
018 0z = 0Pz ozP ozP
oxX" :
Alrpars) + AVrp AT X7} (3.20)

We observe that the second and eighth terms on the R.H.S of equation
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(3.20) cancel. If we denote 25 #v, then equation (3.20) can be written

as

oOXH oXH* 8A O0A*
B B ] _ vﬁ YNy
PabaXHt — g X = F(Fia 557 Fis 8 5ma —) + ( 550 )X +
oxX" o0X oxX" oxX’"
n AP F(AF = — AP
F(A’ ’Yﬁaj:a A’Y axﬂ)—i_ ( Y axﬁ . ﬁaxa)+
(AuvaA7rﬁXT = AuTﬂATVQX7)- (3'21)
We note that the sixth and seventh terms on the R.H.S of equation (3.21)
cancel. Furthermore, since v is a dummy index, we can let v — 7 in the
fifth term so that it cancels with the eighth term on the R.H.S of equation
(3.21), reducing this equation to
oXH oX* 8A OA*
o>pXF —Dgig X# = F(Fyaemor — Fy = = X
Dobg Dby X : (F’ 550 oy — )+ ( 558 )X +
(A“7aA77ﬁXT - A“TﬁATvaXA’). (3.22)
Let us now consider the fifth and sixth terms on the R.H.S of this equation
as follows: let 7 — v in the fifth term, while 7 — v and v — v in the
sixth term. If we now factorize the vector field X" outside the bracket
term, then equation (3.22) becomes |
oXH OXH OA* OAF
o> XH — o X' = FlBem— —Fps——) 4+ F w8 _ XY
PaPp R = b Fogen ~ Pz T F (g — a9 )X
(AF,AY g — A 3ATY )XY, (3:23)
If we let
Suvaﬁ = (AuvaAvv,B = A“WﬁA7va) (3-24)
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then we can write equation (3.23) as

oxX# oxXH OAH 8A
B_ 8 _ va
DabgXH —bg>o X* = F(Fya——r 58 —Fis 9ia )+E( D

JXVE84 s XE
(3.25)

But the third and the fourth terms on the R.H.S of equation (3.25) forms

an identity of the form

OA5  OAM.,
oi* 0P

F( ) = Fj;aAufYﬁ S F;bﬂAufya (326)

so that equation (3.25) can be written as

oxX*# BX“
St A"eXT)~Far (F

l>a[>,3X‘u—-l>ﬁl>aXN = ( +AM7aX7)+SuVaﬁXV.
(3.27)
Using equation (3.8) in the above bracketed terms reduces equation (3.27)

to

PaPaXH — Dgoo X# = FiabgXH — Fiab XM + S W ol (3.28)

From this, it follows that S*,,s defined in equation (3.24) is the second

curvature tensor in Finsler geometry.

We obtain the third curvature tensor through mixed commutation

relation involving equations (3.4) and (3.8). By definition, we have

VaD,gX“ = VQ(D[;X”)

=V (Fai + AP X7

6X“
= (F )+X v Aﬂﬁ’y + A”MV X7 (3.29)
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and

bV aXH = F%(V XH) + AP Vo XY — AT,V XH (3.30)

so that using equation (3.29) and equation (3.30), we have

) oX* 8
vaDﬂX — DﬁVaX“ = F(Va(w) - W(VQXN)) -+

X’YVQAM57 — A“MVQX’Y + A“@YVQX’Y + A”ﬂavvx".
(3.31)

We note that the fourth and fifth terms on the R.H.S of equation (3.31)

cancel, whereas the term in bracket is an identity such that

oxX* 9 oX# g
0 geF ~ 58 Vo X! = va(A%a)n — ==L TN, (3.32)

OxP

Hence, we can rewrite equation (3.31) using equation (3.32) as

© M 2% d ar*“"ﬂl vy vy W ¥ W
VaDﬁX —ngax = F 5 V A ﬁal —F— 58 X"+X"V, A ﬂfﬂ'A ﬁaV»yX
(3.33)
or
n *U
VQDﬁX“—DﬁVQX“ = FaX v A‘S,@al —-(Far ”O‘—V A”,@,Y)Xfy"l-AWg V X¥,

ozl ozb

(3.34)
We can rewrite the first term on the R.H.S of equa‘pion (3.34) using equa-
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tion (3.8) so that equation (3.34) becomes

O™,
0P

VabpXF—bgVoXH = (bsXH—A*5, X"V, A gl —(F —Vo At ) X +A"5, V., XA,
(3.35)
If we let v+ — 7 in the third and fourth terms on the R.H.S of equation

(3.35), we get

VabpXF =gV Xt = bsXFV, A%, 07 — A¥5 VA%, VX7 —

T, e T Y M
(3.36)
Equation (3.36) can be rewritten as
B B ‘ w 025y O rq 7 5 v B T
Vang —p>gV X¥ = X V,YA B! = (F G + A 5TV7A sal” — VoA gT)X +

A X7 X, (3.37)

Consider the R.H.S of equation (3.37). Let § — v in the first term and
7 — v in the second, third and fourth terms while v — v in the last term

so that equation (3.37) becomes

' g™
VabpXHt—pgV X = DVX“VA,A"gaW—(Faaiﬁ —I-A’“‘,;,,V,,A‘sﬂaﬁ—VaA”,g,,)X”—{—A”ﬂaVl,]
(3.38)
If we now define
% or*,a w 6 I
P vaf = F 5P + A 5VV7A Ba — VaA B (339)

28



then equation (3.38) reduces to
VQDQX“ — DﬂVaX" = DVX”V,,A”ﬂaP = P”VQQXV -+ V,,X“Ayga (340)

P* .5 in equation (3.39) then defines the third curvature tensor.

We have thus obtained all the three curvature tensors R*,z, - o
and P*,,s in Finsler space through Cartan covariant differentiation as

defined in equations (3.15),(3.24) and (3.39) respectively.

3.3 Bianchi Identities in Finsler Geometry

Bianchi identities are usually derived from curvature tensors. In this
thesis, we are interested in Bianchi identities derived from Cartan’s cur-
vature tensors applied within the framework of Finsler geometry. In par-
ticular, we find the second Bianchi identity to be of great relevance to our

work.

For the sake of completeness and application below, we state the first

Bianchi identity [10] in Finsler geometry as

VK o + VoK 1o + VoK 5, +
O™ s O™ o
ol found

or*,,

é
( aj:(; K ova T

K°,08 + K%,5,)i% = 0. (3.41)

We proceed to derive the second Bianchi identity that we shall use in
the derivation of our generalized field equations within the framework of

Finsler geometry. To do this, we use equation (3.13) in equation (3.15)
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to write

Ry = K’jﬂa + AF L KT gl
or

K’lfﬁa = RF 50 —~ A¥ e K 18017

But we can write this equation in the form

-

K;Ywa = R’proc - 1Ary;rrl<7-auo¢lor . (3.42)
Covariant differentiation of equation (3.42) w.r.t 2° gives '

VK o = VoR o — VAT 1 K pel” — A7, VK 6l (3.43)

Cyclic interchange of v, a, 8 in equation (3.43) gives other equations as 2

VoK os = VR jap = VoA 1 K oosl” — A, VK 0sl”  (3.44) 1

and

VoK 80 = VoR gy — Vo A7 1 K 05,07 — A7, Vo K 05,07 (3.45)
Adding equations (3.43), (3.44) and (3.45) gives

vﬁKV;wa it Vvauaﬁ it vaK7uﬁV =
VR o + ViR uag + VR 6,

—VA K val” = VoA K apl” = VoA K opl”

A" (VoK e + VoK 0as + VoK 0p, ) 1% (3.46)




But applying the first Bianchi identity equation (3.41) to the left hand

term and to the bracketed right hand term, we get

or*7

I ,
) = chn/a o 5/L04 K(Saﬁu)xa =

_ ( O™ up
ox?

8 1)
VR e + ViR 4ap + VoR 45, —

Kéaaﬁ i

VA" 1 K ol® — VA" 1 K gl — VoA K o, 17 +

aP*TUV ar* o aF*Taa s D70
Alur (g7 Kpon + 55 Kowat oy K pp,) 2017, (3.47)

oL 1)

Writing 7 = F [° and #° = F [? and bringing the L.H.S of equation
(3.47) to the right, we have

81_\*7“1/ aF uﬁ 8]:1*7/1(1

F( 970 Kdaaﬁ+ B Kdaua 910 Kéaﬁv)lo"i‘
o 5, or’, ™" g o
A’Y”T(FWK‘SPMJ;—F - K e + F—gﬁ—xaﬁy)m + VR o +

ViR7u0p + VaR7us = VoA 4 K oval” = VoA K o0l — VoA K o, 17 = 0.
(3.48)

Interchanging p and o in the second bracketed term and letting 7 — § in

the last three terms on the L.H.S of equation (3.48), we get

s FaT*,,
0 = VBR7uva + VVR’YMaﬂ + vaR'y'uﬂl, -Jr— l K UQB(W i
For-r,, For+"
vyA,yMé T A’Y’“— oL’ : lp) 25 loKddva( oo 5 VﬁA’yua ==
FOT*" b For*.., FOr*"
A, = ——= 1) 1 1K, ( o —— VA s+ AT T__;%J_Palp).
(3.49)
But we can write
Rl 3 R A (3.50)
0z u .
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so that the above equation reads

VR o + ViR uag + VaR7 g, +
Fore,,
8—5'65“ = V,,A7N5 + A’Y”TVPATV(s lp)

For*
+10K50VQ(W% — VA5 + A"V, AT g5 1°) +
FOr*7

o

K o (

K o0 ( — VoA 5+ A7, V,AT 45 1°) = 0. (3.51)

Using Cartan’s third curvature tensor (equation (3.39)), we can replace

the terms in bracket and write the above equation as:

0= V,BR’yuua‘i‘vvR’yuaﬁ’*'vaR’yuﬁuJf’lGKéaaﬁPvuu6+laK50vaP7uﬂ6+laKéaﬁuP7ua6~
(3.52)

Using equation (3.18), we write the above equation as

0= vﬁR’Yuva‘l"vz/R’yuaﬁ+VaR’ypﬂu+ld (R(saaﬁP’y;wé+R60VaP’y,uﬁ5+R5oﬂuP’yua6>-
(3.53)

Replacing o with 7, we get

VBR7uua+VVR7,uaﬁ+vaR7u,Bu+lT (R(sraﬁply;wé+R61uaP7u,66+R57ﬁVP’yua6) = 0.
(3.54)

or

VﬁR’yuua'!'vvR’Yuaﬁ‘{'vaR’yﬂﬁqu' (RsTa,BP’Yuu6+RéruaP7u,35+R67ﬂVP7ua6)lT = 0.
(3.55)
This is the desired second Bianchi identity. If we let R* 45 I¥ = R" 5,
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then this equation is rewritten as

VR 1ot VR 1ap+VaR g+ (P s R 05+ P7 55 R* 0+ P, 0sR*5,) = 0.
(3.56)
Further letting
PP e =0 o, (3.57)

equation (3.56) takes the form

vﬁRﬁyul/a = vz/R’yuaﬂ 4= VaR’yuﬂu + (ny;waﬁ + nyuaﬂu A+ Q7,u,6ua) = 0.

(3.58)
If we now define
D svns = Q" e + Qs + Q" ppuey (3.59)
then equation (3.58) becomes
Ve s F Vel g + VaBR yge + D ypag =0 (3.60)

This is the general form of the second Bianchi identity with respect to
Cartan covariant differentiation in Finsler space [10]. It agrees exactly
with the Bianchi identity obtained and used before in [8] as a starting

point for deriving field equations within Finsler space.
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Chapter 4

Results and Discussion

In this chapter, we start by contraction of the general form of the
second Bianchi identity equation (3.60) obtained in the previous chapter.
The contraction of the second Bianchi identity is based on two alternative
forms, giving rise to the desired conservation law in two forms. On ap-
plication of Noether theorem, general relativistic field equations suitable
for describing dynamics in a non-inertial reference frame are obtained in

two forms.

4.1 Contracted Bianchi identities

‘We now proceed to obtain the contracted Bianchi identities based on
equation (3.60). Applying the antisymmetry property R 5, = —R”,,,3,

we write equation (3.60) in the form

V,BRryuua s VVR’Yuaﬁ = Vavawﬁ s D’Yaﬁw/ =0 (4'1)
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Contracting this in 7, v and multiplying through by the metric tensor
yields

9"*VRua + ¢"*V,RY jap — ¢**VaRys + ¢#*Dyg, = 0. (4.2)
But the second term in equation (4.2) can be written as

Vug"*RYuap = Vg g" Ropas
= V.9 ¢" Ruopa
= V9" R%ga
= —=V,9"Ryp
= —-V,R’

which we substitute in equation (4.2) to obtain
VﬂR = V,,Ryg = VaRa,g + Duﬁu =) (43)

or

VR — V,,Ruﬁ — VQRal@ +Ds=0. (4.4)

If we let v — «, then equation (4.4) becomes
V,@R = 2VaRaﬁ + Dﬁ =

or

VaRo‘g = —v,@ R = -2'D5 k (45)
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Using the metric tensor, we write the second term on the L.H.S of equation
(4.5) as
VﬁR = VagaﬁR (4.6)

so that equation (4.5) becomes

1 1
VaRaﬁ == EVagaﬁR = §D5

or

Vo (R — %gaﬁR) = —;-Df’. (4.7)

Using tensor calculus, we can express
Df =D, (4.8)

which we substitute in equation (4.7) to obtain an alternative form

1 et
Vo (R — 5gaﬁR) = §Dﬂ“ o (4.9)

This form of the contracted Bianchi identities coincides with that ob-
tained in [8]. We observe that in the absence of the term on the R.H.S.,
equation (4.9) takes the form giving Einstein’s equations of general rela-
tivity (in the limit of constant velocity). However, this term does not just
vanish in Finsler geometry, since it is associated with the varying velocity
in the tangent space. In order to rewrite equation (4.9) as a conservation
equation, the term on the R.H.S must be written in ’phe form of a covariant
derivative. In an attempt to rewrite %D'g’“’uy as a covariant derivative,

Yazaki [8] used an approximation (assumption) that the tangent space is
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a surface of constant curvature and therefore applied the tensor identity
[8-10]
R%u = (yu0% — 0%, K (4.10)

with constant K to derive approximate conservation laws and associated
field equations. We observe that this form is not appropriate for deriving
exact conservation laws and field equations within Finsler space. The
field equations obtained by Yazaki [8] based on direct contraction of the
Bianchi identities in equation (3.60) are therefore not exact and are less

general.

In this thesis, we follow an alternative approach to derive exact con-
servation law and field equations based on these Bianchi identities. To
rewrite %Dﬁ’“’ uv 10 the form of a covariant derivative, we make some gen-
eralized assumptions of two forms with the first form given as Q7 poep =
Y ygV,S" pa and the sécond form as Q"poas = 978V 8" poa. The re-
sulting conservation law and field equations shall thus be given in two

forms.

4.2 Exact Conservation law

Bianchi identity in equation (3.60) provide the starting point for de-
riving a general conservation law and the associated field equations within
Finsler space. The resulting conservation law and field equations shall be

given in two forms.
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4.2.1 The first form of conservation law

To obtain the first form, we start by rewriting each term on the R.H.S
of equation (3.59) in the form

O o= B S | (4.11)

If we use equation (4.11) in equation (3.59), we get

D'y;waﬁ = (yTyﬂvTS’Y/.wa + yTyUVTS’yuaﬂ + yTyOCVTS’y[.L,BV)‘ (412)

Using equation (4.12) in equation (3.60), we get

VﬂR’yuua"}'VuR’yuaﬁ‘f‘vaR’YpﬁV"'"(yTyﬂvTS’y,ul/a+yTy1/VTSfyuaﬂ"'yTyaVTS’Y,uﬂy) =0.
(4.13)
Contracting v, v, and applying the antisymmetry property, equation (4.13)

becomes

VﬁRW—{—V,,R”Wg—VaRu5+(yTyﬁVT Sua-i—yTy,,VTS”uag—yTyaVTSuﬁ) =0,
(4.14)

Using the metric tensor, we write equation (4.14) as

guavﬂRua+guavl/Ryuaﬂ—guavaRpﬁ‘l'gua(yTyﬂVTSua'*'yTyuvrSy,uaﬂ_yTyaVTS,uﬁ) =1
(4.15)
Application of the properties of the metric tensor as in equation (4.2),

puts equation (4.15) in the form

VR -V, R3 =V, R%+ V. (¥ ysS — 4y 4,8"5 — y"yaS%) = 0. (4.16)
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Since v is a dummy variable, we replace it with « so that equation (4.16)

gives

ViR — VoR% — VoR% + V(4458 — 44aS% — 4" 4aS%) =0

or

VﬁR = 2VaRaB + VTyTygS — QVTyTyaSaﬁ =il (417)

Using equation (4.6) in equation (4.17), we get

VagaﬁR = QVaRaﬂ + VTyTygS = 2VQS°‘B =i () (4.18)
or
ViR = %VaRgaﬂ - %VTyTyBS + VaS* =0, (4.19)

If we further let 7 — «, then this equation yields a conservation law of

the form
Va[(R — ZRg) + (8% — 285" =0 (4.20)
or
1
Val(R® +5%) - Z(Rg*® +8°4*)] = 0. (4.21)

Equation (4.21) gives the first form of an exact conservation law in Finsler

space.

4.2.2 The second form of conservation law

Let us now proceed to obtain the second form of the conservation law

by rewriting the terms on the R.H.S of equation (3.59) using an alternative
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form

Q’Ypo‘aﬂ = gTﬂV’rS,ypaa (422)

to write equation (3.59) as

D’y;waﬁ = (gT,BVTS’Y/wa it gTVvTS'Yuaﬁ + gTavTS’Y/.L,BV)‘ (423)

Using equation (4.23) in equation (3.60), we get

VﬁR’ypva+vuR7ua,8+vaR7uﬁu+ (gTﬂ VT S"/;wae +gTV v'r S’yuaﬂ +gTa V'r S’Yuﬂu) = 0.
(4.24)

Contracting 7 , v, we express equation (4.24) as

Vi Ruat ViR uap=VaRyug+(9"sVrSpat 9" V8 uag—9"aVr Spup) = 0.
(4.25)

Using the metric tensor, we can write equation (4.25) as

guaVﬂRua+guavuRuuaﬂ_guavaRuﬂ‘}‘gua(QTBVTSua+gTuvTSVpa5"gTavTSuﬂ) =0.
(4.26)
Once again, we apply the properties of the metric tensor as in equation

(4.2), to put equation (4.26) in the form

VﬁR = V,JRVg = VaRag + VT(gT[;S — gTVSVﬁ — gTaSaﬁ) =10, (427)

Since v is a dummy variable, we replace it with « so that equation (4.27)

gives

ViR — VoRY% — VoR% + V(0758 — 07aS% — §7aS%) = 0 (4.28)
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or

VR — 2V R% + V,g74S — 2V,¢7S%. (4.29)

Using equation (4.6) in equation (4.29), we get

VagagR — QVQRaﬁ + VTgTﬁS = QVaSag =0 (430)
or
V.R% — %VaRgaﬁ - -;—VTgTﬁS 4V 5 = 0 (4.31)

If we further let 7 — o, then this equation yields a conservation law of

the form
ValR — Rg*) + (8% - 28°9)] = 0 (4.32)
or
Val(R* +8°F) — %(R + 8)g*¥] = 0. (4.33)

This is the second form of the exact conservation law based on Cartan
covariant differentiation in Finsler space. Equations (4.21) and (4.33) are
the alternative forms of an exact conservation law in Finsler space. This
is the first time they are being derived within the framework of Finsler

geometry.

4.3 Generalized relativistic field equations

We proceed to derive the general field equations associated with exact
conservation law in the alternative forms of equations (4.20) and (4.32).

To do this, we apply Noether’s theorem which states that with every




distribution of matter and fields, there is always an associated tensor (
energy-momentum tensor). We obtain the general relativistic field equa-
tions in two equivalent forms associated with the first and second forms

of the exact conservation law.

4.3.1 First form of field equations

Application of Noether theorem to our conservation equations (4.20)

and (4.21) yields
(R~ %Rg"“’) + (8% - %Sy“y”)] = kT (4.34)

and

(B 4 §%) — J(Rg™ +8y%47)] = kT (435)

respectively, where k is a constant and 79 is a two-component, energy-
momentum tensor in Finsler space. These equations form the first form of
the exact field equations in a non-inertial reference frame derived within
the framework of Finsler geometry. In particular, equation (4.34) gives
the field equations in two different parts with the first part R*’ — 1R g%
corresponding to coordinate space and the second part S — %Syo‘yﬂ
to momentum space (tangent space). Our field equations are different
from those obtained in earlier work by Yazaki [8]. Yazaki [8] derived

approximate forms of the conservation law in equations (4.20) as

Vo[(RY — g Rg P) - 55y Y =1, (4.36)
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which he used through Noether’s theorem to write down the correspond-

ing approximate forms of generalized field equations in Finsler space as

]. 1 QL
(R — “2"Rgaﬁ) - §S’yayﬂ] = kT (4.37)

His derivation was essentially based on an approximation ( assumption)
that the tangent space is a surface of constant curvature. Based on this
assumption, he applied the tensor identity in equation (4.10) which is
less general than the tensor form in equation (4.11) used in this thesis.
In particular, in the limit of constant velocity and absence of the Ricci
tensor S* in equation (4.34), our field equations reduces to that of Yazaki
[8] in equation (4.37). Therefore, Yazaki’s [8] conservation law and field
equations in equations (4.36) and (4.37) are approximate forms of our
exact conservation law and field equations (4.20) and (4.34) respectively.
Furthermore, the term £7 % on the R.H.S of equation (4.34) is a conserved
tensor corresponding to a two-component energy-momentum tensor in

Finsler space, which may be written as
TP = T 4 ¢oF (4.38)

T is the generalized energy-momentum tensor corresponding to the co-
ordinate space and t*° is the energy-momentum tensor in the momentum
space (tangent space). Equations (4.20) and (4.34) form the first part of
our main results and they are appearing for the first time in literature on

Finsler spaces.
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4.3.2 Second form of field equations

Application of Noether theorem to our conservation equations (4.32)

and (4.33) yields
af 1 of af 1 of of
[(RY — -2—Rg )+ (8% — §Sg ¥ = k7 (4.39)

and

(R +8°%) — %(R +8)g%] = KT8 (4.40)

respectively. Equations (4.39) and (4.40) are the second form of our field
equations in Finsler space. The terms R* — %Rgo‘ﬁ and S — %Sg“ﬂ
on the L.H.S of equation (4.39) correspond to the coordinate space and
momentum space respectively. Ikeda [9], following an approach based on
vector bundles, assuming surface of constant curvature based on tensor
identity (4.11) on horizontal or vertical Finsler space arrived at approxi-

mate conservation law and field equations in the form
o8 _1p apy _ lg ap
Vo[(R* — 5R¢™) — 559%] =0 (4.41)

and

(0% 1 Q, 1 (0% Q,
[(RYF — 5Rg Ay — 559 Al = kTP (4.42)

respectively. In particular, in the limit of constant velocity and absence of
the Ricci tensor S* in equation (4.39), our field equations reduces to that
of Ikeda [9] in equation (4.42). Its also clear that Ikeda’s [9] conservation
law and field equations in equations (4.41) and (4.42) are approximate

forms of our exact conservation law and field equations (4.32) and (4.39)
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respectively. If we redefine
R=R+S ; R*¥+8%=(R+8)% =R, (4.43)
and put equation (4.39) in form of equation (4.40), we get
aB 1 of af
W = §Rg = KT (4.44)

where 78 is as defined in equation (4.38). Equation (4.44) puts our field
equations in a familiar form as in general relativity. Equation (4.44) is
the second form of the exact field equations in a non-inertial reference

frame derived within the framework of Finsler geometry.

Equations (4.32) and (4.44) form the second part of our main results
in this thesis and they are being derived for the first time within Finsler

space.

We consider equations (4.34) and (4.44) to provide two equivalent
alternative forms of generalized relativistic field equations governing dy-
namics in non-inertial reference frames. The inclusion of velocity as a
variable expands the mathematical framework from Riemann geometry
to Finsler geometry, with the physical consequence that the velocity-
dependent curvature terms, in particular S* and S ( together with any
velocity-dependent contribution from R*® and R ) in the field equations
can account for the anisotropy of the gravitational field, which is associ-
ated with dark matter and dark energy responsible for the acceleration
and expansion of the universe as observed in cosmic microwave back-

ground radiation and astrophysics experiments studying the origin and
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evolution of large scale structures in the universe [39-40]. We note that
S and S, which naturally arise in these equations, effectively play the
role of the cosmological constant usually included in Einstein’s field equa-
tions by hand [1-3]. Our generalized relativistic field equations (4.34) and
(4.44) thus provide the appropriate theoretical framework for accurate

cosmological models of the universe.

We observe that the Lorentz invariance violation effects established in
experiments on the Standard Model of particle interactions in quantum
field theory can be understood as effects of dynamics in non-inertial ref-
erence frames, which can therefore be accounted for in theoretical models
based on Finsler geometry as elaborated in our thesis. In other words,
the general theoretical framework for dynamics in non-inertial reference
frames developed here provides the physical ingredients for understand-
ing Lorentz invariance violation effects. This is justified by the fact that
besides its importance as a physical principle governing dynamics in rel-
ativistic quantum mechanics or quantum field theory, the Lorentz invari-

ance also forms the cornerstone of Einstein’s general theory of relativity

[41-42).

In general, equations (4.34) and (4.44) governing relativistic dynam-
ics in non-inertial reference frames where both spacetime coordinates and
corresponding velocities are variables, constitute the starting point for
developing theoretical models for physics beyond Einstein’s general rela-
tivity and the Standard Model in quantum field theory. Indeed, recent
work by various authors [28-38,41-44] present models generally based on
Finsler geometry ( nonholonomic manifold) to account for the anisotropy

of the gravitational field and Lorentz invariance violation effects. In par-
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ticular, the models in [28-30,34-38] are to be understood as special or
approximate versions of our field equations (4.34) and (4.44) in the sense
that the field equations in those works are not based on the exact conser-
vation laws, while at the same time some of them [28-30] are based on the
Berwald covariant differentiation which is known to be nonmetric com-
patible [34-36, 38]. On the other hand, models in [14-15, 25-28] attempt
to account for the Lorentz invariance violation either within the Finsler
geometric framework [41-42,43-44] or starting with the Cohen-Glashow
model of Very Special Relativity [43] with its generalizations incorporat-

ing basic elements of Finsler geometry by other authors in [32,44].
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Chapter 5

Summary, Conclusion and

Recommendations

In this chapter, we give a summary and concluding remarks of our
work, particularly of the main results. We shall end by making recom-

mendations for this work.

5.1 Summary and Conclusion

We observe that our field equations, presented in equivalent alterna-
tive forms in equations (4.34) and (4.44), are more general and exact,
since they are based on more generalized forms of conservation law de-
rived in equations (4.20) and (4.32). The derivation of the conservation
law, appearing in the literature on Finsler geometry for the first time in

this thesis, is not restricted to surfaces of constant curvature.

In earlier work, Ikeda [9] and Yazaki [8] derived approximate forms

of the conservation law in equations (4.32) and (4.20), which they used
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through Noether’s theorem to write down the corresponding approximate
forms of generalized field equations in Finsler space. Their derivations
were essentially based on an approximation ( assumption) that the tan-
gent space is a surface of constant curvature and therefore applied the
tensor identity in equation (4.10) which is less general than the tensor
forms in equations (4.11) and (4.22) used in this thesis. In particular, this
approximate identity yielded conservation law and corresponding approx-

imate field equations as given by equations (4.36) and (4.37) respectively
[8].

On the other hand, Tkeda [9], following an approach based on vector
bundles, assuming surface of constant curvature on horizontal or vertical
Finsler space separately arrived at approximate conservation law and field
equations in the form given by equations (4.41) and (4.42) respectively.
We observe that Yazaki’s [8] equations in (4.36)-(4.37) constitute approx-
imate forms of our field equations in (4.20) and (4.34), while Tkeda’s [9]
equations in (4.41)-(4.42) constitute approximate forms of our alternative

forms of field equations in (4.32) and (4.44).

Equivalent equations have been obtained in various forms through the
method of vector bundles within nonholonomic frames in Finsler geometry
in [35-38]. The assumptions of surface of constant curvature employed
in [8-9] makes the Yazaki [8] and Ikeda [9] equations (4.37) and (4.42)
above, and similar equations based on the same assumption in [35-38],
less general than the exact field equations (4.34) and (4.44) derived from
the exact conservation laws in equations (4.20) and (4.32) in the present

thesis.
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We therefore observe that our generalized equations (4.34) and (4.44)
derived for the first time in literature in this thesis based on Finsler ge-
ometry constitute a new field theory that is more general and exact in
contrast to the current gravitational field theories. The current gravita-
tional theories should be therefore understood as approximate forms of

our field equations derived in this thesis.

We also note that equations (4.34) and (4.44) give the interaction be-
tween the horizontal (x-field) and the vertical (y-field or field in the tan-
gent space) fields. The effective field is therefore the sum of the horizontal
and vertical fields. The energy-momentum tensor, 7%, is divided into
two parts, i.e., T which is the usual energy-momentum tensor in general
relativity, and t*® which is the energy-momentum tensor that is linked
to the tensors S* and R*. As observed earlier, the additional velocity-
dependent terms can account for important features such as anisotropy
of the gravitational field, acceleration and expansion of the universe and

Lorentz invariance violation effects.

Therefore, our generalized relativistic field equations (4.34) and (4.44)
governing relativistic dynamics in non-inertial reference frames have the
necessary physical and mathematical ingredients to address the problems
of anisotropy, acceleration and expansion of the universe, as well as the
Lorentz invariance violation effects, which are the major challenges of

theoretical physics at the moment.
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5.2 Recommendation

In order to obtain exact and generalized solution for describing rela-
tivistic dynamics in a non-inertial reference frame, detailed calculations

with our field equations (4.34) and (4.44) is recommended.

It is further recommended that the resulting solution from our field
equation be analyzed to reveal the full features of relativistic dynamics in
a non-inertial reference frame. This will address the current problems of

anisotropy, acceleration and expansion of the universe as well as Lorentz

violation effects.
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